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Where does it come from?

• Analysis of 5G protocols.

• The very first step of 5G-AKA (auth. key agreement protocol) is to send a unique
identifier of the User to the Home Network.

• We want user privacy.
• This property implies at least message confidentiality and integrity of the ECIES
scheme in the “multiple queries” setting (but may be more, e.g., different error
codes...).
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5G-AKA

• Key agreement protocol based on a pre-shared secret keys.

• Main part of the protocol: three messages.
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5G-AKA: focus on ECIES

• Key agreement protocol based on a pre-shared secret keys.
• Main part of the protocol: three messages.
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ECIES scheme

• Hybrid encryption scheme (key exchange + authenticated encryption).

• Should provide confidentiality and integrity of messages (more on that later).
• Widely standardized and deployed1.
• In this work we describe it slightly more general than it is standardized based on
“abstract” authenticated encryption scheme 𝒜ℰ (AE-scheme) and key exchange
scheme 𝒦ℰ (KE-scheme).

1Gayoso Martínez, Hernández Encinas, and Queiruga Dios, “Security and practical considerations when implementing the elliptic curve integrated encryption scheme”; Martínez,
Encinas, et al., “A comparison of the standardized versions of ECIES”; Shoup, A Proposal for an ISO Standard for Public Key Encryption.
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Previous analysis

• Confidentiality is analyzed in the LOR-CCA model with only one encryption
challenge query2.

• It seems that integrity was not analyzed for some reasons (INT-CTXT?
INT-PTXT?)3.

• Only for the concrete standardized scheme: Encrypt-then-MAC, key exchange based
on Diffie-Hellman-like approach (instead of more general treatment with any
AE/KE-scheme).

2Abdalla, Bellare, and Rogaway, “The oracle Diffie-Hellman assumptions and an analysis of DHIES”; Shoup, A Proposal for an ISO Standard for Public Key Encryption; Smart, “The
exact security of ECIES in the generic group model.”
3Bellare and Namprempre, “Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.”
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Our goals

• Analyze confidentiality and integrity in the “usual” LOR-CCA (conf.) and INT-CTXT
(integr.) models.

• In the general setting (“generic” key exchange scheme (more on that later) and
AE(AD)-scheme).

• Draw conclusions for the case when ECIES is instantiated with Russian
crypto-algorithms (such as VKO scheme4).

4Alekseev et al., “On the cryptographic properties of algorithms accompanying the applications of standards GOST R 34.11-2012 and GOST R 34.10-2012.”
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Building blocks

Firstly we have to discuss two main building blocks of the scheme:

• authenticated encryption scheme 𝒜ℰ (AE-scheme);
• key exchange scheme 𝒦ℰ (KE-scheme).

10



Authenticated encryption scheme

Triplet 𝒜ℰ = (KeyGen,Enc,Dec) of (probabilistic) algorithms:

• key generation algorithm KeyGen; no input, returns a randomly chosen key 𝑘 (e.g.,
from the set {0, 1}𝑘𝑙𝑒𝑛);

• encryption algorithm Enc; input: key 𝑘 and the message 𝑚, returns a ciphertext
𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚);

• decryption algorithm Dec; input: key 𝑘 and the ciphertext 𝑐𝑡, returns
𝑚 ← 𝒜ℰ.Dec(𝑘, 𝑐𝑡), which is either some message, or the special decryption error
symbol ⊥.

Correct decryption: for any 𝑚, any 𝑘 $←− 𝒜ℰ.KeyGen: 𝒜ℰ.Dec(𝑘,𝒜ℰ.Enc(𝑘,𝑚)) = 𝑚.
Examples: MGM mode5; CTR + CMAC, EtM6.

5Akhmetzyanova et al., “Security of Multilinear Galois Mode (MGM)”; Nozdrunov, “Parallel and double block cipher mode of operation (PD–mode) for authenticated encryption.”
6Bellare and Namprempre, “Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.”

11



Authenticated encryption scheme

Triplet 𝒜ℰ = (KeyGen,Enc,Dec) of (probabilistic) algorithms:

• key generation algorithm KeyGen; no input, returns a randomly chosen key 𝑘 (e.g.,
from the set {0, 1}𝑘𝑙𝑒𝑛);

• encryption algorithm Enc; input: key 𝑘 and the message 𝑚, returns a ciphertext
𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚);

• decryption algorithm Dec; input: key 𝑘 and the ciphertext 𝑐𝑡, returns
𝑚 ← 𝒜ℰ.Dec(𝑘, 𝑐𝑡), which is either some message, or the special decryption error
symbol ⊥.

Correct decryption: for any 𝑚, any 𝑘 $←− 𝒜ℰ.KeyGen: 𝒜ℰ.Dec(𝑘,𝒜ℰ.Enc(𝑘,𝑚)) = 𝑚.
Examples: MGM mode5; CTR + CMAC, EtM6.

5Akhmetzyanova et al., “Security of Multilinear Galois Mode (MGM)”; Nozdrunov, “Parallel and double block cipher mode of operation (PD–mode) for authenticated encryption.”
6Bellare and Namprempre, “Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.”

11



Authenticated encryption scheme

Triplet 𝒜ℰ = (KeyGen,Enc,Dec) of (probabilistic) algorithms:

• key generation algorithm KeyGen; no input, returns a randomly chosen key 𝑘 (e.g.,
from the set {0, 1}𝑘𝑙𝑒𝑛);

• encryption algorithm Enc; input: key 𝑘 and the message 𝑚, returns a ciphertext
𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚);

• decryption algorithm Dec; input: key 𝑘 and the ciphertext 𝑐𝑡, returns
𝑚 ← 𝒜ℰ.Dec(𝑘, 𝑐𝑡), which is either some message, or the special decryption error
symbol ⊥.

Correct decryption: for any 𝑚, any 𝑘 $←− 𝒜ℰ.KeyGen: 𝒜ℰ.Dec(𝑘,𝒜ℰ.Enc(𝑘,𝑚)) = 𝑚.
Examples: MGM mode5; CTR + CMAC, EtM6.

5Akhmetzyanova et al., “Security of Multilinear Galois Mode (MGM)”; Nozdrunov, “Parallel and double block cipher mode of operation (PD–mode) for authenticated encryption.”
6Bellare and Namprempre, “Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.”

11



Authenticated encryption scheme

Triplet 𝒜ℰ = (KeyGen,Enc,Dec) of (probabilistic) algorithms:

• key generation algorithm KeyGen; no input, returns a randomly chosen key 𝑘 (e.g.,
from the set {0, 1}𝑘𝑙𝑒𝑛);

• encryption algorithm Enc; input: key 𝑘 and the message 𝑚, returns a ciphertext
𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚);

• decryption algorithm Dec; input: key 𝑘 and the ciphertext 𝑐𝑡, returns
𝑚 ← 𝒜ℰ.Dec(𝑘, 𝑐𝑡), which is either some message, or the special decryption error
symbol ⊥.

Correct decryption: for any 𝑚, any 𝑘 $←− 𝒜ℰ.KeyGen: 𝒜ℰ.Dec(𝑘,𝒜ℰ.Enc(𝑘,𝑚)) = 𝑚.
Examples: MGM mode5; CTR + CMAC, EtM6.

5Akhmetzyanova et al., “Security of Multilinear Galois Mode (MGM)”; Nozdrunov, “Parallel and double block cipher mode of operation (PD–mode) for authenticated encryption.”
6Bellare and Namprempre, “Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.”

11



Authenticated encryption scheme

Triplet 𝒜ℰ = (KeyGen,Enc,Dec) of (probabilistic) algorithms:

• key generation algorithm KeyGen; no input, returns a randomly chosen key 𝑘 (e.g.,
from the set {0, 1}𝑘𝑙𝑒𝑛);

• encryption algorithm Enc; input: key 𝑘 and the message 𝑚, returns a ciphertext
𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚);

• decryption algorithm Dec; input: key 𝑘 and the ciphertext 𝑐𝑡, returns
𝑚 ← 𝒜ℰ.Dec(𝑘, 𝑐𝑡), which is either some message, or the special decryption error
symbol ⊥.

Correct decryption: for any 𝑚, any 𝑘 $←− 𝒜ℰ.KeyGen: 𝒜ℰ.Dec(𝑘,𝒜ℰ.Enc(𝑘,𝑚)) = 𝑚.

Examples: MGM mode5; CTR + CMAC, EtM6.

5Akhmetzyanova et al., “Security of Multilinear Galois Mode (MGM)”; Nozdrunov, “Parallel and double block cipher mode of operation (PD–mode) for authenticated encryption.”
6Bellare and Namprempre, “Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.”

11



Authenticated encryption scheme

Triplet 𝒜ℰ = (KeyGen,Enc,Dec) of (probabilistic) algorithms:

• key generation algorithm KeyGen; no input, returns a randomly chosen key 𝑘 (e.g.,
from the set {0, 1}𝑘𝑙𝑒𝑛);

• encryption algorithm Enc; input: key 𝑘 and the message 𝑚, returns a ciphertext
𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚);

• decryption algorithm Dec; input: key 𝑘 and the ciphertext 𝑐𝑡, returns
𝑚 ← 𝒜ℰ.Dec(𝑘, 𝑐𝑡), which is either some message, or the special decryption error
symbol ⊥.

Correct decryption: for any 𝑚, any 𝑘 $←− 𝒜ℰ.KeyGen: 𝒜ℰ.Dec(𝑘,𝒜ℰ.Enc(𝑘,𝑚)) = 𝑚.
Examples: MGM mode5; CTR + CMAC, EtM6.
5Akhmetzyanova et al., “Security of Multilinear Galois Mode (MGM)”; Nozdrunov, “Parallel and double block cipher mode of operation (PD–mode) for authenticated encryption.”
6Bellare and Namprempre, “Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.”

11



Key exchange scheme

Pair of algorithms 𝒦ℰ = (KeyPairGen,Combine):

• private-public key pair generation algorithm KeyPairGen; no input, returns a
randomly chosen key pair (𝑠𝑘, 𝑝𝑘);

• shared secret value generation algorithm Combine; input: private key 𝑠𝑘, public key
𝑝𝑘, returns generated shared secret 𝑘.

Correct shared secret generation requirement: for any two key pairs
(𝑠𝑘, 𝑝𝑘) $←− 𝒦ℰ.KeyPairGen and (𝑒𝑠𝑘, 𝑒𝑝𝑘) $←− 𝒦ℰ.KeyPairGen:

𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘) = 𝒦ℰ.Combine(𝑒𝑠𝑘, 𝑝𝑘).

Example: VKO scheme7.

7Alekseev et al., “On the cryptographic properties of algorithms accompanying the applications of standards GOST R 34.11-2012 and GOST R 34.10-2012.”
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ECIES scheme

Alice wants to send message 𝑚 to Bob, who has a long-term key pair (𝑠𝑘, 𝑝𝑘).

Two-step encryption process:

• generating ephemeral pair (𝑒𝑠𝑘, 𝑒𝑝𝑘)𝒦ℰ.KeyPairGen and session secret key
𝑘 ← 𝒦ℰ.Combine(𝑒𝑠𝑘, 𝑝𝑘);

• encrypting the message 𝑚 under the key 𝑘: 𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚) and sending (𝑒𝑝𝑘, 𝑐𝑡)
to the recipient.

Decryption: generate 𝑘 using 𝑠𝑘 and 𝑒𝑝𝑘, decrypt 𝑐𝑡 under 𝑘.
Fresh ephemeral key pair on each invocation!
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Pseudocode description

ECIES.Enc(𝑝𝑘,𝑚)
(𝑒𝑠𝑘, 𝑒𝑝𝑘) $←− 𝒦ℰ.KeyPairGen()
𝑘 ← 𝒦ℰ.Combine(𝑒𝑠𝑘, 𝑝𝑘)

𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚)
return (𝑒𝑝𝑘, 𝑐𝑡)

ECIES.Dec(𝑒𝑝𝑘, 𝑠𝑘, 𝑐𝑡)
𝑘 ← 𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘)
return 𝒜ℰ.Dec(𝑘, 𝑐𝑡)
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Models: overview

• LOR-CCA: confidentiality model (for 𝒜ℰ scheme, for ECIES scheme).

• INT-CTXT: integrity model (for 𝒜ℰ scheme, for ECIES scheme).
• MODH: key indistinguishability (for 𝒦ℰ scheme).
• Main result-1: LOR-CCA for ECIES can be reduced to the LOR-CCA for 𝒜ℰ and

MODH for 𝒦ℰ.
• Main result-2: INT-CTXT for ECIES can be reduced to the INT-CTXT for 𝒜ℰ and

MODH for 𝒦ℰ.
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Confidentiality of 𝒜ℰ: LOR-CCA model

LOR-CCA model (Left-or-Right, Chosen Ciphertext Attack) for the AE-scheme 𝒜ℰ in the
multi-user (𝐷 ∈ ℕ) setting.

Interface: two oracles 𝒪𝑏
enc and 𝒪dec.

• 𝒪𝑏
enc: takes a triple (𝑖,𝑚0, 𝑚1) — key index 1 ≤ 𝑖 ≤ 𝐷, message pair (𝑚0, 𝑚1); returns

𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘𝑖, 𝑚𝑏).
• 𝒪dec takes a pair — key index 1 ≤ 𝑖 ≤ 𝐷, ciphertext 𝑐𝑡; if 𝑐𝑡 was not returned as an
answer to the 𝒪enc query of the type (𝑖, ⋅, ⋅) before, returns 𝒜ℰ.Dec(𝑘𝑖, 𝑐𝑡), otherwise
an error.

Goal: predict the bit 𝑏 fixed in the 𝒪𝑏
enc.

Success measure: advantage

AdvLOR-CCA
𝒜ℰ (𝒜) = ℙ[ExpLOR-CCA-1

𝒜ℰ (𝒜) → 1] − ℙ[ExpLOR-CCA-0
𝒜ℰ (𝒜) → 1].
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Confidentiality of 𝒜ℰ: pseudocode

ExpLOR-CCA-𝑏
𝒜ℰ (𝒜)

for 1 ≤ 𝑖 ≤ 𝐷 do

𝑘𝑖
$←− 𝒜ℰ.KeyGen()

endfor
𝑠𝑒𝑛𝑡 ← [ ]

𝑏′ $←− 𝒜𝒪𝑏enc,𝒪dec

return 𝑏′

𝒪𝑏
enc(𝑖, 𝑚0, 𝑚1)

𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘𝑖, 𝑚𝑏)
𝑠𝑒𝑛𝑡[𝑖] ← 𝑠𝑒𝑛𝑡[𝑖] ∪ {𝑐𝑡}
return 𝑐𝑡

𝒪dec(𝑖, 𝑐𝑡)
if (𝑐𝑡 ∈ 𝑠𝑒𝑛𝑡[𝑖])

return ⊥
fi
return 𝒜ℰ.Dec(𝑘𝑖, 𝑐𝑡)
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Confidentiality of 𝒜ℰ: success measure

AdvLOR-CCA
𝒜ℰ (𝑡, 𝑄𝑒, 𝑄𝑑, 𝐿𝑒, 𝐿𝑑,𝑀𝑒,𝑀𝑑; 𝐷)

the maximal advantage AdvLOR-CCA
𝒜ℰ (𝒜); the maximum is over the adversaries 𝒜 whose

time complexity is at most 𝑡 and with the following restrictions on oracle queries
(1 ≤ 𝑖 ≤ 𝐷):

• the number of queries of the type (𝑖, 𝑚0, 𝑚1) to the 𝒪𝑏
enc oracle ((𝑖, 𝑐𝑡) to the 𝒪dec

oracle) does not exceed 𝑄𝑒[𝑖] (𝑄𝑑[𝑖] resp.);
• the total length of the queries∑|𝑚0| = ∑ |𝑚1| among queries of the type (𝑖, 𝑚0, 𝑚1)
to the 𝒪𝑏

enc oracle (∑|𝑐𝑡| among queries of the type (𝑖, 𝑐𝑡) to the 𝒪dec oracle) does
not exceed 𝐿𝑒[𝑖] (𝐿𝑑[𝑖] resp.);

• the maximal length of the query max |𝑚0| = max |𝑚1| among queries of the type
(𝑖, 𝑚0, 𝑚1) to the 𝒪𝑏

enc oracle (max |𝑐𝑡| among queries of the type (𝑖, 𝑐𝑡) to the 𝒪dec
oracle) does not exceed 𝑀𝑒[𝑖] (𝑀𝑑[𝑖] resp.).
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Confidentiality of 𝒜ℰ: success measure
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Confidentiality of ECIES: LOR-CCA model

• Essentially the same as for the case of LOR-CCA model for 𝒜ℰ scheme.

• Noticeable exceptions: generation of a fresh key during each invokation; “number of
parties” 𝐷 is essentially the same as the total number of queries.

• Guarantees: cannot guess with probability “greater” than 1
2
which plaintext was

encrypted.
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Confidentiality of ECIES: pseudocode

ExpLOR-CCA-𝑏
ECIES (𝒜)

(𝑠𝑘, 𝑝𝑘) $←− 𝒦ℰ.KeyPairGen()
𝑠𝑒𝑛𝑡 ← [ ]

𝑏′ $←− 𝒜𝒪𝑏enc,𝒪dec (𝑝𝑘)
return 𝑏′

𝒪𝑏
enc(𝑚0, 𝑚1)

(𝑒𝑝𝑘, 𝑒𝑠𝑘) $←− 𝒦ℰ.KeyPairGen()
𝑘 ← 𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘)

𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚𝑏)
𝑠𝑒𝑛𝑡 ← 𝑠𝑒𝑛𝑡 ∪ {(𝑒𝑝𝑘, 𝑐𝑡)}
return (𝑒𝑝𝑘, 𝑐𝑡)

𝒪dec(𝑒𝑝𝑘, 𝑐𝑡)
if (𝑒𝑝𝑘, 𝑐𝑡) ∈ 𝑠𝑒𝑛𝑡

return ⊥
fi
𝑘 ← 𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘)
return 𝒜ℰ.Dec(𝑘, 𝑐𝑡)
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Confidentiality of ECIES: success measure

AdvLOR-CCA
ECIES (𝑡, 𝑞𝑒, 𝑞𝑑, 𝑙𝑒, 𝑙𝑑, 𝜇𝑒, 𝜇𝑑)

maximal advantage AdvLOR-CCA
ECIES (𝒜), where the maximum is taken over the adversaries

𝒜 whose time complexity is at most 𝑡 and with the following restrictions on the oracle
queries:

• the number of queries to the 𝒪𝑏
enc oracle (to the 𝒪dec oracle) does not exceed 𝑞𝑒 (𝑞𝑑

resp.);
• the total length of the queries∑|𝑚0| = ∑ |𝑚1| to the 𝒪𝑏

enc oracle (∑|𝑐𝑡| to the 𝒪dec
oracle) does not exceed 𝑙𝑒 (𝑙𝑑 resp.);

• the maximal length of the query max |𝑚0| = max |𝑚1| among queries to the 𝒪𝑏
enc

oracle (max |𝑐𝑡| among queries to the 𝒪dec oracle) does not exceed 𝜇𝑒 (𝜇𝑑 resp.);
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Confidentiality of ECIES: success measure
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Integrity for 𝒜ℰ: INT-CTXT model

INT-CTXT model (Integrity of Ciphertexts) for the AE-scheme 𝒜ℰ in the multi-user
(𝐷 ∈ ℕ) setting.

Interface: two oracles 𝒪enc and 𝒪verify:

• 𝒪enc: input — key index 1 ≤ 𝑖 ≤ 𝐷, message 𝑚; returns 𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘𝑖, 𝑚).
• 𝒪verify: input — ciphertext 𝑐𝑡, key index 1 ≤ 𝑖 ≤ 𝐷; decrypts 𝑚 ← 𝒜ℰ.Dec(𝑘𝑖, 𝑐𝑡),
returns 𝑚; if 𝑐𝑡 was not returned as an answer to the 𝒪enc query of the type (𝑖, ⋅)
before and 𝑚 ≠ ⊥ (correct decryption), then sets 𝑤𝑖𝑛 ← true.

Goal: forge fresh ciphertext 𝑐𝑡 that is decrypted to the correct plaintext.
Success measure: advantage

AdvINT-CTXT
𝒜ℰ (𝒜) = ℙ[ExpINT-CTXT

𝒜ℰ (𝒜) → 1].
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Integrity for 𝒜ℰ: pseudocode

ExpINT-CTXT
𝒜ℰ (𝒜)

for 1 ≤ 𝑖 ≤ 𝐷 do

𝑘𝑖
$←− 𝒜ℰ.KeyGen

endfor
𝑠𝑒𝑛𝑡 ← [ ]
𝑤𝑖𝑛 ← 0
𝒜𝒪enc,𝒪verify

return 𝑤𝑖𝑛

𝒪enc(𝑖,𝑚)
𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘𝑖, 𝑚)
𝑠𝑒𝑛𝑡[𝑖] ← 𝑠𝑒𝑛𝑡[𝑖] ∪ {𝑐𝑡}
return 𝑐𝑡

𝒪verify(𝑖, 𝑐𝑡)
𝑚 ← 𝒜ℰ.Dec(𝑘𝑖, 𝑐𝑡)
if (𝑐𝑡 ∉ 𝑠𝑒𝑛𝑡[𝑖]) & (𝑚 ≠ ⊥)
𝑤𝑖𝑛 ← 1

fi
return 𝑚
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Integrity for 𝒜ℰ: pseudocode
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Integrity for 𝒜ℰ: success measure

AdvINT-CTXT
𝒜ℰ (𝑡, 𝑄𝑒, 𝑄𝑣, 𝐿𝑒, 𝐿𝑣,𝑀𝑒,𝑀𝑣; 𝐷)

maximal advantage AdvINT-CTXT
𝒜ℰ (𝒜), where the maximum is taken over the adversaries

𝒜 whose time complexity is at most 𝑡 and with the following restrictions on oracle
queries (1 ≤ 𝑖 ≤ 𝐷):

• the number of queries of the type (𝑖,𝑚) to the 𝒪enc oracle ((𝑖, 𝑐𝑡) to the 𝒪verify oracle)
does not exceed 𝑄𝑒[𝑖] (𝑄𝑣[𝑖] resp.);

• the total length of the queries∑|𝑚| among queries of the type (𝑖,𝑚) to the 𝒪enc
oracle (∑|𝑐𝑡| among queries of the type (𝑖, 𝑐𝑡) to the 𝒪verify oracle) does not exceed
𝐿𝑒[𝑖] (𝐿𝑣[𝑖] resp.);

• the maximal length of the query max |𝑚| among queries of the type (𝑖,𝑚) to the 𝒪enc
oracle (max |𝑐𝑡| among queries of the type (𝑖, 𝑐𝑡) to the 𝒪verify oracle) does not
exceed 𝑀𝑒[𝑖] (𝑀𝑣[𝑖] resp.);
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Integrity for 𝒜ℰ: success measure
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Integrity of ECIES: INT-CTXT model

• Essentially the same as for the case of INT-CTXT model for 𝒜ℰ scheme.

• Noticeable exceptions: generation of a fresh key during each invokation; “number of
parties” 𝐷 is essentially the same as the total number of queries.

• Guarantees: cannot forge a correct ciphertext given an ephemeral public key (i.e., the
key is chosen by the honest party, the goal is to forge for this particular public key).
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Integrity of ECIES: pseudocode

ExpINT-CTXT
ECIES (𝒜)

(𝑠𝑘, 𝑝𝑘) $←− 𝒦ℰ.KeyPairGen()
𝑠𝑒𝑛𝑡 ← [ ]
𝑤𝑖𝑛 ← 0
𝒜𝒪enc,𝒪verify (𝑝𝑘)
return 𝑤𝑖𝑛

𝒪enc(𝑚)
(𝑒𝑝𝑘, 𝑒𝑠𝑘) $←− 𝒦ℰ.KeyPairGen()
𝑘 ← 𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘)

𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚)
𝑠𝑒𝑛𝑡[𝑒𝑝𝑘] ← 𝑠𝑒𝑛𝑡[𝑒𝑝𝑘] ∪ {𝑐𝑡}
return (𝑒𝑝𝑘, 𝑐𝑡)

𝒪verify(𝑒𝑝𝑘, 𝑐𝑡)
𝑘 ← 𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘)
𝑚 ← 𝒜ℰ.Dec(𝑘, 𝑐𝑡)
𝑡1 ← (𝑚 ≠ ⊥)
𝑡2 ← (𝑠𝑒𝑛𝑡[𝑒𝑝𝑘] ≠ ⊥)
𝑡3 ← (𝑐𝑡 ∉ 𝑠𝑒𝑛𝑡[𝑒𝑝𝑘])
if 𝑡1&𝑡2&𝑡3
𝑤𝑖𝑛 ← 1

fi
return 𝑚
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Integrity of ECIES: pseudocode

ExpINT-CTXT
ECIES (𝒜)

(𝑠𝑘, 𝑝𝑘) $←− 𝒦ℰ.KeyPairGen()
𝑠𝑒𝑛𝑡 ← [ ]
𝑤𝑖𝑛 ← 0
𝒜𝒪enc,𝒪verify (𝑝𝑘)
return 𝑤𝑖𝑛

𝒪enc(𝑚)
(𝑒𝑝𝑘, 𝑒𝑠𝑘) $←− 𝒦ℰ.KeyPairGen()
𝑘 ← 𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘)

𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚)
𝑠𝑒𝑛𝑡[𝑒𝑝𝑘] ← 𝑠𝑒𝑛𝑡[𝑒𝑝𝑘] ∪ {𝑐𝑡}
return (𝑒𝑝𝑘, 𝑐𝑡)

𝒪verify(𝑒𝑝𝑘, 𝑐𝑡)
𝑘 ← 𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘)
𝑚 ← 𝒜ℰ.Dec(𝑘, 𝑐𝑡)
𝑡1 ← (𝑚 ≠ ⊥)
𝑡2 ← (𝑠𝑒𝑛𝑡[𝑒𝑝𝑘] ≠ ⊥)
𝑡3 ← (𝑐𝑡 ∉ 𝑠𝑒𝑛𝑡[𝑒𝑝𝑘])
if 𝑡1&𝑡2&𝑡3
𝑤𝑖𝑛 ← 1

fi
return 𝑚

27



Integrity of ECIES: pseudocode
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Integrity of ECIES: success measure

AdvINT-CTXT
ECIES (𝑡, 𝑞𝑒, 𝑞𝑣, 𝑙𝑒, 𝑙𝑣, 𝜇𝑒, 𝜇𝑣)

maximal advantage AdvINT-CTXT
ECIES (𝒜), where the maximum is taken over the adversaries

𝒜 whose time complexity is at most 𝑡 and with the following restrictions on the oracle
queries:

• the number of queries to the 𝒪enc oracle (to the 𝒪verify oracle) does not exceed 𝑞𝑒
(𝑞𝑣 resp.);

• the total length of the queries∑|𝑚0| = ∑ |𝑚1| to the 𝒪enc oracle (∑|𝑐𝑡| to the 𝒪verify
oracle) does not exceed 𝑙𝑒 (𝑙𝑣 resp.);

• the maximal length of the query max |𝑚0| = max |𝑚1| among queries to the 𝒪enc
oracle (max |𝑐𝑡| among queries to the 𝒪verify oracle) does not exceed 𝜇𝑒 (𝜇𝑣 resp.);
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Integrity of ECIES: success measure
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Key secrecy for 𝒦ℰ: MODH model

MODH model (multiple oracle Diffie-Hellman8) for the key exchange scheme 𝒦ℰ.

Interface: two oracles 𝒪comb and 𝒪𝑏
kgen:

• oracle 𝒪comb(𝑒𝑝𝑘) generates a key via 𝒦ℰ.Combine function using the ephemeral
key 𝑒𝑝𝑘 and long-term key 𝑠𝑘.

• oracle 𝒪𝑏
kgen generates either random keys of a given length (in case of 𝑏 = 0) or keys

generated via key exchange scheme (in case of 𝑏 = 1) with some restrictions that
exclude trivial attacks, see below;

Goal: guess the bit 𝑏.
Success measure:

AdvMODH
𝒦ℰ (𝒜) = ℙ[ExpMODH-1

𝒦ℰ (𝒜) → 1] − ℙ[ExpMODH-0
𝒦ℰ (𝒜) → 1].

8Abdalla, Bellare, and Rogaway, “The oracle Diffie-Hellman assumptions and an analysis of DHIES.”
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Key secrecy for 𝒦ℰ: pseudocode

ExpMODH-𝑏
𝒦ℰ (𝒜)

(𝑠𝑘, 𝑝𝑘) $←− 𝒦ℰ.KeyPairGen()
𝐾𝑒𝑦𝑠 ← [ ]

𝑏′ $←− 𝒜𝒪𝑏
kgen,𝒪comb (𝑝𝑘)

return 𝑏′

𝒪comb(𝑒𝑝𝑘)
if 𝐾𝑒𝑦𝑠[𝑒𝑝𝑘] = ⊥

return 𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘)
else

return 𝐾𝑒𝑦𝑠[𝑒𝑝𝑘]
fi

𝒪𝑏
kgen()

(𝑒𝑠𝑘, 𝑒𝑝𝑘) $←− 𝒦ℰ.KeyPairGen()
if 𝐾𝑒𝑦𝑠[𝑒𝑝𝑘] = ⊥
𝑘 ← 𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘)
if (𝑏 = 0)

𝑘 $←− {0, 1}|𝑘|

fi
𝐾𝑒𝑦𝑠[𝑒𝑝𝑘] ← 𝑘

fi
return (𝑒𝑝𝑘, 𝐾𝑒𝑦𝑠[𝑒𝑝𝑘])
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Key secrecy for 𝒦ℰ: success measure

AdvMODH
𝒦ℰ (𝑡, 𝑞𝑔𝑒𝑛, 𝑞𝑐𝑜𝑚)

maximal advantage AdvMODH
𝒦ℰ (𝒜), where the maximum is taken over the adversaries 𝒜

whose time complexity is at most 𝑡, making at most 𝑞𝑔𝑒𝑛 queries to 𝒪𝑏
kgen, 𝑞𝑐𝑜𝑚 queries to

𝒪comb oracles.
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Multi-user setting is reducible

Proposition

AdvLOR-CCA
𝒜ℰ (𝑡, 𝑄𝑒, 𝑄𝑑, 𝐿𝑒, 𝐿𝑑,𝑀𝑒,𝑀𝑑; 𝐷) ≤

≤ 𝐷 ⋅ AdvLOR-CCA
𝒜ℰ (𝑡 + 𝑇, 𝑞𝑒, 𝑞𝑑, 𝑙𝑒, 𝑙𝑑, 𝜇𝑒, 𝜇𝑑; 1),

• 𝑇 = 𝐷 +∑𝐷
𝑖=1 (𝑄𝑒[𝑖] + 𝑄𝑑[𝑖] + 𝐿𝑒[𝑖] + 𝐿𝑑[𝑖]),

• 𝑞𝑥 = max1≤𝑖≤𝐷 𝑄𝑥[𝑖], 𝑙𝑥 = max1≤𝑖≤𝐷 𝐿𝑥[𝑖], 𝜇𝑥 = max1≤𝑖≤𝐷𝑀𝑥[𝑖], 𝑥 ∈ {𝑒, 𝑑}.
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Multi-user setting is reducible-2

Proposition

AdvINT-CTXT
𝒜ℰ (𝑡, 𝑄𝑒, 𝑄𝑣, 𝐿𝑒, 𝐿𝑣,𝑀𝑒,𝑀𝑣; 𝐷) ≤

≤ 𝐷 ⋅ AdvINT-CTXT
𝒜ℰ (𝑡 + 𝑇, 𝑞𝑒, 𝑞𝑣, 𝑙𝑒, 𝑙𝑣, 𝜇𝑒, 𝜇𝑣; 1),

• 𝑇 = 𝐷 +∑𝐷
𝑖=1 (𝑄𝑒[𝑖] + 𝑄𝑣[𝑖] + 𝐿𝑒[𝑖] + 𝐿𝑣[𝑖]),

• 𝑞𝑥 = max1≤𝑖≤𝐷 𝑄𝑥[𝑖], 𝑙𝑥 = max1≤𝑖≤𝐷 𝐿𝑥[𝑖], 𝜇𝑥 = max1≤𝑖≤𝐷𝑀𝑥[𝑖], 𝑥 ∈ {𝑒, 𝑣}.
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Multi-user setting is reducible: ideas

• Main idea: hybrid argument (keys 𝑘𝑖 are independent)...

• i.e., choose one index 𝑗, on which oracle queries are redirected; model the others.
• We assume that key generation and processing one block of a text requires 1 unit of
time.
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MODH model is reducible

Proposition

Assume that the distribution of ephemeral public keys 𝑒𝑝𝑘 generated by
𝒦ℰ.KeyPairGen is uniformly random on 𝐸𝑝𝑘𝑆𝑒𝑡. Then the following inequality holds:

AdvMODH
𝒦ℰ (𝑡, 𝑞𝑔𝑒𝑛, 𝑞𝑐𝑜𝑚) ≤ 𝑞𝑔𝑒𝑛 ⋅ AdvMODH

𝒦ℰ (𝑡 + 𝑞𝑔𝑒𝑛 + 𝑞𝑐𝑜𝑚, 1, 𝑞𝑐𝑜𝑚) +
2 𝑞𝑔𝑒𝑛 𝑞𝑐𝑜𝑚
|𝐸𝑝𝑘𝑆𝑒𝑡| ,
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MODH model is reducible-2

• Main idea: again hybrid argument...

• but: might be some problem if the key 𝑒𝑝𝑘 generated inside 𝒪𝑏
kgen collides with one

of the keys 𝑒𝑝𝑘 queried by 𝒜 to 𝒪comb oracle.
• Exclude this (bad) event: 𝑞𝑔𝑒𝑛 𝑞𝑐𝑜𝑚

|𝐸𝑝𝑘𝑆𝑒𝑡|
summand.
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Results for ECIES

Assume that the distribution of ephemeral public keys 𝑒𝑝𝑘 generated by
𝒦ℰ.KeyPairGen is uniformly random on 𝐸𝑝𝑘𝑆𝑒𝑡.

Proposition

AdvLOR-CCA
ECIES (𝑡, 𝑞𝑒, 𝑞𝑑, 𝑙𝑒, 𝑙𝑑, 𝜇𝑒, 𝜇𝑑) ≤

≤ 2 ⋅AdvMODH
𝒦ℰ (𝑡 + 𝑇1, 𝑞𝑒, 𝑞𝑑)+ 𝑞𝑒 ⋅AdvLOR-CCA

𝒜ℰ (𝑡 + 𝑇2, 𝑞𝑒, 𝑞𝑑, 𝑙𝑒, 𝑙𝑑, 𝜇𝑒, 𝜇𝑑; 1)+
𝑞𝑒 ⋅ 𝑞𝑑
|𝐸𝑝𝑘𝑆𝑒𝑡| ,

where 𝑇1 = 𝑞𝑒 + 𝑞𝑑 + 𝑙𝑒 + 𝑙𝑑 , 𝑇2 = 𝑞𝑑 + 𝑙𝑑 + 𝑞𝑒 (𝑞𝑒 + 𝑞𝑑 + 𝑙𝑒 + 𝑙𝑑 + 2).
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Results for ECIES - 2

Proposition

AdvINT-CTXT
ECIES (𝑡, 𝑞𝑒, 𝑞𝑣, 𝑙𝑒, 𝑙𝑣, 𝜇𝑒, 𝜇𝑣) ≤

≤ AdvMODH
𝒦ℰ (𝑡 + 𝑇1, 𝑞𝑒, 𝑞𝑣) + 𝑞𝑒AdvINT-CTXT

𝒜ℰ (𝑡 + 𝑇2, 𝑞𝑒, 𝑞𝑣, 𝑙𝑒, 𝑙𝑣, 𝜇𝑒, 𝜇𝑣; 1) +
𝑞𝑒 ⋅ 𝑞𝑣
|𝐸𝑝𝑘𝑆𝑒𝑡| ,

where 𝑇1 = 𝑞𝑒 + 𝑞𝑣 + 𝑙𝑒 + 𝑙𝑣, 𝑇2 = 𝐷 + 𝑞𝑣 + 𝑙𝑣 + 𝑞𝑒 ⋅ (1 + 𝑞𝑒 + 𝑞𝑣 + 𝑙𝑒 + 𝑙𝑣).
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Results for ECIES: conclusions

• Main result: decompose the security of ECIES to the security of 𝒜ℰ and 𝒦ℰ.

• One can instantiate ECIES with concrete 𝒜ℰ and 𝒦ℰ and obtain concrete estimates.
• Obtaining estimates for the (in)security of 𝒜ℰ on a single key in LOR-CCA and

INT-CTXT is a well-known problem; many results for specific schemes.
• 𝒦ℰ in MODH is more elaborate...
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𝒦ℰ in MODH: why problematic?

• Example: VKO scheme.

• To estimate security we must take into consideration how hash function and group
operation are interwined.

• “Bad interaction” may lead to the situation when DDH problem is hard, but ODH
problem is easy.

• Various “idealized” versions of the problem can be studied: Hash as a Random
Oracle9, Generic Group Model10, etc.

9Abdalla, Bellare, and Rogaway, “The oracle Diffie-Hellman assumptions and an analysis of DHIES.”
10Smart, “The exact security of ECIES in the generic group model.”
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