On the confidentiality and integrity of ECIES scheme

Kirill Tsaregorodtsev

Researcher at Cryptography laboratory, JSRPC ``Kryptonite", Moscow, Russia

Криптонит

CTCrypt'2023

1. Introduction

- 2. The object of study: ECIES scheme
- 3. Security models
- 4. Main results

Introduction

The object of study: ECIES scheme

Security models

Main results

IK Where does it come from?

• Analysis of 5G protocols.

- Analysis of 5G protocols.
- The very first step of 5G-AKA (auth. key agreement protocol) is to send a unique identifier of the User to the Home Network.

- Analysis of 5G protocols.
- The very first step of 5G-AKA (auth. key agreement protocol) is to send a unique identifier of the User to the Home Network.
- We want **user privacy**.

- Analysis of 5G protocols.
- The very first step of 5G-AKA (auth. key agreement protocol) is to send a unique identifier of the User to the Home Network.
- We want **user privacy**.
- This property implies at least message confidentiality and integrity of the ECIES scheme in the "multiple queries" setting (but may be more, e.g., different error codes...).

K 5G-AKA

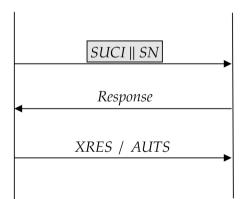
• Key agreement protocol based on a pre-shared secret keys.

K 5G-AKA

- Key agreement protocol based on a pre-shared secret keys.
- Main part of the protocol: three messages.

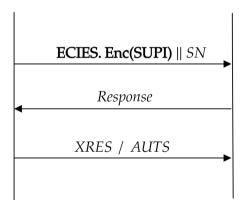
K 5G-AKA

- Key agreement protocol based on a pre-shared secret keys.
- Main part of the protocol: three messages.



IK 5G-AKA: focus on ECIES

- Key agreement protocol based on a pre-shared secret keys.
- Main part of the protocol: three messages.



• Hybrid encryption scheme (key exchange + authenticated encryption).

¹Gayoso Martínez, Hernández Encinas, and Queiruga Dios, "Security and practical considerations when implementing the elliptic curve integrated encryption scheme"; Martínez, Encinas, et al., "A comparison of the standardized versions of ECIES"; Shoup, A Proposal for an ISO Standard for Public Key Encryption.

- Hybrid encryption scheme (key exchange + authenticated encryption).
- Should provide confidentiality and integrity of messages (more on that later).

¹Gayoso Martínez, Hernández Encinas, and Queiruga Dios, "Security and practical considerations when implementing the elliptic curve integrated encryption scheme"; Martínez, Encinas, et al., "A comparison of the standardized versions of ECIES"; Shoup, A Proposal for an ISO Standard for Public Key Encryption.

- Hybrid encryption scheme (key exchange + authenticated encryption).
- Should provide confidentiality and integrity of messages (more on that later).
- Widely standardized and deployed¹.

¹Gayoso Martínez, Hernández Encinas, and Queiruga Dios, "Security and practical considerations when implementing the elliptic curve integrated encryption scheme"; Martínez, Encinas, et al., "A comparison of the standardized versions of ECIES"; Shoup, A Proposal for an ISO Standard for Public Key Encryption.

- Hybrid encryption scheme (key exchange + authenticated encryption).
- Should provide confidentiality and integrity of messages (more on that later).
- Widely standardized and deployed¹.
- In this work we describe it slightly more general than it is standardized based on "abstract" authenticated encryption scheme *AE* (AE-scheme) and key exchange scheme *KE* (KE-scheme).

¹Gayoso Martínez, Hernández Encinas, and Queiruga Dios, "Security and practical considerations when implementing the elliptic curve integrated encryption scheme"; Martínez, Encinas, et al., "A comparison of the standardized versions of ECIES"; Shoup, A Proposal for an ISO Standard for Public Key Encryption.

• Confidentiality is analyzed in the LOR-CCA model with **only one** encryption challenge query².

²Abdalla, Bellare, and Rogaway, "The oracle Diffie-Hellman assumptions and an analysis of DHIES"; Shoup, A Proposal for an ISO Standard for Public Key Encryption; Smart, "The exact security of ECIES in the generic group model."

³Bellare and Namprempre, "Authenticated encryption: Relations among notions and analysis of the generic composition paradigm."

- Confidentiality is analyzed in the LOR-CCA model with **only one** encryption challenge query².
- It seems that integrity was not analyzed for some reasons (INT-CTXT? INT-PTXT?)³.

²Abdalla, Bellare, and Rogaway, "The oracle Diffie-Hellman assumptions and an analysis of DHIES"; Shoup, A Proposal for an ISO Standard for Public Key Encryption; Smart, "The exact security of ECIES in the generic group model."

³Bellare and Namprempre, "Authenticated encryption: Relations among notions and analysis of the generic composition paradigm."

- Confidentiality is analyzed in the LOR-CCA model with **only one** encryption challenge query².
- It seems that integrity was not analyzed for some reasons (INT-CTXT? INT-PTXT?)³.
- Only for the concrete standardized scheme: Encrypt-then-MAC, key exchange based on Diffie-Hellman-like approach (instead of more general treatment with any AE/KE-scheme).

²Abdalla, Bellare, and Rogaway, "The oracle Diffie-Hellman assumptions and an analysis of DHIES"; Shoup, A Proposal for an ISO Standard for Public Key Encryption; Smart, "The exact security of ECIES in the generic group model."

³Bellare and Namprempre, "Authenticated encryption: Relations among notions and analysis of the generic composition paradigm."

• Analyze confidentiality and integrity in the "usual" LOR-CCA (conf.) and INT-CTXT (integr.) models.

⁴Alekseev et al., "On the cryptographic properties of algorithms accompanying the applications of standards GOST R 34.11-2012 and GOST R 34.10-2012."

- Analyze confidentiality and integrity in the "usual" LOR-CCA (conf.) and INT-CTXT (integr.) models.
- In the general setting ("generic" key exchange scheme (more on that later) and AE(AD)-scheme).

⁴Alekseev et al., "On the cryptographic properties of algorithms accompanying the applications of standards GOST R 34.11-2012 and GOST R 34.10-2012."

- Analyze confidentiality and integrity in the "usual" LOR-CCA (conf.) and INT-CTXT (integr.) models.
- In the general setting ("generic" key exchange scheme (more on that later) and AE(AD)-scheme).
- Draw conclusions for the case when ECIES is instantiated with Russian crypto-algorithms (such as VKO scheme⁴).

⁴Alekseev et al., "On the cryptographic properties of algorithms accompanying the applications of standards GOST R 34.11-2012 and GOST R 34.10-2012."

Introduction

The object of study: ECIES scheme

Security models

Main results

Firstly we have to discuss two main building blocks of the scheme:

- \cdot authenticated encryption scheme \mathcal{AE} (AE-scheme);
- \cdot key exchange scheme \mathcal{KE} (KE-scheme).

⁵Akhmetzyanova et al., "Security of Multilinear Galois Mode (MGM)"; Nozdrunov, "Parallel and double block cipher mode of operation (PD-mode) for authenticated encryption." ⁶Bellare and Namprempre, "Authenticated encryption: Relations among notions and analysis of the generic composition paradigm."

IK Authenticated encryption scheme

Triplet $\mathcal{AE} = (KeyGen, Enc, Dec)$ of (probabilistic) algorithms:

key generation algorithm KeyGen; no input, returns a randomly chosen key k (e.g., from the set {0, 1}^{klen});

⁵Akhmetzyanova et al., "Security of Multilinear Galois Mode (MGM)"; Nozdrunov, "Parallel and double block cipher mode of operation (PD-mode) for authenticated encryption." ⁶Bellare and Namprempre, "Authenticated encryption: Relations among notions and analysis of the generic composition paradigm."

- key generation algorithm KeyGen; no input, returns a randomly chosen key k (e.g., from the set {0, 1}^{klen});
- encryption algorithm **Enc**; input: key k and the message m, returns a ciphertext $ct \stackrel{\$}{\leftarrow} \mathcal{AE}.Enc(k, m);$

⁵Akhmetzyanova et al., "Security of Multilinear Galois Mode (MGM)"; Nozdrunov, "Parallel and double block cipher mode of operation (PD-mode) for authenticated encryption." ⁶Bellare and Namprempre, "Authenticated encryption: Relations among notions and analysis of the generic composition paradigm."

- key generation algorithm KeyGen; no input, returns a randomly chosen key k (e.g., from the set {0, 1}^{klen});
- encryption algorithm **Enc**; input: key k and the message m, returns a ciphertext $ct \stackrel{\$}{\leftarrow} \mathcal{AE}.Enc(k, m);$
- decryption algorithm **Dec**; input: key k and the ciphertext ct, returns $m \leftarrow \mathcal{AE}.\mathbf{Dec}(k, ct)$, which is either some message, or the special decryption error symbol \perp .

⁵Akhmetzyanova et al., "Security of Multilinear Galois Mode (MGM)"; Nozdrunov, "Parallel and double block cipher mode of operation (PD-mode) for authenticated encryption." ⁶Bellare and Namprempre, "Authenticated encryption: Relations among notions and analysis of the generic composition paradigm."

- key generation algorithm KeyGen; no input, returns a randomly chosen key k (e.g., from the set {0, 1}^{klen});
- encryption algorithm **Enc**; input: key k and the message m, returns a ciphertext $ct \stackrel{\$}{\leftarrow} \mathcal{AE}$.**Enc**(k, m);
- decryption algorithm **Dec**; input: key k and the ciphertext ct, returns $m \leftarrow \mathcal{AE}.\mathbf{Dec}(k, ct)$, which is either some message, or the special decryption error symbol \perp .

Correct decryption: for any m, any $k \stackrel{\$}{\leftarrow} \mathcal{AE}.\mathbf{KeyGen}: \mathcal{AE}.\mathbf{Dec}(k, \mathcal{AE}.\mathbf{Enc}(k, m)) = m$.

⁵Akhmetzyanova et al., "Security of Multilinear Galois Mode (MGM)"; Nozdrunov, "Parallel and double block cipher mode of operation (PD-mode) for authenticated encryption." ⁶Bellare and Namprempre, "Authenticated encryption: Relations among notions and analysis of the generic composition paradigm."

- key generation algorithm KeyGen; no input, returns a randomly chosen key k (e.g., from the set {0, 1}^{klen});
- encryption algorithm **Enc**; input: key k and the message m, returns a ciphertext $ct \stackrel{\$}{\leftarrow} \mathcal{AE}$.**Enc**(k, m);
- decryption algorithm **Dec**; input: key k and the ciphertext ct, returns $m \leftarrow \mathcal{AE}.\mathbf{Dec}(k, ct)$, which is either some message, or the special decryption error symbol \perp .

Correct decryption: for any m, any $k \stackrel{\$}{\leftarrow} \mathcal{AE}.\mathbf{KeyGen}: \mathcal{AE}.\mathbf{Dec}(k, \mathcal{AE}.\mathbf{Enc}(k, m)) = m$. Examples: MGM mode⁵; CTR + CMAC, EtM⁶.

⁵Akhmetzyanova et al., "Security of Multilinear Galois Mode (MGM)"; Nozdrunov, "Parallel and double block cipher mode of operation (PD-mode) for authenticated encryption." ⁶Bellare and Namprempre, "Authenticated encryption: Relations among notions and analysis of the generic composition paradigm."

⁷Alekseev et al., "On the cryptographic properties of algorithms accompanying the applications of standards GOST R 34.11-2012 and GOST R 34.10-2012."

• private-public key pair generation algorithm **KeyPairGen**; no input, returns a randomly chosen key pair (*sk*, *pk*);

⁷Alekseev et al., "On the cryptographic properties of algorithms accompanying the applications of standards GOST R 34.11-2012 and GOST R 34.10-2012."

- private-public key pair generation algorithm **KeyPairGen**; no input, returns a randomly chosen key pair (*sk*, *pk*);
- shared secret value generation algorithm **Combine**; input: private key *sk*, public key *pk*, returns generated shared secret *k*.

⁷Alekseev et al., "On the cryptographic properties of algorithms accompanying the applications of standards GOST R 34.11-2012 and GOST R 34.10-2012."

- private-public key pair generation algorithm **KeyPairGen**; no input, returns a randomly chosen key pair (*sk*, *pk*);
- shared secret value generation algorithm **Combine**; input: private key *sk*, public key *pk*, returns generated shared secret *k*.

Correct shared secret generation requirement: for any two key pairs $(sk, pk) \stackrel{\$}{\leftarrow} \mathcal{KE}.KeyPairGen$ and $(esk, epk) \stackrel{\$}{\leftarrow} \mathcal{KE}.KeyPairGen$:

 $\mathcal{KE}.$ **Combine**(*sk*, *epk*) = $\mathcal{KE}.$ **Combine**(*esk*, *pk*).

⁷Alekseev et al., "On the cryptographic properties of algorithms accompanying the applications of standards GOST R 34.11-2012 and GOST R 34.10-2012."

- private-public key pair generation algorithm **KeyPairGen**; no input, returns a randomly chosen key pair (*sk*, *pk*);
- shared secret value generation algorithm **Combine**; input: private key *sk*, public key *pk*, returns generated shared secret *k*.

Correct shared secret generation requirement: for any two key pairs $(sk, pk) \stackrel{\$}{\leftarrow} \mathcal{KE}.KeyPairGen$ and $(esk, epk) \stackrel{\$}{\leftarrow} \mathcal{KE}.KeyPairGen$:

 $\mathcal{KE}.Combine(sk, epk) = \mathcal{KE}.Combine(esk, pk).$

Example: VKO scheme⁷.

⁷Alekseev et al., "On the cryptographic properties of algorithms accompanying the applications of standards GOST R 34.11-2012 and GOST R 34.10-2012."

Alice wants to send message *m* to Bob, who has a long-term key pair (*sk*, *pk*).

Alice wants to send message *m* to Bob, who has a long-term key pair (*sk*, *pk*). Two-step encryption process: Alice wants to send message *m* to Bob, who has a long-term key pair (*sk*, *pk*). Two-step encryption process:

• generating ephemeral pair $(esk, epk) \mathcal{KE}$.**KeyPairGen** and session secret key $k \leftarrow \mathcal{KE}$.**Combine**(esk, pk);

Alice wants to send message *m* to Bob, who has a long-term key pair (*sk*, *pk*).

Two-step encryption process:

- generating ephemeral pair $(esk, epk) \mathcal{KE}$.**KeyPairGen** and session secret key $k \leftarrow \mathcal{KE}$.**Combine**(esk, pk);
- encrypting the message *m* under the key *k*: $ct \stackrel{\$}{\leftarrow} \mathcal{AE}$. Enc(*k*, *m*) and sending (*epk*, *ct*) to the recipient.

Alice wants to send message *m* to Bob, who has a long-term key pair (*sk*, *pk*). Two-step encryption process:

- generating ephemeral pair (esk, epk) \mathcal{KE} . KeyPairGen and session secret key $k \leftarrow \mathcal{KE}$. Combine(esk, pk);
- encrypting the message *m* under the key *k*: $ct \stackrel{\$}{\leftarrow} \mathcal{AE}$. Enc(*k*, *m*) and sending (*epk*, *ct*) to the recipient.

Decryption: generate k using sk and epk, decrypt ct under k.

Alice wants to send message *m* to Bob, who has a long-term key pair (*sk*, *pk*).

Two-step encryption process:

- generating ephemeral pair (esk, epk) \mathcal{KE} . KeyPairGen and session secret key $k \leftarrow \mathcal{KE}$. Combine(esk, pk);
- encrypting the message *m* under the key *k*: $ct \stackrel{\$}{\leftarrow} \mathcal{AE}$. Enc(*k*, *m*) and sending (*epk*, *ct*) to the recipient.

Decryption: generate k using sk and epk, decrypt ct under k.

Fresh ephemeral key pair on each invocation!

 $\frac{\text{ECIES}.\mathsf{Enc}(pk,m)}{(esk,epk) \stackrel{\$}{\leftarrow} \mathcal{K}\mathcal{E}.\mathsf{KeyPairGen}()} \qquad \frac{\text{ECIES}.\mathsf{Dec}(epk,sk,ct)}{k \leftarrow \mathcal{K}\mathcal{E}.\mathsf{Combine}(sk,epk)}$ $k \leftarrow \mathcal{K}\mathcal{E}.\mathsf{Combine}(esk,pk) \qquad \text{return } \mathcal{A}\mathcal{E}.\mathsf{Dec}(k,ct)$ $ct \stackrel{\$}{\leftarrow} \mathcal{A}\mathcal{E}.\mathsf{Enc}(k,m)$ return (epk,ct)

Introduction

The object of study: ECIES scheme

Security models

Main results

 \cdot LOR-CCA: confidentiality model (for \mathcal{AE} scheme, for ECIES scheme).

- + LOR-CCA: confidentiality model (for \mathcal{AE} scheme, for ECIES scheme).
- \cdot INT-CTXT: integrity model (for \mathcal{AE} scheme, for ECIES scheme).

- + LOR-CCA: confidentiality model (for \mathcal{AE} scheme, for ECIES scheme).
- \cdot INT-CTXT: integrity model (for \mathcal{AE} scheme, for ECIES scheme).
- + MODH: key indistinguishability (for \mathcal{KE} scheme).

- + LOR-CCA: confidentiality model (for \mathcal{AE} scheme, for ECIES scheme).
- + INT-CTXT: integrity model (for \mathcal{AE} scheme, for ECIES scheme).
- MODH: key indistinguishability (for \mathcal{KE} scheme).
- Main result-1: LOR-CCA for ECIES can be reduced to the LOR-CCA for \mathcal{AE} and MODH for \mathcal{KE} .

- + LOR-CCA: confidentiality model (for \mathcal{AE} scheme, for ECIES scheme).
- \cdot INT-CTXT: integrity model (for \mathcal{AE} scheme, for ECIES scheme).
- + MODH: key indistinguishability (for \mathcal{KE} scheme).
- Main result-1: LOR-CCA for ECIES can be reduced to the LOR-CCA for \mathcal{AE} and MODH for \mathcal{KE} .
- Main result-2: INT-CTXT for ECIES can be reduced to the INT-CTXT for \mathcal{AE} and MODH for \mathcal{KE} .

IK Confidentiality of *AE*: LOR-CCA model

LOR-CCA model (Left-or-Right, Chosen Ciphertext Attack) for the AE-scheme \mathcal{AE} in the multi-user ($D \in \mathbb{N}$) setting.

IK Confidentiality of *AE*: LOR-CCA model

LOR-CCA model (Left-or-Right, Chosen Ciphertext Attack) for the AE-scheme \mathcal{AE} in the multi-user ($D \in \mathbb{N}$) setting.

Interface: two oracles $\mathcal{O}^b_{\mathrm{enc}}$ and $\mathcal{O}_{\mathrm{dec}}$.

IK Confidentiality of *AE*: LOR-CCA model

LOR-CCA model (Left-or-Right, Chosen Ciphertext Attack) for the AE-scheme \mathcal{AE} in the multi-user ($D \in \mathbb{N}$) setting.

Interface: two oracles $\mathcal{O}^b_{\mathrm{enc}}$ and $\mathcal{O}_{\mathrm{dec}}$.

• \mathcal{O}_{enc}^{b} : takes a triple (i, m_0, m_1) – key index $1 \le i \le D$, message pair (m_0, m_1) ; returns $ct \stackrel{\$}{\leftarrow} \mathcal{AE}.\mathsf{Enc}(k_i, m_b)$.

IK Confidentiality of *AE*: LOR−CCA model

LOR-CCA model (Left-or-Right, Chosen Ciphertext Attack) for the AE-scheme \mathcal{AE} in the multi-user ($D \in \mathbb{N}$) setting.

Interface: two oracles \mathcal{O}^b_{enc} and \mathcal{O}_{dec} .

- \mathcal{O}_{enc}^{b} : takes a triple (i, m_0, m_1) key index $1 \le i \le D$, message pair (m_0, m_1) ; returns $ct \stackrel{\$}{\leftarrow} \mathcal{AE}.Enc(k_i, m_b)$.
- \mathcal{O}_{dec} takes a pair key index $1 \leq i \leq D$, ciphertext ct; if ct was not returned as an answer to the \mathcal{O}_{enc} query of the type (i, \cdot, \cdot) before, returns \mathcal{AE} .**Dec** (k_i, ct) , otherwise an error.

IK Confidentiality of *AE*: LOR−CCA model

LOR-CCA model (Left-or-Right, Chosen Ciphertext Attack) for the AE-scheme \mathcal{AE} in the multi-user ($D \in \mathbb{N}$) setting.

Interface: two oracles $\mathcal{O}^b_{\mathrm{enc}}$ and $\mathcal{O}_{\mathrm{dec}}$.

- \mathcal{O}_{enc}^{b} : takes a triple (i, m_0, m_1) key index $1 \le i \le D$, message pair (m_0, m_1) ; returns $ct \stackrel{\$}{\leftarrow} \mathcal{AE}.\mathsf{Enc}(k_i, m_b)$.
- \mathcal{O}_{dec} takes a pair key index $1 \leq i \leq D$, ciphertext ct; if ct was not returned as an answer to the \mathcal{O}_{enc} query of the type (i, \cdot, \cdot) before, returns \mathcal{AE} .**Dec** (k_i, ct) , otherwise an error.

Goal: predict the bit *b* fixed in the \mathcal{O}_{enc}^{b} .

IK Confidentiality of *AE*: LOR−CCA model

LOR-CCA model (Left-or-Right, Chosen Ciphertext Attack) for the AE-scheme \mathcal{AE} in the multi-user ($D \in \mathbb{N}$) setting.

Interface: two oracles \mathcal{O}^b_{enc} and \mathcal{O}_{dec} .

- \mathcal{O}_{enc}^{b} : takes a triple (i, m_0, m_1) key index $1 \le i \le D$, message pair (m_0, m_1) ; returns $ct \stackrel{\$}{\leftarrow} \mathcal{AE}.Enc(k_i, m_b)$.
- \mathcal{O}_{dec} takes a pair key index $1 \leq i \leq D$, ciphertext ct; if ct was not returned as an answer to the \mathcal{O}_{enc} query of the type (i, \cdot, \cdot) before, returns \mathcal{AE} .**Dec** (k_i, ct) , otherwise an error.

Goal: predict the bit *b* fixed in the \mathcal{O}_{enc}^{b} .

Success measure: advantage

$$\mathbf{Adv}_{\mathcal{A}\mathcal{E}}^{\mathrm{LOR-CCA}}(\mathcal{A}) = \mathbb{P}\Big[\mathbf{Exp}_{\mathcal{A}\mathcal{E}}^{\mathrm{LOR-CCA-1}}(\mathcal{A}) \to 1\Big] - \mathbb{P}\Big[\mathbf{Exp}_{\mathcal{A}\mathcal{E}}^{\mathrm{LOR-CCA-0}}(\mathcal{A}) \to 1\Big].$$

IK Confidentiality of *AE*: pseudocode

 $\frac{\mathbf{Exp}_{\mathcal{AE}}^{\text{LOR-CCA-}b}(\mathcal{A})}{\text{for } 1 \leq i \leq D \text{ do}}$ $k_i \stackrel{\$}{\leftarrow} \mathcal{AE}.\text{KeyGen}()$ endfor
sent $\leftarrow [\]$ $b' \stackrel{\$}{\leftarrow} \mathcal{A}^{\mathcal{O}_{\text{enc}}^b, \mathcal{O}_{\text{dec}}}$ return b'

IK Confidentiality of *AE*: pseudocode

$$\frac{\mathbf{Exp}_{\mathcal{AE}}^{\mathrm{LOR-CCA-b}}(\mathcal{A})}{\text{for } 1 \leq i \leq D \text{ do}} \qquad \frac{\mathcal{O}_{\mathrm{enc}}^{b}(i, m_{0}, m_{1})}{ct \leftarrow \mathcal{AE}.\mathsf{Enc}(k_{i}, m_{b})} \\ k_{i} \leftarrow \mathcal{AE}.\mathsf{KeyGen}() \qquad sent[i] \leftarrow sent[i] \cup \{ct \\ \mathsf{return } ct \\ sent \leftarrow [] \\ b' \leftarrow \mathcal{A}^{\mathcal{O}_{\mathrm{enc}}^{b}, \mathcal{O}_{\mathrm{dec}}} \\ \mathsf{return } b' \\ \end{cases}$$

IK Confidentiality of *AE*: pseudocode

$\mathbf{Exp}^{\mathrm{LOR-CCA}\text{-}b}_{\mathcal{AE}}(\mathcal{A})$	$\mathcal{O}^b_{\rm enc}(i,m_0,m_1)$
for $1 \le i \le D$ do	$ct \stackrel{\$}{\leftarrow} \mathcal{AE}.Enc(k_i, m_b)$
$k_i \stackrel{\$}{\leftarrow} \mathcal{AE}.KeyGen()$	$sent[i] \leftarrow sent[i] \cup \{ct\}$
endfor	return ct
sent \leftarrow []	$\mathcal{O}_{ m dec}(i,ct)$
$b' \stackrel{\$}{\leftarrow} \mathcal{A}^{\mathcal{O}^b_{ ext{enc}},\mathcal{O}_{ ext{dec}}}$	$if (ct \in sent[i])$
$\mathbf{return} \ b'$	$\mathbf{return} \perp$
	fi
	$\mathbf{return}\mathcal{AE}.Dec(k_i,ct)$

 $\mathbf{Adv}^{\mathrm{LOR-CCA}}_{\mathcal{AE}}(t,Q_e,Q_d,L_e,L_d,M_e,M_d;D)$

the maximal advantage $\mathbf{Adv}_{\mathcal{AE}}^{\text{LOR-CCA}}(\mathcal{A})$; the maximum is over the adversaries \mathcal{A} whose time complexity is at most t and with the following restrictions on oracle queries $(1 \le i \le D)$:

 $\mathbf{Adv}_{\mathcal{AE}}^{\mathrm{LOR-CCA}}(t,Q_e,Q_d,L_e,L_d,M_e,M_d;D)$

the maximal advantage $\mathbf{Adv}_{\mathcal{AE}}^{\text{LOR-CCA}}(\mathcal{A})$; the maximum is over the adversaries \mathcal{A} whose time complexity is at most t and with the following restrictions on oracle queries $(1 \le i \le D)$:

- the number of queries of the type (i, m_0, m_1) to the \mathcal{O}_{enc}^b oracle ((i, ct) to the \mathcal{O}_{dec} oracle) does not exceed $Q_e[i]$ $(Q_d[i] \text{ resp.})$;
- the total length of the queries $\sum |m_0| = \sum |m_1|$ among queries of the type (i, m_0, m_1) to the \mathcal{O}_{enc}^b oracle $(\sum |ct|$ among queries of the type (i, ct) to the \mathcal{O}_{dec} oracle) does not exceed $L_e[i]$ ($L_d[i]$ resp.);
- the maximal length of the query $\max |m_0| = \max |m_1|$ among queries of the type (i, m_0, m_1) to the $\mathcal{O}^b_{\text{enc}}$ oracle $(\max |ct| \text{ among queries of the type } (i, ct)$ to the \mathcal{O}_{dec} oracle) does not exceed $M_e[i]$ ($M_d[i]$ resp.).

 $\cdot\,$ Essentially the same as for the case of LOR-CCA model for \mathcal{AE} scheme.

- \cdot Essentially the same as for the case of LOR-CCA model for \mathcal{AE} scheme.
- Noticeable exceptions: generation of a fresh key during each invokation; "number of parties" *D* is essentially the same as the total number of queries.

- $\cdot\,$ Essentially the same as for the case of LOR-CCA model for \mathcal{AE} scheme.
- Noticeable exceptions: generation of a fresh key during each invokation; "number of parties" *D* is essentially the same as the total number of queries.
- Guarantees: cannot guess with probability "greater" than $\frac{1}{2}$ which plaintext was encrypted.

K Confidentiality of ECIES: pseudocode

 $\operatorname{Exp}_{\operatorname{ECIES}}^{\operatorname{LOR-CCA}-b}(\mathcal{A})$ $\mathcal{O}_{dec}(epk, ct)$ $(sk, pk) \stackrel{\$}{\leftarrow} \mathcal{KE}.\mathsf{KeyPairGen}()$ if $(epk, ct) \in sent$ sent \leftarrow [] return \perp fi $b' \stackrel{\$}{\leftarrow} \mathcal{A}^{\mathcal{O}_{enc}^b, \mathcal{O}_{dec}}(pk)$ $k \leftarrow \mathcal{KE}.Combine(sk, epk)$ return b'return \mathcal{AE} .**Dec**(k, ct) $\mathcal{O}^b_{\mathrm{enc}}(m_0,m_1)$ $(epk, esk) \stackrel{\$}{\leftarrow} \mathcal{KE}.KevPairGen()$ $k \leftarrow \mathcal{KE}.Combine(sk, epk)$ $ct \stackrel{\$}{\leftarrow} \mathcal{AE}.\mathsf{Enc}(k, m_b)$ sent \leftarrow sent \cup {(epk, ct)} return (*epk*, *ct*)

$\mathbf{Adv}_{\mathrm{ECIES}}^{\mathrm{LOR-CCA}}\left(t,q_{e},q_{d},l_{e},l_{d},\mu_{e},\mu_{d}\right)$

maximal advantage $\mathbf{Adv}_{\mathrm{ECIES}}^{\mathrm{LOR-CCA}}(\mathcal{A})$, where the maximum is taken over the adversaries \mathcal{A} whose time complexity is at most t and with the following restrictions on the oracle queries:

$\mathbf{Adv}_{\mathrm{ECIES}}^{\mathrm{LOR-CCA}}\left(t, q_e, q_d, l_e, l_d, \mu_e, \mu_d\right)$

maximal advantage $\mathbf{Adv}_{\mathrm{ECIES}}^{\mathrm{LOR-CCA}}(\mathcal{A})$, where the maximum is taken over the adversaries \mathcal{A} whose time complexity is at most t and with the following restrictions on the oracle queries:

- the number of queries to the $\mathcal{O}^b_{
m enc}$ oracle (to the $\mathcal{O}_{
m dec}$ oracle) does not exceed q_e (q_d resp.);

$\mathbf{Adv}_{\mathrm{ECIES}}^{\mathrm{LOR-CCA}}\left(t, q_e, q_d, l_e, l_d, \mu_e, \mu_d\right)$

maximal advantage $\mathbf{Adv}_{\mathrm{ECIES}}^{\mathrm{LOR-CCA}}(\mathcal{A})$, where the maximum is taken over the adversaries \mathcal{A} whose time complexity is at most t and with the following restrictions on the oracle queries:

- the number of queries to the $\mathcal{O}_{
 m enc}^b$ oracle (to the $\mathcal{O}_{
 m dec}$ oracle) does not exceed q_e (q_d resp.);
- the total length of the queries $\sum |m_0| = \sum |m_1|$ to the \mathcal{O}_{enc}^b oracle ($\sum |ct|$ to the \mathcal{O}_{dec} oracle) does not exceed l_e (l_d resp.);

$\mathbf{Adv}_{\mathrm{ECIES}}^{\mathrm{LOR-CCA}}\left(t, q_e, q_d, l_e, l_d, \mu_e, \mu_d\right)$

maximal advantage $\mathbf{Adv}_{\mathrm{ECIES}}^{\mathrm{LOR-CCA}}(\mathcal{A})$, where the maximum is taken over the adversaries \mathcal{A} whose time complexity is at most t and with the following restrictions on the oracle queries:

- the number of queries to the $\mathcal{O}_{
 m enc}^b$ oracle (to the $\mathcal{O}_{
 m dec}$ oracle) does not exceed q_e (q_d resp.);
- the total length of the queries $\sum |m_0| = \sum |m_1|$ to the \mathcal{O}_{enc}^b oracle ($\sum |ct|$ to the \mathcal{O}_{dec} oracle) does not exceed l_e (l_d resp.);
- the maximal length of the query $\max |m_0| = \max |m_1|$ among queries to the \mathcal{O}_{enc}^b oracle (max |ct| among queries to the \mathcal{O}_{dec} oracle) does not exceed μ_e (μ_d resp.);

INT-CTXT model (Integrity of Ciphertexts) for the AE-scheme \mathcal{AE} in the multi-user $(D \in \mathbb{N})$ setting.

INT-CTXT model (Integrity of Ciphertexts) for the AE-scheme \mathcal{AE} in the multi-user $(D \in \mathbb{N})$ setting.

Interface: two oracles \mathcal{O}_{enc} and \mathcal{O}_{verify} :

INT-CTXT model (Integrity of Ciphertexts) for the AE-scheme \mathcal{AE} in the multi-user $(D \in \mathbb{N})$ setting.

Interface: two oracles $\mathcal{O}_{\mathrm{enc}}$ and $\mathcal{O}_{\mathrm{verify}}$:

• \mathcal{O}_{enc} : input — key index $1 \le i \le D$, message *m*; returns $ct \stackrel{\$}{\leftarrow} \mathcal{AE}.\mathsf{Enc}(k_i, m)$.

INT-CTXT model (Integrity of Ciphertexts) for the AE-scheme \mathcal{AE} in the multi-user $(D \in \mathbb{N})$ setting.

Interface: two oracles $\mathcal{O}_{\mathrm{enc}}$ and $\mathcal{O}_{\mathrm{verify}}$:

- \mathcal{O}_{enc} : input key index $1 \le i \le D$, message *m*; returns $ct \stackrel{\$}{\leftarrow} \mathcal{AE}.\mathsf{Enc}(k_i, m)$.
- $\mathcal{O}_{\text{verify}}$: input ciphertext *ct*, key index $1 \le i \le D$; decrypts $m \leftarrow \mathcal{AE}$.**Dec**(k_i, ct), returns *m*; if *ct* was not returned as an answer to the \mathcal{O}_{enc} query of the type (i, \cdot) before and $m \ne \bot$ (correct decryption), then sets $win \leftarrow true$.

INT-CTXT model (Integrity of Ciphertexts) for the AE-scheme \mathcal{AE} in the multi-user $(D \in \mathbb{N})$ setting.

Interface: two oracles $\mathcal{O}_{\mathrm{enc}}$ and $\mathcal{O}_{\mathrm{verify}}$:

- \mathcal{O}_{enc} : input key index $1 \le i \le D$, message *m*; returns $ct \stackrel{\$}{\leftarrow} \mathcal{AE}.\mathsf{Enc}(k_i, m)$.
- $\mathcal{O}_{\text{verify}}$: input ciphertext *ct*, key index $1 \le i \le D$; decrypts $m \leftarrow \mathcal{AE}$.**Dec**(k_i, ct), returns *m*; if *ct* was not returned as an answer to the \mathcal{O}_{enc} query of the type (i, \cdot) before and $m \ne \bot$ (correct decryption), then sets $win \leftarrow true$.

Goal: forge fresh ciphertext ct that is decrypted to the correct plaintext.

INT-CTXT model (Integrity of Ciphertexts) for the AE-scheme \mathcal{AE} in the multi-user $(D \in \mathbb{N})$ setting.

Interface: two oracles $\mathcal{O}_{\mathrm{enc}}$ and $\mathcal{O}_{\mathrm{verify}}$:

- \mathcal{O}_{enc} : input key index $1 \le i \le D$, message *m*; returns $ct \stackrel{\$}{\leftarrow} \mathcal{AE}.\mathsf{Enc}(k_i, m)$.
- $\mathcal{O}_{\text{verify}}$: input ciphertext *ct*, key index $1 \le i \le D$; decrypts $m \leftarrow \mathcal{AE}$.**Dec**(k_i, ct), returns *m*; if *ct* was not returned as an answer to the \mathcal{O}_{enc} query of the type (i, \cdot) before and $m \ne \bot$ (correct decryption), then sets $win \leftarrow true$.

Goal: forge fresh ciphertext ct that is decrypted to the correct plaintext.

Success measure: advantage

$$\mathbf{Adv}_{\mathcal{AE}}^{\mathrm{INT-CTXT}}(\mathcal{A}) = \mathbb{P}\Big[\mathbf{Exp}_{\mathcal{AE}}^{\mathrm{INT-CTXT}}(\mathcal{A}) \to 1\Big].$$

III Integrity for \mathcal{AE} : pseudocode

 $\mathbf{Exp}_{\mathcal{AE}}^{\mathrm{INT-CTXT}}(\mathcal{A})$ for $1 \le i \le D$ do $k_i \stackrel{\$}{\leftarrow} \mathcal{AE}.$ KeyGen endfor sent \leftarrow [] win $\leftarrow 0$ $\mathcal{A}^{\mathcal{O}_{\mathrm{enc}},\mathcal{O}_{\mathrm{verify}}}$ return win

III Integrity for \mathcal{AE} : pseudocode

 $\mathbf{Exp}_{\mathcal{AE}}^{\mathrm{INT-CTXT}}(\mathcal{A}) \quad \mathcal{O}_{\mathrm{enc}}(i,m)$ $for 1 \le i \le D do \qquad ct \xleftarrow{\$} \mathcal{AE}.\mathsf{Enc}(k_i, m)$ $k_i \stackrel{\$}{\leftarrow} \mathcal{AE}.$ KeyGen $sent[i] \leftarrow sent[i] \cup \{ct\}$ return ct endfor sent \leftarrow [] win $\leftarrow 0$ $\mathcal{A}^{\mathcal{O}_{\mathrm{enc}},\mathcal{O}_{\mathrm{verify}}}$ return win

III Integrity for \mathcal{AE} : pseudocode

$\frac{\mathbf{Exp}_{\mathcal{A}\mathcal{E}}^{\mathrm{INT-CTXT}}(\mathcal{A})}{\text{for } 1 \leq i \leq D \text{ do}}$ $k_i \stackrel{\$}{\leftarrow} \mathcal{A}\mathcal{E}.KeyGen$ endfor	$ \frac{\mathcal{O}_{\text{enc}}(i,m)}{ct \leftarrow \mathcal{A}\mathcal{E}.Enc(k_i,m)} $ $ sent[i] \leftarrow sent[i] \cup \{ct\} $ return ct
$sent \leftarrow []$ $win \leftarrow 0$ $\mathcal{A}^{\mathcal{O}_{enc},\mathcal{O}_{verify}}$ return win	$\begin{split} & \frac{\mathcal{O}_{\text{verify}}(i,ct)}{m \leftarrow \mathcal{A}\mathcal{E}.Dec(k_i,ct)} \\ & \text{if } (ct \notin sent[i]) \& (m \neq \bot) \\ & win \leftarrow 1 \\ & \text{fi} \\ & \text{return } m \end{split}$

 $\mathbf{Adv}_{\mathcal{AE}}^{\mathrm{INT-CTXT}}(t,Q_e,Q_v,L_e,L_v,M_e,M_v;D)$

maximal advantage $\mathbf{Adv}_{\mathcal{AE}}^{\text{INT-CTXT}}(\mathcal{A})$, where the maximum is taken over the adversaries \mathcal{A} whose time complexity is at most t and with the following restrictions on oracle queries $(1 \le i \le D)$:

 $\mathbf{Adv}_{\mathcal{AE}}^{\mathrm{INT-CTXT}}(t,Q_e,Q_v,L_e,L_v,M_e,M_v;D)$

maximal advantage $\mathbf{Adv}_{\mathcal{A}\mathcal{E}}^{\text{INT-CTXT}}(\mathcal{A})$, where the maximum is taken over the adversaries \mathcal{A} whose time complexity is at most t and with the following restrictions on oracle queries $(1 \le i \le D)$:

- the number of queries of the type (i, m) to the \mathcal{O}_{enc} oracle ((i, ct) to the \mathcal{O}_{verify} oracle) does not exceed $Q_e[i]$ ($Q_v[i]$ resp.);
- the total length of the queries $\sum |m|$ among queries of the type (i, m) to the \mathcal{O}_{enc} oracle $(\sum |ct|$ among queries of the type (i, ct) to the \mathcal{O}_{verify} oracle) does not exceed $L_e[i]$ ($L_v[i]$ resp.);
- the maximal length of the query $\max |m|$ among queries of the type (i, m) to the \mathcal{O}_{enc} oracle $(\max |ct| \text{ among queries of the type } (i, ct)$ to the \mathcal{O}_{verify} oracle) does not exceed $M_e[i]$ ($M_v[i]$ resp.);

- Essentially the same as for the case of INT-CTXT model for \mathcal{AE} scheme.

- \cdot Essentially the same as for the case of INT-CTXT model for \mathcal{AE} scheme.
- Noticeable exceptions: generation of a fresh key during each invokation; "number of parties" *D* is essentially the same as the total number of queries.

- \cdot Essentially the same as for the case of INT-CTXT model for \mathcal{AE} scheme.
- Noticeable exceptions: generation of a fresh key during each invokation; "number of parties" *D* is essentially the same as the total number of queries.
- Guarantees: cannot forge a correct ciphertext **given an ephemeral public key** (i.e., the key is chosen by the honest party, the goal is to forge for this particular public key).

III Integrity of ECIES: pseudocode

 $\frac{\mathbf{Exp}_{\mathrm{ECIES}}^{\mathrm{INT-CTXT}}(\mathcal{A})}{(sk, pk) \xleftarrow{}{\leftarrow} \mathcal{K}\mathcal{E}.\mathsf{KeyPairGen}()}$ $sent \leftarrow []$ $win \leftarrow 0$ $\mathcal{A}^{\mathcal{O}_{\mathrm{enc}}, \mathcal{O}_{\mathrm{verify}}}(pk)$ return win

III Integrity of ECIES: pseudocode

 $\frac{\mathbf{Exp}_{\text{ECIES}}^{\text{INT-CTXT}}(\mathcal{A})}{(sk, pk) \xleftarrow{}{\leftarrow} \mathcal{KE}.\mathsf{KeyPairGen}()}$ sent \leftarrow []
win \leftarrow 0 $\mathcal{A}^{\mathcal{O}_{\text{enc}},\mathcal{O}_{\text{verify}}}(pk)$ return win

 $\frac{\mathcal{O}_{enc}(m)}{(epk, esk) \stackrel{\$}{\leftarrow} \mathcal{K}\mathcal{E}.\mathsf{KeyPairGen}()}$ $k \leftarrow \mathcal{K}\mathcal{E}.\mathsf{Combine}(sk, epk)$ $ct \stackrel{\$}{\leftarrow} \mathcal{A}\mathcal{E}.\mathsf{Enc}(k, m)$ $sent[epk] \leftarrow sent[epk] \cup \{ct\}$ return (epk, ct)

IX Integrity of ECIES: pseudocode

$\mathbf{Exp}_{\mathrm{ECIES}}^{\mathrm{INT} ext{-}\mathrm{CTXT}}(\mathcal{A})$	$\mathcal{O}_{\mathrm{verify}}(epk,ct)$
$(sk, pk) \stackrel{\$}{\leftarrow} \mathcal{KE}.KeyPairGen()$	$k \leftarrow \mathcal{KE}.Combine(sk,epk)$
sent \leftarrow []	$m \leftarrow \mathcal{AE}.\texttt{Dec}(k, ct)$
$win \leftarrow 0$	$t_1 \gets (m \neq \bot)$
$\mathcal{A}^{\mathcal{O}_{ ext{enc}},\mathcal{O}_{ ext{verify}}}(pk)$	$t_2 \leftarrow (sent[epk] \neq \bot)$
return win	$t_3 \leftarrow (ct \notin sent[epk])$
$\mathcal{O}_{ m enc}(m)$	$if t_1 \& t_2 \& t_3 \\ win \leftarrow 1$
$(epk, esk) \stackrel{\$}{\leftarrow} \mathcal{KE}.KeyPairGen()$	fi
$k \leftarrow \mathcal{KE}.Combine(sk,epk)$	return m
$ct \stackrel{\$}{\leftarrow} \mathcal{AE}.Enc(k,m)$	
$sent[epk] \leftarrow sent[epk] \cup \{ct\}$	
return(epk,ct)	

$\mathbf{Adv}_{\mathrm{ECIES}}^{\mathrm{INT-CTXT}}(t,q_e,q_v,l_e,l_v,\mu_e,\mu_v)$

maximal advantage $\mathbf{Adv}_{\mathrm{ECIES}}^{\mathrm{INT-CTXT}}(\mathcal{A})$, where the maximum is taken over the adversaries \mathcal{A} whose time complexity is at most t and with the following restrictions on the oracle queries:

$\mathbf{Adv}_{\mathrm{ECIES}}^{\mathrm{INT-CTXT}}(t,q_e,q_v,l_e,l_v,\mu_e,\mu_v)$

maximal advantage $\mathbf{Adv}_{\mathrm{ECIES}}^{\mathrm{INT-CTXT}}(\mathcal{A})$, where the maximum is taken over the adversaries \mathcal{A} whose time complexity is at most t and with the following restrictions on the oracle queries:

- the number of queries to the $\mathcal{O}_{
 m enc}$ oracle (to the $\mathcal{O}_{
 m verify}$ oracle) does not exceed q_e $(q_v$ resp.);
- the total length of the queries $\sum |m_0| = \sum |m_1|$ to the \mathcal{O}_{enc} oracle ($\sum |ct|$ to the \mathcal{O}_{verify} oracle) does not exceed l_e (l_v resp.);
- the maximal length of the query $\max |m_0| = \max |m_1|$ among queries to the \mathcal{O}_{enc} oracle (max |*ct*| among queries to the \mathcal{O}_{verify} oracle) does not exceed μ_e (μ_v resp.);

MODH model (multiple oracle Diffie-Hellman⁸) for the key exchange scheme \mathcal{KE} .

⁸Abdalla, Bellare, and Rogaway, "The oracle Diffie-Hellman assumptions and an analysis of DHIES."

MODH model (multiple oracle Diffie-Hellman⁸) for the key exchange scheme \mathcal{KE} . Interface: two oracles \mathcal{O}_{comb} and \mathcal{O}_{kgen}^{b} :

⁸Abdalla, Bellare, and Rogaway, "The oracle Diffie-Hellman assumptions and an analysis of DHIES."

MODH model (multiple oracle Diffie-Hellman⁸) for the key exchange scheme \mathcal{KE} . Interface: two oracles \mathcal{O}_{comb} and \mathcal{O}^{b}_{kgen} :

• oracle $\mathcal{O}_{comb}(epk)$ generates a key via \mathcal{KE} .**Combine** function using the ephemeral key epk and long-term key sk.

⁸Abdalla, Bellare, and Rogaway, "The oracle Diffie-Hellman assumptions and an analysis of DHIES."

MODH model (multiple oracle Diffie-Hellman⁸) for the key exchange scheme \mathcal{KE} . Interface: two oracles \mathcal{O}_{comb} and \mathcal{O}_{kgen}^{b} :

- oracle $\mathcal{O}_{comb}(epk)$ generates a key via \mathcal{KE} .**Combine** function using the ephemeral key epk and long-term key sk.
- oracle $\mathcal{O}_{\text{kgen}}^{b}$ generates either random keys of a given length (in case of b = 0) or keys generated via key exchange scheme (in case of b = 1) with some restrictions that exclude trivial attacks, see below;

⁸Abdalla, Bellare, and Rogaway, "The oracle Diffie-Hellman assumptions and an analysis of DHIES."

MODH model (multiple oracle Diffie-Hellman⁸) for the key exchange scheme \mathcal{KE} . Interface: two oracles \mathcal{O}_{comb} and \mathcal{O}_{kgen}^{b} :

- oracle $\mathcal{O}_{comb}(epk)$ generates a key via \mathcal{KE} .**Combine** function using the ephemeral key epk and long-term key sk.
- oracle $\mathcal{O}_{\text{kgen}}^{b}$ generates either random keys of a given length (in case of b = 0) or keys generated via key exchange scheme (in case of b = 1) with some restrictions that exclude trivial attacks, see below;

Goal: guess the bit *b*.

⁸Abdalla, Bellare, and Rogaway, "The oracle Diffie-Hellman assumptions and an analysis of DHIES."

MODH model (multiple oracle Diffie-Hellman⁸) for the key exchange scheme \mathcal{KE} . Interface: two oracles \mathcal{O}_{comb} and \mathcal{O}_{kgen}^{b} :

- oracle $\mathcal{O}_{comb}(epk)$ generates a key via \mathcal{KE} .**Combine** function using the ephemeral key epk and long-term key sk.
- oracle $\mathcal{O}_{\text{kgen}}^{b}$ generates either random keys of a given length (in case of b = 0) or keys generated via key exchange scheme (in case of b = 1) with some restrictions that exclude trivial attacks, see below;

Goal: guess the bit *b*.

Success measure:

$$\mathbf{Adv}_{\mathcal{K}\mathcal{E}}^{\mathrm{MODH}}(\mathcal{A}) = \mathbb{P}\Big[\mathbf{Exp}_{\mathcal{K}\mathcal{E}}^{\mathrm{MODH-1}}(\mathcal{A}) \to 1\Big] - \mathbb{P}\Big[\mathbf{Exp}_{\mathcal{K}\mathcal{E}}^{\mathrm{MODH-0}}(\mathcal{A}) \to 1\Big].$$

⁸Abdalla, Bellare, and Rogaway, "The oracle Diffie-Hellman assumptions and an analysis of DHIES."

IK Key secrecy for \mathcal{KE} : pseudocode

 $\operatorname{Exp}_{\mathcal{K}\mathcal{E}}^{\operatorname{MODH}\text{-}b}(\mathcal{A})$ $\mathcal{O}^b_{\mathrm{kgen}}()$ $(sk, pk) \stackrel{\$}{\leftarrow} \mathcal{KE}.KevPairGen()$ $(esk, epk) \stackrel{\$}{\leftarrow} \mathcal{KE}.\mathsf{KevPairGen}()$ $Kevs \leftarrow []$ if $Kevs[epk] = \bot$ $b' \stackrel{\$}{\leftarrow} \mathcal{A}^{\mathcal{O}^b_{\mathrm{kgen}},\mathcal{O}_{\mathrm{comb}}}(pk)$ $k \leftarrow \mathcal{KE}$.Combine(*sk*, *epk*) **if** (b = 0)return b' $k \stackrel{\$}{\leftarrow} \{0,1\}^{|k|}$ $\mathcal{O}_{\rm comb}(epk)$ fi if $Keys[epk] = \bot$ $Kevs[epk] \leftarrow k$ return *KE*.Combine(*sk*,*epk*) fi else return (*epk*, *Keys*[*epk*]) return Keys[epk] fi

$\mathbf{Adv}_{\mathcal{KE}}^{\mathrm{MODH}}\left(t, q_{gen}, q_{com}\right)$

maximal advantage $\mathbf{Adv}_{\mathcal{K}\mathcal{E}}^{\mathrm{MODH}}(\mathcal{A})$, where the maximum is taken over the adversaries \mathcal{A} whose time complexity is at most t, making at most q_{gen} queries to $\mathcal{O}_{\mathrm{kgen}}^{b}$, q_{com} queries to $\mathcal{O}_{\mathrm{comb}}^{b}$ oracles.

Introduction

The object of study: ECIES scheme

Security models

Main results

Proposition

$$\begin{split} \mathbf{Adv}_{\mathcal{A}\mathcal{E}}^{\mathrm{LOR-CCA}}(t,Q_e,Q_d,L_e,L_d,M_e,M_d;D) \leq \\ & \leq D \cdot \mathbf{Adv}_{\mathcal{A}\mathcal{E}}^{\mathrm{LOR-CCA}}(t+T,q_e,q_d,l_e,l_d,\mu_e,\mu_d;1), \end{split}$$

•
$$T = D + \sum_{i=1}^{D} (Q_e[i] + Q_d[i] + L_e[i] + L_d[i]),$$

 $\cdot \ q_x = \max_{1 \leq i \leq D} Q_x[i], \, l_x = \max_{1 \leq i \leq D} L_x[i], \, \mu_x = \max_{1 \leq i \leq D} M_x[i], \, x \in \{e, d\}.$

Proposition

$$\begin{split} \mathbf{Adv}_{\mathcal{A}\mathcal{E}}^{\mathrm{INT-CTXT}}(t, Q_e, Q_v, L_e, L_v, M_e, M_v; D) \leq \\ \leq D \cdot \mathbf{Adv}_{\mathcal{A}\mathcal{E}}^{\mathrm{INT-CTXT}}(t+T, q_e, q_v, l_e, l_v, \mu_e, \mu_v; 1), \end{split}$$

•
$$T = D + \sum_{i=1}^{D} (Q_e[i] + Q_v[i] + L_e[i] + L_v[i]),$$

 $\cdot \ q_x = \max_{1 \leq i \leq D} Q_x[i], \, l_x = \max_{1 \leq i \leq D} L_x[i], \, \mu_x = \max_{1 \leq i \leq D} M_x[i], \, x \in \{e, v\}.$

• Main idea: hybrid argument (keys k_i are independent)...

- Main idea: hybrid argument (keys k_i are independent)...
- i.e., choose one index *j*, on which oracle queries are redirected; model the others.

- Main idea: hybrid argument (keys k_i are independent)...
- i.e., choose one index *j*, on which oracle queries are redirected; model the others.
- We assume that key generation and processing one block of a text requires 1 unit of time.

Proposition

Assume that the distribution of ephemeral public keys *epk* generated by *KE*.**KeyPairGen** is uniformly random on *EpkSet*. Then the following inequality holds:

$$\mathbf{Adv}_{\mathcal{K}\mathcal{E}}^{\mathrm{MODH}}\left(t, q_{gen}, q_{com}\right) \leq q_{gen} \cdot \mathbf{Adv}_{\mathcal{K}\mathcal{E}}^{\mathrm{MODH}}\left(t + q_{gen} + q_{com}, 1, q_{com}\right) + \frac{2 \, q_{gen} \, q_{com}}{|EpkSet|},$$

• Main idea: again hybrid argument...

- Main idea: again hybrid argument...
- but: might be some problem if the key epk generated inside \mathcal{O}_{kgen}^{b} collides with one of the keys epk queried by \mathcal{A} to \mathcal{O}_{comb} oracle.

- Main idea: again hybrid argument...
- but: might be some problem if the key epk generated inside \mathcal{O}_{kgen}^{b} collides with one of the keys epk queried by \mathcal{A} to \mathcal{O}_{comb} oracle.
- Exclude this (bad) event: $\frac{q_{gen} q_{com}}{|EpkSet|}$ summand.

Assume that the distribution of ephemeral public keys epk generated by \mathcal{KE} .KeyPairGen is uniformly random on EpkSet.

Assume that the distribution of ephemeral public keys epk generated by \mathcal{KE} .KeyPairGen is uniformly random on EpkSet.

Proposition

 $\mathbf{Adv}_{\mathrm{ECIES}}^{\mathrm{LOR-CCA}}\left(t,q_{e},q_{d},l_{e},l_{d},\mu_{e},\mu_{d}\right) \leq$

$$\leq 2 \cdot \mathbf{Adv}_{\mathcal{K}\mathcal{E}}^{\text{MODH}}(t + T_1, q_e, q_d) + q_e \cdot \mathbf{Adv}_{\mathcal{A}\mathcal{E}}^{\text{LOR-CCA}}(t + T_2, q_e, q_d, l_e, l_d, \mu_e, \mu_d; 1) + \frac{q_e \cdot q_d}{|EpkSet|},$$
where $T_1 = q_e + q_d + l_e + l_d$, $T_2 = q_d + l_d + q_e (q_e + q_d + l_e + l_d + 2)$.

Proposition

$$\begin{aligned} \mathbf{Adv}_{\mathrm{ECIES}}^{\mathrm{INT-CTXT}}\left(t, q_{e}, q_{v}, l_{e}, l_{v}, \mu_{e}, \mu_{v}\right) &\leq \\ &\leq \mathbf{Adv}_{\mathcal{K}\mathcal{E}}^{\mathrm{MODH}}\left(t + T_{1}, q_{e}, q_{v}\right) + q_{e}\mathbf{Adv}_{\mathcal{A}\mathcal{E}}^{\mathrm{INT-CTXT}}\left(t + T_{2}, q_{e}, q_{v}, l_{e}, l_{v}, \mu_{e}, \mu_{v}; 1\right) + \frac{q_{e} \cdot q_{v}}{|EpkSet|}, \end{aligned}$$
where $T_{1} = q_{e} + q_{v} + l_{e} + l_{v}, T_{2} = D + q_{v} + l_{v} + q_{e} \cdot (1 + q_{e} + q_{v} + l_{e} + l_{v}).$

• Main result: decompose the security of ECIES to the security of \mathcal{AE} and \mathcal{KE} .

- Main result: decompose the security of ECIES to the security of \mathcal{AE} and \mathcal{KE} .
- \cdot One can instantiate ECIES with concrete \mathcal{AE} and \mathcal{KE} and obtain concrete estimates.

- Main result: decompose the security of ECIES to the security of \mathcal{AE} and \mathcal{KE} .
- One can instantiate ECIES with concrete \mathcal{AE} and \mathcal{KE} and obtain concrete estimates.
- Obtaining estimates for the (in)security of *AE* on a single key in LOR-CCA and INT-CTXT is a well-known problem; many results for specific schemes.

- Main result: decompose the security of ECIES to the security of \mathcal{AE} and \mathcal{KE} .
- One can instantiate ECIES with concrete \mathcal{AE} and \mathcal{KE} and obtain concrete estimates.
- Obtaining estimates for the (in)security of \mathcal{AE} on a single key in LOR-CCA and INT-CTXT is a well-known problem; many results for specific schemes.
- + \mathcal{KE} in MODH is more elaborate...

• Example: VKO scheme.

⁹Abdalla, Bellare, and Rogaway, "The oracle Diffie-Hellman assumptions and an analysis of DHIES."

¹⁰Smart, "The exact security of ECIES in the generic group model."

- Example: VKO scheme.
- To estimate security we must take into consideration how hash function and group operation are interwined.

⁹Abdalla, Bellare, and Rogaway, "The oracle Diffie-Hellman assumptions and an analysis of DHIES."

¹⁰Smart, "The exact security of ECIES in the generic group model."

- Example: VKO scheme.
- To estimate security we must take into consideration how hash function and group operation are interwined.
- "Bad interaction" may lead to the situation when DDH problem is hard, but ODH problem is easy.

⁹Abdalla, Bellare, and Rogaway, "The oracle Diffie-Hellman assumptions and an analysis of DHIES."

¹⁰Smart, "The exact security of ECIES in the generic group model."

- Example: VKO scheme.
- To estimate security we must take into consideration how hash function and group operation are interwined.
- "Bad interaction" may lead to the situation when DDH problem is hard, but ODH problem is easy.
- Various "idealized" versions of the problem can be studied: Hash as a Random Oracle⁹, Generic Group Model¹⁰, etc.

⁹Abdalla, Bellare, and Rogaway, "The oracle Diffie-Hellman assumptions and an analysis of DHIES."

¹⁰Smart, "The exact security of ECIES in the generic group model."

- Abdalla, Michel, Mihir Bellare, and Phillip Rogaway. "The oracle Diffie-Hellman assumptions and an analysis of DHIES." In: Topics in Cryptology—CT-RSA 2001: The Cryptographers' Track at RSA Conference 2001 San Francisco, CA, USA, April 8–12, 2001 Proceedings. Springer. 2001, pp. 143–158.
- Akhmetzyanova, Liliya et al. "Security of Multilinear Galois Mode (MGM)." In: (2019). https://eprint.iacr.org/2019/123. URL: https://eprint.iacr.org/2019/123.
- Alekseev, Evgeny Konstantinovich et al. "On the cryptographic properties of algorithms accompanying the applications of standards GOST R 34.11-2012 and GOST R 34.10-2012." In: Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] 7.1 (2016). In Russian, pp. 5–38.

🔣 Bibliography ii

- Bellare, Mihir and Chanathip Namprempre. "Authenticated encryption: Relations among notions and analysis of the generic composition paradigm." In: Advances in Cryptology—ASIACRYPT 2000: 6th International Conference on the Theory and Application of Cryptology and Information Security Kyoto, Japan, December 3–7, 2000 Proceedings 6. Springer. 2000, pp. 531–545.
- Gayoso Martínez, V, L Hernández Encinas, and A Queiruga Dios. "Security and practical considerations when implementing the elliptic curve integrated encryption scheme." In: *Cryptologia* 39.3 (2015), pp. 244–269.
- Martínez, V Gayoso, L Hernández Encinas, et al. "A comparison of the standardized versions of ECIES." In: 2010 Sixth International Conference on Information Assurance and Security. IEEE. 2010, pp. 1–4.
- Nozdrunov, Vladislav. "Parallel and double block cipher mode of operation (PD–mode) for authenticated encryption." In: *TC 26* (2017).

- Shoup, Victor. A Proposal for an ISO Standard for Public Key Encryption. Cryptology ePrint Archive, Paper 2001/112. https://eprint.iacr.org/2001/112. 2001. URL: https://eprint.iacr.org/2001/112.
- Smart, Nigel P. "The exact security of ECIES in the generic group model." In: Cryptography and Coding: 8th IMA International Conference Cirencester, UK, December 17–19, 2001 Proceedings 8. Springer. 2001, pp. 73–84.

Thank you for your attention!

Author(s):

Tsaregorodtsev Kirill

Researcher at Cryptography laboratory, JSRPC "Kryptonite", Moscow, Russia k.tsaregorodtsev@kryptonite.ru