
On the confidentiality and 
integrity of ECIES

scheme

Kirill Tsaregorodtsev 
Researcher at Cryptography laboratory,
JSRPC  ``Kryptonite”, Moscow, Russia

CTCrypt’2023



Outline

1. Introduction

2. The object of study: ECIES scheme

3. Security models

4. Main results

1



Table of Contents

Introduction

The object of study: ECIES scheme

Security models

Main results

2



Where does it come from?

• Analysis of 5G protocols.

• The very first step of 5G-AKA (auth. key agreement protocol) is to send a unique
identifier of the User to the Home Network.

• We want user privacy.
• This property implies at least message confidentiality and integrity of the ECIES
scheme in the “multiple queries” setting (but may be more, e.g., different error
codes...).

3



Where does it come from?

• Analysis of 5G protocols.
• The very first step of 5G-AKA (auth. key agreement protocol) is to send a unique
identifier of the User to the Home Network.

• We want user privacy.
• This property implies at least message confidentiality and integrity of the ECIES
scheme in the “multiple queries” setting (but may be more, e.g., different error
codes...).

3



Where does it come from?

• Analysis of 5G protocols.
• The very first step of 5G-AKA (auth. key agreement protocol) is to send a unique
identifier of the User to the Home Network.

• We want user privacy.

• This property implies at least message confidentiality and integrity of the ECIES
scheme in the “multiple queries” setting (but may be more, e.g., different error
codes...).

3



Where does it come from?

• Analysis of 5G protocols.
• The very first step of 5G-AKA (auth. key agreement protocol) is to send a unique
identifier of the User to the Home Network.

• We want user privacy.
• This property implies at least message confidentiality and integrity of the ECIES
scheme in the “multiple queries” setting (but may be more, e.g., different error
codes...).

3



5G-AKA

• Key agreement protocol based on a pre-shared secret keys.

• Main part of the protocol: three messages.

4



5G-AKA

• Key agreement protocol based on a pre-shared secret keys.
• Main part of the protocol: three messages.

4



5G-AKA

• Key agreement protocol based on a pre-shared secret keys.
• Main part of the protocol: three messages.

4



5G-AKA: focus on ECIES

• Key agreement protocol based on a pre-shared secret keys.
• Main part of the protocol: three messages.

5



ECIES scheme

• Hybrid encryption scheme (key exchange + authenticated encryption).

• Should provide confidentiality and integrity of messages (more on that later).
• Widely standardized and deployed1.
• In this work we describe it slightly more general than it is standardized based on
“abstract” authenticated encryption scheme 𝒜ℰ (AE-scheme) and key exchange
scheme 𝒦ℰ (KE-scheme).

1Gayoso Martínez, Hernández Encinas, and Queiruga Dios, “Security and practical considerations when implementing the elliptic curve integrated encryption scheme”; Martínez,
Encinas, et al., “A comparison of the standardized versions of ECIES”; Shoup, A Proposal for an ISO Standard for Public Key Encryption.

6



ECIES scheme

• Hybrid encryption scheme (key exchange + authenticated encryption).
• Should provide confidentiality and integrity of messages (more on that later).

• Widely standardized and deployed1.
• In this work we describe it slightly more general than it is standardized based on
“abstract” authenticated encryption scheme 𝒜ℰ (AE-scheme) and key exchange
scheme 𝒦ℰ (KE-scheme).

1Gayoso Martínez, Hernández Encinas, and Queiruga Dios, “Security and practical considerations when implementing the elliptic curve integrated encryption scheme”; Martínez,
Encinas, et al., “A comparison of the standardized versions of ECIES”; Shoup, A Proposal for an ISO Standard for Public Key Encryption.

6



ECIES scheme

• Hybrid encryption scheme (key exchange + authenticated encryption).
• Should provide confidentiality and integrity of messages (more on that later).
• Widely standardized and deployed1.

• In this work we describe it slightly more general than it is standardized based on
“abstract” authenticated encryption scheme 𝒜ℰ (AE-scheme) and key exchange
scheme 𝒦ℰ (KE-scheme).

1Gayoso Martínez, Hernández Encinas, and Queiruga Dios, “Security and practical considerations when implementing the elliptic curve integrated encryption scheme”; Martínez,
Encinas, et al., “A comparison of the standardized versions of ECIES”; Shoup, A Proposal for an ISO Standard for Public Key Encryption.

6



ECIES scheme

• Hybrid encryption scheme (key exchange + authenticated encryption).
• Should provide confidentiality and integrity of messages (more on that later).
• Widely standardized and deployed1.
• In this work we describe it slightly more general than it is standardized based on
“abstract” authenticated encryption scheme 𝒜ℰ (AE-scheme) and key exchange
scheme 𝒦ℰ (KE-scheme).

1Gayoso Martínez, Hernández Encinas, and Queiruga Dios, “Security and practical considerations when implementing the elliptic curve integrated encryption scheme”; Martínez,
Encinas, et al., “A comparison of the standardized versions of ECIES”; Shoup, A Proposal for an ISO Standard for Public Key Encryption.

6



Previous analysis

• Confidentiality is analyzed in the LOR-CCA model with only one encryption
challenge query2.

• It seems that integrity was not analyzed for some reasons (INT-CTXT?
INT-PTXT?)3.

• Only for the concrete standardized scheme: Encrypt-then-MAC, key exchange based
on Diffie-Hellman-like approach (instead of more general treatment with any
AE/KE-scheme).

2Abdalla, Bellare, and Rogaway, “The oracle Diffie-Hellman assumptions and an analysis of DHIES”; Shoup, A Proposal for an ISO Standard for Public Key Encryption; Smart, “The
exact security of ECIES in the generic group model.”
3Bellare and Namprempre, “Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.”

7



Previous analysis

• Confidentiality is analyzed in the LOR-CCA model with only one encryption
challenge query2.

• It seems that integrity was not analyzed for some reasons (INT-CTXT?
INT-PTXT?)3.

• Only for the concrete standardized scheme: Encrypt-then-MAC, key exchange based
on Diffie-Hellman-like approach (instead of more general treatment with any
AE/KE-scheme).

2Abdalla, Bellare, and Rogaway, “The oracle Diffie-Hellman assumptions and an analysis of DHIES”; Shoup, A Proposal for an ISO Standard for Public Key Encryption; Smart, “The
exact security of ECIES in the generic group model.”
3Bellare and Namprempre, “Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.”

7



Previous analysis

• Confidentiality is analyzed in the LOR-CCA model with only one encryption
challenge query2.

• It seems that integrity was not analyzed for some reasons (INT-CTXT?
INT-PTXT?)3.

• Only for the concrete standardized scheme: Encrypt-then-MAC, key exchange based
on Diffie-Hellman-like approach (instead of more general treatment with any
AE/KE-scheme).

2Abdalla, Bellare, and Rogaway, “The oracle Diffie-Hellman assumptions and an analysis of DHIES”; Shoup, A Proposal for an ISO Standard for Public Key Encryption; Smart, “The
exact security of ECIES in the generic group model.”
3Bellare and Namprempre, “Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.”

7



Our goals

• Analyze confidentiality and integrity in the “usual” LOR-CCA (conf.) and INT-CTXT
(integr.) models.

• In the general setting (“generic” key exchange scheme (more on that later) and
AE(AD)-scheme).

• Draw conclusions for the case when ECIES is instantiated with Russian
crypto-algorithms (such as VKO scheme4).

4Alekseev et al., “On the cryptographic properties of algorithms accompanying the applications of standards GOST R 34.11-2012 and GOST R 34.10-2012.”

8



Our goals

• Analyze confidentiality and integrity in the “usual” LOR-CCA (conf.) and INT-CTXT
(integr.) models.

• In the general setting (“generic” key exchange scheme (more on that later) and
AE(AD)-scheme).

• Draw conclusions for the case when ECIES is instantiated with Russian
crypto-algorithms (such as VKO scheme4).

4Alekseev et al., “On the cryptographic properties of algorithms accompanying the applications of standards GOST R 34.11-2012 and GOST R 34.10-2012.”

8



Our goals

• Analyze confidentiality and integrity in the “usual” LOR-CCA (conf.) and INT-CTXT
(integr.) models.

• In the general setting (“generic” key exchange scheme (more on that later) and
AE(AD)-scheme).

• Draw conclusions for the case when ECIES is instantiated with Russian
crypto-algorithms (such as VKO scheme4).

4Alekseev et al., “On the cryptographic properties of algorithms accompanying the applications of standards GOST R 34.11-2012 and GOST R 34.10-2012.”

8



Table of Contents

Introduction

The object of study: ECIES scheme

Security models

Main results

9



Building blocks

Firstly we have to discuss two main building blocks of the scheme:

• authenticated encryption scheme 𝒜ℰ (AE-scheme);
• key exchange scheme 𝒦ℰ (KE-scheme).

10



Authenticated encryption scheme

Triplet 𝒜ℰ = (KeyGen,Enc,Dec) of (probabilistic) algorithms:

• key generation algorithm KeyGen; no input, returns a randomly chosen key 𝑘 (e.g.,
from the set {0, 1}𝑘𝑙𝑒𝑛);

• encryption algorithm Enc; input: key 𝑘 and the message 𝑚, returns a ciphertext
𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚);

• decryption algorithm Dec; input: key 𝑘 and the ciphertext 𝑐𝑡, returns
𝑚 ← 𝒜ℰ.Dec(𝑘, 𝑐𝑡), which is either some message, or the special decryption error
symbol ⊥.

Correct decryption: for any 𝑚, any 𝑘 $←− 𝒜ℰ.KeyGen: 𝒜ℰ.Dec(𝑘,𝒜ℰ.Enc(𝑘,𝑚)) = 𝑚.
Examples: MGM mode5; CTR + CMAC, EtM6.

5Akhmetzyanova et al., “Security of Multilinear Galois Mode (MGM)”; Nozdrunov, “Parallel and double block cipher mode of operation (PD–mode) for authenticated encryption.”
6Bellare and Namprempre, “Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.”

11



Authenticated encryption scheme

Triplet 𝒜ℰ = (KeyGen,Enc,Dec) of (probabilistic) algorithms:

• key generation algorithm KeyGen; no input, returns a randomly chosen key 𝑘 (e.g.,
from the set {0, 1}𝑘𝑙𝑒𝑛);

• encryption algorithm Enc; input: key 𝑘 and the message 𝑚, returns a ciphertext
𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚);

• decryption algorithm Dec; input: key 𝑘 and the ciphertext 𝑐𝑡, returns
𝑚 ← 𝒜ℰ.Dec(𝑘, 𝑐𝑡), which is either some message, or the special decryption error
symbol ⊥.

Correct decryption: for any 𝑚, any 𝑘 $←− 𝒜ℰ.KeyGen: 𝒜ℰ.Dec(𝑘,𝒜ℰ.Enc(𝑘,𝑚)) = 𝑚.
Examples: MGM mode5; CTR + CMAC, EtM6.

5Akhmetzyanova et al., “Security of Multilinear Galois Mode (MGM)”; Nozdrunov, “Parallel and double block cipher mode of operation (PD–mode) for authenticated encryption.”
6Bellare and Namprempre, “Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.”

11



Authenticated encryption scheme

Triplet 𝒜ℰ = (KeyGen,Enc,Dec) of (probabilistic) algorithms:

• key generation algorithm KeyGen; no input, returns a randomly chosen key 𝑘 (e.g.,
from the set {0, 1}𝑘𝑙𝑒𝑛);

• encryption algorithm Enc; input: key 𝑘 and the message 𝑚, returns a ciphertext
𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚);

• decryption algorithm Dec; input: key 𝑘 and the ciphertext 𝑐𝑡, returns
𝑚 ← 𝒜ℰ.Dec(𝑘, 𝑐𝑡), which is either some message, or the special decryption error
symbol ⊥.

Correct decryption: for any 𝑚, any 𝑘 $←− 𝒜ℰ.KeyGen: 𝒜ℰ.Dec(𝑘,𝒜ℰ.Enc(𝑘,𝑚)) = 𝑚.
Examples: MGM mode5; CTR + CMAC, EtM6.

5Akhmetzyanova et al., “Security of Multilinear Galois Mode (MGM)”; Nozdrunov, “Parallel and double block cipher mode of operation (PD–mode) for authenticated encryption.”
6Bellare and Namprempre, “Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.”

11



Authenticated encryption scheme

Triplet 𝒜ℰ = (KeyGen,Enc,Dec) of (probabilistic) algorithms:

• key generation algorithm KeyGen; no input, returns a randomly chosen key 𝑘 (e.g.,
from the set {0, 1}𝑘𝑙𝑒𝑛);

• encryption algorithm Enc; input: key 𝑘 and the message 𝑚, returns a ciphertext
𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚);

• decryption algorithm Dec; input: key 𝑘 and the ciphertext 𝑐𝑡, returns
𝑚 ← 𝒜ℰ.Dec(𝑘, 𝑐𝑡), which is either some message, or the special decryption error
symbol ⊥.

Correct decryption: for any 𝑚, any 𝑘 $←− 𝒜ℰ.KeyGen: 𝒜ℰ.Dec(𝑘,𝒜ℰ.Enc(𝑘,𝑚)) = 𝑚.
Examples: MGM mode5; CTR + CMAC, EtM6.

5Akhmetzyanova et al., “Security of Multilinear Galois Mode (MGM)”; Nozdrunov, “Parallel and double block cipher mode of operation (PD–mode) for authenticated encryption.”
6Bellare and Namprempre, “Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.”

11



Authenticated encryption scheme

Triplet 𝒜ℰ = (KeyGen,Enc,Dec) of (probabilistic) algorithms:

• key generation algorithm KeyGen; no input, returns a randomly chosen key 𝑘 (e.g.,
from the set {0, 1}𝑘𝑙𝑒𝑛);

• encryption algorithm Enc; input: key 𝑘 and the message 𝑚, returns a ciphertext
𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚);

• decryption algorithm Dec; input: key 𝑘 and the ciphertext 𝑐𝑡, returns
𝑚 ← 𝒜ℰ.Dec(𝑘, 𝑐𝑡), which is either some message, or the special decryption error
symbol ⊥.

Correct decryption: for any 𝑚, any 𝑘 $←− 𝒜ℰ.KeyGen: 𝒜ℰ.Dec(𝑘,𝒜ℰ.Enc(𝑘,𝑚)) = 𝑚.

Examples: MGM mode5; CTR + CMAC, EtM6.

5Akhmetzyanova et al., “Security of Multilinear Galois Mode (MGM)”; Nozdrunov, “Parallel and double block cipher mode of operation (PD–mode) for authenticated encryption.”
6Bellare and Namprempre, “Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.”

11



Authenticated encryption scheme

Triplet 𝒜ℰ = (KeyGen,Enc,Dec) of (probabilistic) algorithms:

• key generation algorithm KeyGen; no input, returns a randomly chosen key 𝑘 (e.g.,
from the set {0, 1}𝑘𝑙𝑒𝑛);

• encryption algorithm Enc; input: key 𝑘 and the message 𝑚, returns a ciphertext
𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚);

• decryption algorithm Dec; input: key 𝑘 and the ciphertext 𝑐𝑡, returns
𝑚 ← 𝒜ℰ.Dec(𝑘, 𝑐𝑡), which is either some message, or the special decryption error
symbol ⊥.

Correct decryption: for any 𝑚, any 𝑘 $←− 𝒜ℰ.KeyGen: 𝒜ℰ.Dec(𝑘,𝒜ℰ.Enc(𝑘,𝑚)) = 𝑚.
Examples: MGM mode5; CTR + CMAC, EtM6.
5Akhmetzyanova et al., “Security of Multilinear Galois Mode (MGM)”; Nozdrunov, “Parallel and double block cipher mode of operation (PD–mode) for authenticated encryption.”
6Bellare and Namprempre, “Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.”

11



Key exchange scheme

Pair of algorithms 𝒦ℰ = (KeyPairGen,Combine):

• private-public key pair generation algorithm KeyPairGen; no input, returns a
randomly chosen key pair (𝑠𝑘, 𝑝𝑘);

• shared secret value generation algorithm Combine; input: private key 𝑠𝑘, public key
𝑝𝑘, returns generated shared secret 𝑘.

Correct shared secret generation requirement: for any two key pairs
(𝑠𝑘, 𝑝𝑘) $←− 𝒦ℰ.KeyPairGen and (𝑒𝑠𝑘, 𝑒𝑝𝑘) $←− 𝒦ℰ.KeyPairGen:

𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘) = 𝒦ℰ.Combine(𝑒𝑠𝑘, 𝑝𝑘).

Example: VKO scheme7.

7Alekseev et al., “On the cryptographic properties of algorithms accompanying the applications of standards GOST R 34.11-2012 and GOST R 34.10-2012.”

12



Key exchange scheme

Pair of algorithms 𝒦ℰ = (KeyPairGen,Combine):

• private-public key pair generation algorithm KeyPairGen; no input, returns a
randomly chosen key pair (𝑠𝑘, 𝑝𝑘);

• shared secret value generation algorithm Combine; input: private key 𝑠𝑘, public key
𝑝𝑘, returns generated shared secret 𝑘.

Correct shared secret generation requirement: for any two key pairs
(𝑠𝑘, 𝑝𝑘) $←− 𝒦ℰ.KeyPairGen and (𝑒𝑠𝑘, 𝑒𝑝𝑘) $←− 𝒦ℰ.KeyPairGen:

𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘) = 𝒦ℰ.Combine(𝑒𝑠𝑘, 𝑝𝑘).

Example: VKO scheme7.

7Alekseev et al., “On the cryptographic properties of algorithms accompanying the applications of standards GOST R 34.11-2012 and GOST R 34.10-2012.”

12



Key exchange scheme

Pair of algorithms 𝒦ℰ = (KeyPairGen,Combine):

• private-public key pair generation algorithm KeyPairGen; no input, returns a
randomly chosen key pair (𝑠𝑘, 𝑝𝑘);

• shared secret value generation algorithm Combine; input: private key 𝑠𝑘, public key
𝑝𝑘, returns generated shared secret 𝑘.

Correct shared secret generation requirement: for any two key pairs
(𝑠𝑘, 𝑝𝑘) $←− 𝒦ℰ.KeyPairGen and (𝑒𝑠𝑘, 𝑒𝑝𝑘) $←− 𝒦ℰ.KeyPairGen:

𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘) = 𝒦ℰ.Combine(𝑒𝑠𝑘, 𝑝𝑘).

Example: VKO scheme7.

7Alekseev et al., “On the cryptographic properties of algorithms accompanying the applications of standards GOST R 34.11-2012 and GOST R 34.10-2012.”

12



Key exchange scheme

Pair of algorithms 𝒦ℰ = (KeyPairGen,Combine):

• private-public key pair generation algorithm KeyPairGen; no input, returns a
randomly chosen key pair (𝑠𝑘, 𝑝𝑘);

• shared secret value generation algorithm Combine; input: private key 𝑠𝑘, public key
𝑝𝑘, returns generated shared secret 𝑘.

Correct shared secret generation requirement: for any two key pairs
(𝑠𝑘, 𝑝𝑘) $←− 𝒦ℰ.KeyPairGen and (𝑒𝑠𝑘, 𝑒𝑝𝑘) $←− 𝒦ℰ.KeyPairGen:

𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘) = 𝒦ℰ.Combine(𝑒𝑠𝑘, 𝑝𝑘).

Example: VKO scheme7.

7Alekseev et al., “On the cryptographic properties of algorithms accompanying the applications of standards GOST R 34.11-2012 and GOST R 34.10-2012.”

12



Key exchange scheme

Pair of algorithms 𝒦ℰ = (KeyPairGen,Combine):

• private-public key pair generation algorithm KeyPairGen; no input, returns a
randomly chosen key pair (𝑠𝑘, 𝑝𝑘);

• shared secret value generation algorithm Combine; input: private key 𝑠𝑘, public key
𝑝𝑘, returns generated shared secret 𝑘.

Correct shared secret generation requirement: for any two key pairs
(𝑠𝑘, 𝑝𝑘) $←− 𝒦ℰ.KeyPairGen and (𝑒𝑠𝑘, 𝑒𝑝𝑘) $←− 𝒦ℰ.KeyPairGen:

𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘) = 𝒦ℰ.Combine(𝑒𝑠𝑘, 𝑝𝑘).

Example: VKO scheme7.
7Alekseev et al., “On the cryptographic properties of algorithms accompanying the applications of standards GOST R 34.11-2012 and GOST R 34.10-2012.”

12



ECIES scheme

Alice wants to send message 𝑚 to Bob, who has a long-term key pair (𝑠𝑘, 𝑝𝑘).

Two-step encryption process:

• generating ephemeral pair (𝑒𝑠𝑘, 𝑒𝑝𝑘)𝒦ℰ.KeyPairGen and session secret key
𝑘 ← 𝒦ℰ.Combine(𝑒𝑠𝑘, 𝑝𝑘);

• encrypting the message 𝑚 under the key 𝑘: 𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚) and sending (𝑒𝑝𝑘, 𝑐𝑡)
to the recipient.

Decryption: generate 𝑘 using 𝑠𝑘 and 𝑒𝑝𝑘, decrypt 𝑐𝑡 under 𝑘.
Fresh ephemeral key pair on each invocation!

13



ECIES scheme

Alice wants to send message 𝑚 to Bob, who has a long-term key pair (𝑠𝑘, 𝑝𝑘).
Two-step encryption process:

• generating ephemeral pair (𝑒𝑠𝑘, 𝑒𝑝𝑘)𝒦ℰ.KeyPairGen and session secret key
𝑘 ← 𝒦ℰ.Combine(𝑒𝑠𝑘, 𝑝𝑘);

• encrypting the message 𝑚 under the key 𝑘: 𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚) and sending (𝑒𝑝𝑘, 𝑐𝑡)
to the recipient.

Decryption: generate 𝑘 using 𝑠𝑘 and 𝑒𝑝𝑘, decrypt 𝑐𝑡 under 𝑘.
Fresh ephemeral key pair on each invocation!

13



ECIES scheme

Alice wants to send message 𝑚 to Bob, who has a long-term key pair (𝑠𝑘, 𝑝𝑘).
Two-step encryption process:

• generating ephemeral pair (𝑒𝑠𝑘, 𝑒𝑝𝑘)𝒦ℰ.KeyPairGen and session secret key
𝑘 ← 𝒦ℰ.Combine(𝑒𝑠𝑘, 𝑝𝑘);

• encrypting the message 𝑚 under the key 𝑘: 𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚) and sending (𝑒𝑝𝑘, 𝑐𝑡)
to the recipient.

Decryption: generate 𝑘 using 𝑠𝑘 and 𝑒𝑝𝑘, decrypt 𝑐𝑡 under 𝑘.
Fresh ephemeral key pair on each invocation!

13



ECIES scheme

Alice wants to send message 𝑚 to Bob, who has a long-term key pair (𝑠𝑘, 𝑝𝑘).
Two-step encryption process:

• generating ephemeral pair (𝑒𝑠𝑘, 𝑒𝑝𝑘)𝒦ℰ.KeyPairGen and session secret key
𝑘 ← 𝒦ℰ.Combine(𝑒𝑠𝑘, 𝑝𝑘);

• encrypting the message 𝑚 under the key 𝑘: 𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚) and sending (𝑒𝑝𝑘, 𝑐𝑡)
to the recipient.

Decryption: generate 𝑘 using 𝑠𝑘 and 𝑒𝑝𝑘, decrypt 𝑐𝑡 under 𝑘.
Fresh ephemeral key pair on each invocation!

13



ECIES scheme

Alice wants to send message 𝑚 to Bob, who has a long-term key pair (𝑠𝑘, 𝑝𝑘).
Two-step encryption process:

• generating ephemeral pair (𝑒𝑠𝑘, 𝑒𝑝𝑘)𝒦ℰ.KeyPairGen and session secret key
𝑘 ← 𝒦ℰ.Combine(𝑒𝑠𝑘, 𝑝𝑘);

• encrypting the message 𝑚 under the key 𝑘: 𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚) and sending (𝑒𝑝𝑘, 𝑐𝑡)
to the recipient.

Decryption: generate 𝑘 using 𝑠𝑘 and 𝑒𝑝𝑘, decrypt 𝑐𝑡 under 𝑘.

Fresh ephemeral key pair on each invocation!

13



ECIES scheme

Alice wants to send message 𝑚 to Bob, who has a long-term key pair (𝑠𝑘, 𝑝𝑘).
Two-step encryption process:

• generating ephemeral pair (𝑒𝑠𝑘, 𝑒𝑝𝑘)𝒦ℰ.KeyPairGen and session secret key
𝑘 ← 𝒦ℰ.Combine(𝑒𝑠𝑘, 𝑝𝑘);

• encrypting the message 𝑚 under the key 𝑘: 𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚) and sending (𝑒𝑝𝑘, 𝑐𝑡)
to the recipient.

Decryption: generate 𝑘 using 𝑠𝑘 and 𝑒𝑝𝑘, decrypt 𝑐𝑡 under 𝑘.
Fresh ephemeral key pair on each invocation!

13



Pseudocode description

ECIES.Enc(𝑝𝑘,𝑚)
(𝑒𝑠𝑘, 𝑒𝑝𝑘) $←− 𝒦ℰ.KeyPairGen()
𝑘 ← 𝒦ℰ.Combine(𝑒𝑠𝑘, 𝑝𝑘)

𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚)
return (𝑒𝑝𝑘, 𝑐𝑡)

ECIES.Dec(𝑒𝑝𝑘, 𝑠𝑘, 𝑐𝑡)
𝑘 ← 𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘)
return 𝒜ℰ.Dec(𝑘, 𝑐𝑡)

14



Table of Contents

Introduction

The object of study: ECIES scheme

Security models

Main results

15



Models: overview

• LOR-CCA: confidentiality model (for 𝒜ℰ scheme, for ECIES scheme).

• INT-CTXT: integrity model (for 𝒜ℰ scheme, for ECIES scheme).
• MODH: key indistinguishability (for 𝒦ℰ scheme).
• Main result-1: LOR-CCA for ECIES can be reduced to the LOR-CCA for 𝒜ℰ and

MODH for 𝒦ℰ.
• Main result-2: INT-CTXT for ECIES can be reduced to the INT-CTXT for 𝒜ℰ and

MODH for 𝒦ℰ.

16



Models: overview

• LOR-CCA: confidentiality model (for 𝒜ℰ scheme, for ECIES scheme).
• INT-CTXT: integrity model (for 𝒜ℰ scheme, for ECIES scheme).

• MODH: key indistinguishability (for 𝒦ℰ scheme).
• Main result-1: LOR-CCA for ECIES can be reduced to the LOR-CCA for 𝒜ℰ and

MODH for 𝒦ℰ.
• Main result-2: INT-CTXT for ECIES can be reduced to the INT-CTXT for 𝒜ℰ and

MODH for 𝒦ℰ.

16



Models: overview

• LOR-CCA: confidentiality model (for 𝒜ℰ scheme, for ECIES scheme).
• INT-CTXT: integrity model (for 𝒜ℰ scheme, for ECIES scheme).
• MODH: key indistinguishability (for 𝒦ℰ scheme).

• Main result-1: LOR-CCA for ECIES can be reduced to the LOR-CCA for 𝒜ℰ and
MODH for 𝒦ℰ.

• Main result-2: INT-CTXT for ECIES can be reduced to the INT-CTXT for 𝒜ℰ and
MODH for 𝒦ℰ.

16



Models: overview

• LOR-CCA: confidentiality model (for 𝒜ℰ scheme, for ECIES scheme).
• INT-CTXT: integrity model (for 𝒜ℰ scheme, for ECIES scheme).
• MODH: key indistinguishability (for 𝒦ℰ scheme).
• Main result-1: LOR-CCA for ECIES can be reduced to the LOR-CCA for 𝒜ℰ and

MODH for 𝒦ℰ.

• Main result-2: INT-CTXT for ECIES can be reduced to the INT-CTXT for 𝒜ℰ and
MODH for 𝒦ℰ.

16



Models: overview

• LOR-CCA: confidentiality model (for 𝒜ℰ scheme, for ECIES scheme).
• INT-CTXT: integrity model (for 𝒜ℰ scheme, for ECIES scheme).
• MODH: key indistinguishability (for 𝒦ℰ scheme).
• Main result-1: LOR-CCA for ECIES can be reduced to the LOR-CCA for 𝒜ℰ and

MODH for 𝒦ℰ.
• Main result-2: INT-CTXT for ECIES can be reduced to the INT-CTXT for 𝒜ℰ and

MODH for 𝒦ℰ.

16



Confidentiality of 𝒜ℰ: LOR-CCA model

LOR-CCA model (Left-or-Right, Chosen Ciphertext Attack) for the AE-scheme 𝒜ℰ in the
multi-user (𝐷 ∈ ℕ) setting.

Interface: two oracles 𝒪𝑏
enc and 𝒪dec.

• 𝒪𝑏
enc: takes a triple (𝑖,𝑚0, 𝑚1) — key index 1 ≤ 𝑖 ≤ 𝐷, message pair (𝑚0, 𝑚1); returns

𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘𝑖, 𝑚𝑏).
• 𝒪dec takes a pair — key index 1 ≤ 𝑖 ≤ 𝐷, ciphertext 𝑐𝑡; if 𝑐𝑡 was not returned as an
answer to the 𝒪enc query of the type (𝑖, ⋅, ⋅) before, returns 𝒜ℰ.Dec(𝑘𝑖, 𝑐𝑡), otherwise
an error.

Goal: predict the bit 𝑏 fixed in the 𝒪𝑏
enc.

Success measure: advantage

AdvLOR-CCA
𝒜ℰ (𝒜) = ℙ[ExpLOR-CCA-1

𝒜ℰ (𝒜) → 1] − ℙ[ExpLOR-CCA-0
𝒜ℰ (𝒜) → 1].

17



Confidentiality of 𝒜ℰ: LOR-CCA model

LOR-CCA model (Left-or-Right, Chosen Ciphertext Attack) for the AE-scheme 𝒜ℰ in the
multi-user (𝐷 ∈ ℕ) setting.
Interface: two oracles 𝒪𝑏

enc and 𝒪dec.

• 𝒪𝑏
enc: takes a triple (𝑖,𝑚0, 𝑚1) — key index 1 ≤ 𝑖 ≤ 𝐷, message pair (𝑚0, 𝑚1); returns

𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘𝑖, 𝑚𝑏).
• 𝒪dec takes a pair — key index 1 ≤ 𝑖 ≤ 𝐷, ciphertext 𝑐𝑡; if 𝑐𝑡 was not returned as an
answer to the 𝒪enc query of the type (𝑖, ⋅, ⋅) before, returns 𝒜ℰ.Dec(𝑘𝑖, 𝑐𝑡), otherwise
an error.

Goal: predict the bit 𝑏 fixed in the 𝒪𝑏
enc.

Success measure: advantage

AdvLOR-CCA
𝒜ℰ (𝒜) = ℙ[ExpLOR-CCA-1

𝒜ℰ (𝒜) → 1] − ℙ[ExpLOR-CCA-0
𝒜ℰ (𝒜) → 1].

17



Confidentiality of 𝒜ℰ: LOR-CCA model

LOR-CCA model (Left-or-Right, Chosen Ciphertext Attack) for the AE-scheme 𝒜ℰ in the
multi-user (𝐷 ∈ ℕ) setting.
Interface: two oracles 𝒪𝑏

enc and 𝒪dec.

• 𝒪𝑏
enc: takes a triple (𝑖,𝑚0, 𝑚1) — key index 1 ≤ 𝑖 ≤ 𝐷, message pair (𝑚0, 𝑚1); returns

𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘𝑖, 𝑚𝑏).

• 𝒪dec takes a pair — key index 1 ≤ 𝑖 ≤ 𝐷, ciphertext 𝑐𝑡; if 𝑐𝑡 was not returned as an
answer to the 𝒪enc query of the type (𝑖, ⋅, ⋅) before, returns 𝒜ℰ.Dec(𝑘𝑖, 𝑐𝑡), otherwise
an error.

Goal: predict the bit 𝑏 fixed in the 𝒪𝑏
enc.

Success measure: advantage

AdvLOR-CCA
𝒜ℰ (𝒜) = ℙ[ExpLOR-CCA-1

𝒜ℰ (𝒜) → 1] − ℙ[ExpLOR-CCA-0
𝒜ℰ (𝒜) → 1].

17



Confidentiality of 𝒜ℰ: LOR-CCA model

LOR-CCA model (Left-or-Right, Chosen Ciphertext Attack) for the AE-scheme 𝒜ℰ in the
multi-user (𝐷 ∈ ℕ) setting.
Interface: two oracles 𝒪𝑏

enc and 𝒪dec.

• 𝒪𝑏
enc: takes a triple (𝑖,𝑚0, 𝑚1) — key index 1 ≤ 𝑖 ≤ 𝐷, message pair (𝑚0, 𝑚1); returns

𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘𝑖, 𝑚𝑏).
• 𝒪dec takes a pair — key index 1 ≤ 𝑖 ≤ 𝐷, ciphertext 𝑐𝑡; if 𝑐𝑡 was not returned as an
answer to the 𝒪enc query of the type (𝑖, ⋅, ⋅) before, returns 𝒜ℰ.Dec(𝑘𝑖, 𝑐𝑡), otherwise
an error.

Goal: predict the bit 𝑏 fixed in the 𝒪𝑏
enc.

Success measure: advantage

AdvLOR-CCA
𝒜ℰ (𝒜) = ℙ[ExpLOR-CCA-1

𝒜ℰ (𝒜) → 1] − ℙ[ExpLOR-CCA-0
𝒜ℰ (𝒜) → 1].

17



Confidentiality of 𝒜ℰ: LOR-CCA model

LOR-CCA model (Left-or-Right, Chosen Ciphertext Attack) for the AE-scheme 𝒜ℰ in the
multi-user (𝐷 ∈ ℕ) setting.
Interface: two oracles 𝒪𝑏

enc and 𝒪dec.

• 𝒪𝑏
enc: takes a triple (𝑖,𝑚0, 𝑚1) — key index 1 ≤ 𝑖 ≤ 𝐷, message pair (𝑚0, 𝑚1); returns

𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘𝑖, 𝑚𝑏).
• 𝒪dec takes a pair — key index 1 ≤ 𝑖 ≤ 𝐷, ciphertext 𝑐𝑡; if 𝑐𝑡 was not returned as an
answer to the 𝒪enc query of the type (𝑖, ⋅, ⋅) before, returns 𝒜ℰ.Dec(𝑘𝑖, 𝑐𝑡), otherwise
an error.

Goal: predict the bit 𝑏 fixed in the 𝒪𝑏
enc.

Success measure: advantage

AdvLOR-CCA
𝒜ℰ (𝒜) = ℙ[ExpLOR-CCA-1

𝒜ℰ (𝒜) → 1] − ℙ[ExpLOR-CCA-0
𝒜ℰ (𝒜) → 1].

17



Confidentiality of 𝒜ℰ: LOR-CCA model

LOR-CCA model (Left-or-Right, Chosen Ciphertext Attack) for the AE-scheme 𝒜ℰ in the
multi-user (𝐷 ∈ ℕ) setting.
Interface: two oracles 𝒪𝑏

enc and 𝒪dec.

• 𝒪𝑏
enc: takes a triple (𝑖,𝑚0, 𝑚1) — key index 1 ≤ 𝑖 ≤ 𝐷, message pair (𝑚0, 𝑚1); returns

𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘𝑖, 𝑚𝑏).
• 𝒪dec takes a pair — key index 1 ≤ 𝑖 ≤ 𝐷, ciphertext 𝑐𝑡; if 𝑐𝑡 was not returned as an
answer to the 𝒪enc query of the type (𝑖, ⋅, ⋅) before, returns 𝒜ℰ.Dec(𝑘𝑖, 𝑐𝑡), otherwise
an error.

Goal: predict the bit 𝑏 fixed in the 𝒪𝑏
enc.

Success measure: advantage

AdvLOR-CCA
𝒜ℰ (𝒜) = ℙ[ExpLOR-CCA-1

𝒜ℰ (𝒜) → 1] − ℙ[ExpLOR-CCA-0
𝒜ℰ (𝒜) → 1].

17



Confidentiality of 𝒜ℰ: pseudocode

ExpLOR-CCA-𝑏
𝒜ℰ (𝒜)

for 1 ≤ 𝑖 ≤ 𝐷 do

𝑘𝑖
$←− 𝒜ℰ.KeyGen()

endfor
𝑠𝑒𝑛𝑡 ← [ ]

𝑏′ $←− 𝒜𝒪𝑏enc,𝒪dec

return 𝑏′

𝒪𝑏
enc(𝑖, 𝑚0, 𝑚1)

𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘𝑖, 𝑚𝑏)
𝑠𝑒𝑛𝑡[𝑖] ← 𝑠𝑒𝑛𝑡[𝑖] ∪ {𝑐𝑡}
return 𝑐𝑡

𝒪dec(𝑖, 𝑐𝑡)
if (𝑐𝑡 ∈ 𝑠𝑒𝑛𝑡[𝑖])

return ⊥
fi
return 𝒜ℰ.Dec(𝑘𝑖, 𝑐𝑡)

18



Confidentiality of 𝒜ℰ: pseudocode

ExpLOR-CCA-𝑏
𝒜ℰ (𝒜)

for 1 ≤ 𝑖 ≤ 𝐷 do

𝑘𝑖
$←− 𝒜ℰ.KeyGen()

endfor
𝑠𝑒𝑛𝑡 ← [ ]

𝑏′ $←− 𝒜𝒪𝑏enc,𝒪dec

return 𝑏′

𝒪𝑏
enc(𝑖, 𝑚0, 𝑚1)

𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘𝑖, 𝑚𝑏)
𝑠𝑒𝑛𝑡[𝑖] ← 𝑠𝑒𝑛𝑡[𝑖] ∪ {𝑐𝑡}
return 𝑐𝑡

𝒪dec(𝑖, 𝑐𝑡)
if (𝑐𝑡 ∈ 𝑠𝑒𝑛𝑡[𝑖])

return ⊥
fi
return 𝒜ℰ.Dec(𝑘𝑖, 𝑐𝑡)

18



Confidentiality of 𝒜ℰ: pseudocode

ExpLOR-CCA-𝑏
𝒜ℰ (𝒜)

for 1 ≤ 𝑖 ≤ 𝐷 do

𝑘𝑖
$←− 𝒜ℰ.KeyGen()

endfor
𝑠𝑒𝑛𝑡 ← [ ]

𝑏′ $←− 𝒜𝒪𝑏enc,𝒪dec

return 𝑏′

𝒪𝑏
enc(𝑖, 𝑚0, 𝑚1)

𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘𝑖, 𝑚𝑏)
𝑠𝑒𝑛𝑡[𝑖] ← 𝑠𝑒𝑛𝑡[𝑖] ∪ {𝑐𝑡}
return 𝑐𝑡

𝒪dec(𝑖, 𝑐𝑡)
if (𝑐𝑡 ∈ 𝑠𝑒𝑛𝑡[𝑖])

return ⊥
fi
return 𝒜ℰ.Dec(𝑘𝑖, 𝑐𝑡)

18



Confidentiality of 𝒜ℰ: success measure

AdvLOR-CCA
𝒜ℰ (𝑡, 𝑄𝑒, 𝑄𝑑, 𝐿𝑒, 𝐿𝑑,𝑀𝑒,𝑀𝑑; 𝐷)

the maximal advantage AdvLOR-CCA
𝒜ℰ (𝒜); the maximum is over the adversaries 𝒜 whose

time complexity is at most 𝑡 and with the following restrictions on oracle queries
(1 ≤ 𝑖 ≤ 𝐷):

• the number of queries of the type (𝑖, 𝑚0, 𝑚1) to the 𝒪𝑏
enc oracle ((𝑖, 𝑐𝑡) to the 𝒪dec

oracle) does not exceed 𝑄𝑒[𝑖] (𝑄𝑑[𝑖] resp.);
• the total length of the queries∑|𝑚0| = ∑ |𝑚1| among queries of the type (𝑖, 𝑚0, 𝑚1)
to the 𝒪𝑏

enc oracle (∑|𝑐𝑡| among queries of the type (𝑖, 𝑐𝑡) to the 𝒪dec oracle) does
not exceed 𝐿𝑒[𝑖] (𝐿𝑑[𝑖] resp.);

• the maximal length of the query max |𝑚0| = max |𝑚1| among queries of the type
(𝑖, 𝑚0, 𝑚1) to the 𝒪𝑏

enc oracle (max |𝑐𝑡| among queries of the type (𝑖, 𝑐𝑡) to the 𝒪dec
oracle) does not exceed 𝑀𝑒[𝑖] (𝑀𝑑[𝑖] resp.).

19



Confidentiality of 𝒜ℰ: success measure

AdvLOR-CCA
𝒜ℰ (𝑡, 𝑄𝑒, 𝑄𝑑, 𝐿𝑒, 𝐿𝑑,𝑀𝑒,𝑀𝑑; 𝐷)

the maximal advantage AdvLOR-CCA
𝒜ℰ (𝒜); the maximum is over the adversaries 𝒜 whose

time complexity is at most 𝑡 and with the following restrictions on oracle queries
(1 ≤ 𝑖 ≤ 𝐷):

• the number of queries of the type (𝑖, 𝑚0, 𝑚1) to the 𝒪𝑏
enc oracle ((𝑖, 𝑐𝑡) to the 𝒪dec

oracle) does not exceed 𝑄𝑒[𝑖] (𝑄𝑑[𝑖] resp.);
• the total length of the queries∑|𝑚0| = ∑ |𝑚1| among queries of the type (𝑖, 𝑚0, 𝑚1)
to the 𝒪𝑏

enc oracle (∑|𝑐𝑡| among queries of the type (𝑖, 𝑐𝑡) to the 𝒪dec oracle) does
not exceed 𝐿𝑒[𝑖] (𝐿𝑑[𝑖] resp.);

• the maximal length of the query max |𝑚0| = max |𝑚1| among queries of the type
(𝑖, 𝑚0, 𝑚1) to the 𝒪𝑏

enc oracle (max |𝑐𝑡| among queries of the type (𝑖, 𝑐𝑡) to the 𝒪dec
oracle) does not exceed 𝑀𝑒[𝑖] (𝑀𝑑[𝑖] resp.).

19



Confidentiality of ECIES: LOR-CCA model

• Essentially the same as for the case of LOR-CCA model for 𝒜ℰ scheme.

• Noticeable exceptions: generation of a fresh key during each invokation; “number of
parties” 𝐷 is essentially the same as the total number of queries.

• Guarantees: cannot guess with probability “greater” than 1
2
which plaintext was

encrypted.

20



Confidentiality of ECIES: LOR-CCA model

• Essentially the same as for the case of LOR-CCA model for 𝒜ℰ scheme.
• Noticeable exceptions: generation of a fresh key during each invokation; “number of
parties” 𝐷 is essentially the same as the total number of queries.

• Guarantees: cannot guess with probability “greater” than 1
2
which plaintext was

encrypted.

20



Confidentiality of ECIES: LOR-CCA model

• Essentially the same as for the case of LOR-CCA model for 𝒜ℰ scheme.
• Noticeable exceptions: generation of a fresh key during each invokation; “number of
parties” 𝐷 is essentially the same as the total number of queries.

• Guarantees: cannot guess with probability “greater” than 1
2
which plaintext was

encrypted.

20



Confidentiality of ECIES: pseudocode

ExpLOR-CCA-𝑏
ECIES (𝒜)

(𝑠𝑘, 𝑝𝑘) $←− 𝒦ℰ.KeyPairGen()
𝑠𝑒𝑛𝑡 ← [ ]

𝑏′ $←− 𝒜𝒪𝑏enc,𝒪dec (𝑝𝑘)
return 𝑏′

𝒪𝑏
enc(𝑚0, 𝑚1)

(𝑒𝑝𝑘, 𝑒𝑠𝑘) $←− 𝒦ℰ.KeyPairGen()
𝑘 ← 𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘)

𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚𝑏)
𝑠𝑒𝑛𝑡 ← 𝑠𝑒𝑛𝑡 ∪ {(𝑒𝑝𝑘, 𝑐𝑡)}
return (𝑒𝑝𝑘, 𝑐𝑡)

𝒪dec(𝑒𝑝𝑘, 𝑐𝑡)
if (𝑒𝑝𝑘, 𝑐𝑡) ∈ 𝑠𝑒𝑛𝑡

return ⊥
fi
𝑘 ← 𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘)
return 𝒜ℰ.Dec(𝑘, 𝑐𝑡)

21



Confidentiality of ECIES: success measure

AdvLOR-CCA
ECIES (𝑡, 𝑞𝑒, 𝑞𝑑, 𝑙𝑒, 𝑙𝑑, 𝜇𝑒, 𝜇𝑑)

maximal advantage AdvLOR-CCA
ECIES (𝒜), where the maximum is taken over the adversaries

𝒜 whose time complexity is at most 𝑡 and with the following restrictions on the oracle
queries:

• the number of queries to the 𝒪𝑏
enc oracle (to the 𝒪dec oracle) does not exceed 𝑞𝑒 (𝑞𝑑

resp.);
• the total length of the queries∑|𝑚0| = ∑ |𝑚1| to the 𝒪𝑏

enc oracle (∑|𝑐𝑡| to the 𝒪dec
oracle) does not exceed 𝑙𝑒 (𝑙𝑑 resp.);

• the maximal length of the query max |𝑚0| = max |𝑚1| among queries to the 𝒪𝑏
enc

oracle (max |𝑐𝑡| among queries to the 𝒪dec oracle) does not exceed 𝜇𝑒 (𝜇𝑑 resp.);

22



Confidentiality of ECIES: success measure

AdvLOR-CCA
ECIES (𝑡, 𝑞𝑒, 𝑞𝑑, 𝑙𝑒, 𝑙𝑑, 𝜇𝑒, 𝜇𝑑)

maximal advantage AdvLOR-CCA
ECIES (𝒜), where the maximum is taken over the adversaries

𝒜 whose time complexity is at most 𝑡 and with the following restrictions on the oracle
queries:

• the number of queries to the 𝒪𝑏
enc oracle (to the 𝒪dec oracle) does not exceed 𝑞𝑒 (𝑞𝑑

resp.);

• the total length of the queries∑|𝑚0| = ∑ |𝑚1| to the 𝒪𝑏
enc oracle (∑|𝑐𝑡| to the 𝒪dec

oracle) does not exceed 𝑙𝑒 (𝑙𝑑 resp.);
• the maximal length of the query max |𝑚0| = max |𝑚1| among queries to the 𝒪𝑏

enc
oracle (max |𝑐𝑡| among queries to the 𝒪dec oracle) does not exceed 𝜇𝑒 (𝜇𝑑 resp.);

22



Confidentiality of ECIES: success measure

AdvLOR-CCA
ECIES (𝑡, 𝑞𝑒, 𝑞𝑑, 𝑙𝑒, 𝑙𝑑, 𝜇𝑒, 𝜇𝑑)

maximal advantage AdvLOR-CCA
ECIES (𝒜), where the maximum is taken over the adversaries

𝒜 whose time complexity is at most 𝑡 and with the following restrictions on the oracle
queries:

• the number of queries to the 𝒪𝑏
enc oracle (to the 𝒪dec oracle) does not exceed 𝑞𝑒 (𝑞𝑑

resp.);
• the total length of the queries∑|𝑚0| = ∑ |𝑚1| to the 𝒪𝑏

enc oracle (∑|𝑐𝑡| to the 𝒪dec
oracle) does not exceed 𝑙𝑒 (𝑙𝑑 resp.);

• the maximal length of the query max |𝑚0| = max |𝑚1| among queries to the 𝒪𝑏
enc

oracle (max |𝑐𝑡| among queries to the 𝒪dec oracle) does not exceed 𝜇𝑒 (𝜇𝑑 resp.);

22



Confidentiality of ECIES: success measure

AdvLOR-CCA
ECIES (𝑡, 𝑞𝑒, 𝑞𝑑, 𝑙𝑒, 𝑙𝑑, 𝜇𝑒, 𝜇𝑑)

maximal advantage AdvLOR-CCA
ECIES (𝒜), where the maximum is taken over the adversaries

𝒜 whose time complexity is at most 𝑡 and with the following restrictions on the oracle
queries:

• the number of queries to the 𝒪𝑏
enc oracle (to the 𝒪dec oracle) does not exceed 𝑞𝑒 (𝑞𝑑

resp.);
• the total length of the queries∑|𝑚0| = ∑ |𝑚1| to the 𝒪𝑏

enc oracle (∑|𝑐𝑡| to the 𝒪dec
oracle) does not exceed 𝑙𝑒 (𝑙𝑑 resp.);

• the maximal length of the query max |𝑚0| = max |𝑚1| among queries to the 𝒪𝑏
enc

oracle (max |𝑐𝑡| among queries to the 𝒪dec oracle) does not exceed 𝜇𝑒 (𝜇𝑑 resp.);

22



Integrity for 𝒜ℰ: INT-CTXT model

INT-CTXT model (Integrity of Ciphertexts) for the AE-scheme 𝒜ℰ in the multi-user
(𝐷 ∈ ℕ) setting.

Interface: two oracles 𝒪enc and 𝒪verify:

• 𝒪enc: input — key index 1 ≤ 𝑖 ≤ 𝐷, message 𝑚; returns 𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘𝑖, 𝑚).
• 𝒪verify: input — ciphertext 𝑐𝑡, key index 1 ≤ 𝑖 ≤ 𝐷; decrypts 𝑚 ← 𝒜ℰ.Dec(𝑘𝑖, 𝑐𝑡),
returns 𝑚; if 𝑐𝑡 was not returned as an answer to the 𝒪enc query of the type (𝑖, ⋅)
before and 𝑚 ≠ ⊥ (correct decryption), then sets 𝑤𝑖𝑛 ← true.

Goal: forge fresh ciphertext 𝑐𝑡 that is decrypted to the correct plaintext.
Success measure: advantage

AdvINT-CTXT
𝒜ℰ (𝒜) = ℙ[ExpINT-CTXT

𝒜ℰ (𝒜) → 1].

23



Integrity for 𝒜ℰ: INT-CTXT model

INT-CTXT model (Integrity of Ciphertexts) for the AE-scheme 𝒜ℰ in the multi-user
(𝐷 ∈ ℕ) setting.
Interface: two oracles 𝒪enc and 𝒪verify:

• 𝒪enc: input — key index 1 ≤ 𝑖 ≤ 𝐷, message 𝑚; returns 𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘𝑖, 𝑚).
• 𝒪verify: input — ciphertext 𝑐𝑡, key index 1 ≤ 𝑖 ≤ 𝐷; decrypts 𝑚 ← 𝒜ℰ.Dec(𝑘𝑖, 𝑐𝑡),
returns 𝑚; if 𝑐𝑡 was not returned as an answer to the 𝒪enc query of the type (𝑖, ⋅)
before and 𝑚 ≠ ⊥ (correct decryption), then sets 𝑤𝑖𝑛 ← true.

Goal: forge fresh ciphertext 𝑐𝑡 that is decrypted to the correct plaintext.
Success measure: advantage

AdvINT-CTXT
𝒜ℰ (𝒜) = ℙ[ExpINT-CTXT

𝒜ℰ (𝒜) → 1].

23



Integrity for 𝒜ℰ: INT-CTXT model

INT-CTXT model (Integrity of Ciphertexts) for the AE-scheme 𝒜ℰ in the multi-user
(𝐷 ∈ ℕ) setting.
Interface: two oracles 𝒪enc and 𝒪verify:

• 𝒪enc: input — key index 1 ≤ 𝑖 ≤ 𝐷, message 𝑚; returns 𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘𝑖, 𝑚).

• 𝒪verify: input — ciphertext 𝑐𝑡, key index 1 ≤ 𝑖 ≤ 𝐷; decrypts 𝑚 ← 𝒜ℰ.Dec(𝑘𝑖, 𝑐𝑡),
returns 𝑚; if 𝑐𝑡 was not returned as an answer to the 𝒪enc query of the type (𝑖, ⋅)
before and 𝑚 ≠ ⊥ (correct decryption), then sets 𝑤𝑖𝑛 ← true.

Goal: forge fresh ciphertext 𝑐𝑡 that is decrypted to the correct plaintext.
Success measure: advantage

AdvINT-CTXT
𝒜ℰ (𝒜) = ℙ[ExpINT-CTXT

𝒜ℰ (𝒜) → 1].

23



Integrity for 𝒜ℰ: INT-CTXT model

INT-CTXT model (Integrity of Ciphertexts) for the AE-scheme 𝒜ℰ in the multi-user
(𝐷 ∈ ℕ) setting.
Interface: two oracles 𝒪enc and 𝒪verify:

• 𝒪enc: input — key index 1 ≤ 𝑖 ≤ 𝐷, message 𝑚; returns 𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘𝑖, 𝑚).
• 𝒪verify: input — ciphertext 𝑐𝑡, key index 1 ≤ 𝑖 ≤ 𝐷; decrypts 𝑚 ← 𝒜ℰ.Dec(𝑘𝑖, 𝑐𝑡),
returns 𝑚; if 𝑐𝑡 was not returned as an answer to the 𝒪enc query of the type (𝑖, ⋅)
before and 𝑚 ≠ ⊥ (correct decryption), then sets 𝑤𝑖𝑛 ← true.

Goal: forge fresh ciphertext 𝑐𝑡 that is decrypted to the correct plaintext.
Success measure: advantage

AdvINT-CTXT
𝒜ℰ (𝒜) = ℙ[ExpINT-CTXT

𝒜ℰ (𝒜) → 1].

23



Integrity for 𝒜ℰ: INT-CTXT model

INT-CTXT model (Integrity of Ciphertexts) for the AE-scheme 𝒜ℰ in the multi-user
(𝐷 ∈ ℕ) setting.
Interface: two oracles 𝒪enc and 𝒪verify:

• 𝒪enc: input — key index 1 ≤ 𝑖 ≤ 𝐷, message 𝑚; returns 𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘𝑖, 𝑚).
• 𝒪verify: input — ciphertext 𝑐𝑡, key index 1 ≤ 𝑖 ≤ 𝐷; decrypts 𝑚 ← 𝒜ℰ.Dec(𝑘𝑖, 𝑐𝑡),
returns 𝑚; if 𝑐𝑡 was not returned as an answer to the 𝒪enc query of the type (𝑖, ⋅)
before and 𝑚 ≠ ⊥ (correct decryption), then sets 𝑤𝑖𝑛 ← true.

Goal: forge fresh ciphertext 𝑐𝑡 that is decrypted to the correct plaintext.

Success measure: advantage

AdvINT-CTXT
𝒜ℰ (𝒜) = ℙ[ExpINT-CTXT

𝒜ℰ (𝒜) → 1].

23



Integrity for 𝒜ℰ: INT-CTXT model

INT-CTXT model (Integrity of Ciphertexts) for the AE-scheme 𝒜ℰ in the multi-user
(𝐷 ∈ ℕ) setting.
Interface: two oracles 𝒪enc and 𝒪verify:

• 𝒪enc: input — key index 1 ≤ 𝑖 ≤ 𝐷, message 𝑚; returns 𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘𝑖, 𝑚).
• 𝒪verify: input — ciphertext 𝑐𝑡, key index 1 ≤ 𝑖 ≤ 𝐷; decrypts 𝑚 ← 𝒜ℰ.Dec(𝑘𝑖, 𝑐𝑡),
returns 𝑚; if 𝑐𝑡 was not returned as an answer to the 𝒪enc query of the type (𝑖, ⋅)
before and 𝑚 ≠ ⊥ (correct decryption), then sets 𝑤𝑖𝑛 ← true.

Goal: forge fresh ciphertext 𝑐𝑡 that is decrypted to the correct plaintext.
Success measure: advantage

AdvINT-CTXT
𝒜ℰ (𝒜) = ℙ[ExpINT-CTXT

𝒜ℰ (𝒜) → 1].

23



Integrity for 𝒜ℰ: pseudocode

ExpINT-CTXT
𝒜ℰ (𝒜)

for 1 ≤ 𝑖 ≤ 𝐷 do

𝑘𝑖
$←− 𝒜ℰ.KeyGen

endfor
𝑠𝑒𝑛𝑡 ← [ ]
𝑤𝑖𝑛 ← 0
𝒜𝒪enc,𝒪verify

return 𝑤𝑖𝑛

𝒪enc(𝑖,𝑚)
𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘𝑖, 𝑚)
𝑠𝑒𝑛𝑡[𝑖] ← 𝑠𝑒𝑛𝑡[𝑖] ∪ {𝑐𝑡}
return 𝑐𝑡

𝒪verify(𝑖, 𝑐𝑡)
𝑚 ← 𝒜ℰ.Dec(𝑘𝑖, 𝑐𝑡)
if (𝑐𝑡 ∉ 𝑠𝑒𝑛𝑡[𝑖]) & (𝑚 ≠ ⊥)
𝑤𝑖𝑛 ← 1

fi
return 𝑚

24



Integrity for 𝒜ℰ: pseudocode

ExpINT-CTXT
𝒜ℰ (𝒜)

for 1 ≤ 𝑖 ≤ 𝐷 do

𝑘𝑖
$←− 𝒜ℰ.KeyGen

endfor
𝑠𝑒𝑛𝑡 ← [ ]
𝑤𝑖𝑛 ← 0
𝒜𝒪enc,𝒪verify

return 𝑤𝑖𝑛

𝒪enc(𝑖,𝑚)
𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘𝑖, 𝑚)
𝑠𝑒𝑛𝑡[𝑖] ← 𝑠𝑒𝑛𝑡[𝑖] ∪ {𝑐𝑡}
return 𝑐𝑡

𝒪verify(𝑖, 𝑐𝑡)
𝑚 ← 𝒜ℰ.Dec(𝑘𝑖, 𝑐𝑡)
if (𝑐𝑡 ∉ 𝑠𝑒𝑛𝑡[𝑖]) & (𝑚 ≠ ⊥)
𝑤𝑖𝑛 ← 1

fi
return 𝑚

24



Integrity for 𝒜ℰ: pseudocode

ExpINT-CTXT
𝒜ℰ (𝒜)

for 1 ≤ 𝑖 ≤ 𝐷 do

𝑘𝑖
$←− 𝒜ℰ.KeyGen

endfor
𝑠𝑒𝑛𝑡 ← [ ]
𝑤𝑖𝑛 ← 0
𝒜𝒪enc,𝒪verify

return 𝑤𝑖𝑛

𝒪enc(𝑖,𝑚)
𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘𝑖, 𝑚)
𝑠𝑒𝑛𝑡[𝑖] ← 𝑠𝑒𝑛𝑡[𝑖] ∪ {𝑐𝑡}
return 𝑐𝑡

𝒪verify(𝑖, 𝑐𝑡)
𝑚 ← 𝒜ℰ.Dec(𝑘𝑖, 𝑐𝑡)
if (𝑐𝑡 ∉ 𝑠𝑒𝑛𝑡[𝑖]) & (𝑚 ≠ ⊥)
𝑤𝑖𝑛 ← 1

fi
return 𝑚

24



Integrity for 𝒜ℰ: success measure

AdvINT-CTXT
𝒜ℰ (𝑡, 𝑄𝑒, 𝑄𝑣, 𝐿𝑒, 𝐿𝑣,𝑀𝑒,𝑀𝑣; 𝐷)

maximal advantage AdvINT-CTXT
𝒜ℰ (𝒜), where the maximum is taken over the adversaries

𝒜 whose time complexity is at most 𝑡 and with the following restrictions on oracle
queries (1 ≤ 𝑖 ≤ 𝐷):

• the number of queries of the type (𝑖,𝑚) to the 𝒪enc oracle ((𝑖, 𝑐𝑡) to the 𝒪verify oracle)
does not exceed 𝑄𝑒[𝑖] (𝑄𝑣[𝑖] resp.);

• the total length of the queries∑|𝑚| among queries of the type (𝑖,𝑚) to the 𝒪enc
oracle (∑|𝑐𝑡| among queries of the type (𝑖, 𝑐𝑡) to the 𝒪verify oracle) does not exceed
𝐿𝑒[𝑖] (𝐿𝑣[𝑖] resp.);

• the maximal length of the query max |𝑚| among queries of the type (𝑖,𝑚) to the 𝒪enc
oracle (max |𝑐𝑡| among queries of the type (𝑖, 𝑐𝑡) to the 𝒪verify oracle) does not
exceed 𝑀𝑒[𝑖] (𝑀𝑣[𝑖] resp.);

25



Integrity for 𝒜ℰ: success measure

AdvINT-CTXT
𝒜ℰ (𝑡, 𝑄𝑒, 𝑄𝑣, 𝐿𝑒, 𝐿𝑣,𝑀𝑒,𝑀𝑣; 𝐷)

maximal advantage AdvINT-CTXT
𝒜ℰ (𝒜), where the maximum is taken over the adversaries

𝒜 whose time complexity is at most 𝑡 and with the following restrictions on oracle
queries (1 ≤ 𝑖 ≤ 𝐷):

• the number of queries of the type (𝑖,𝑚) to the 𝒪enc oracle ((𝑖, 𝑐𝑡) to the 𝒪verify oracle)
does not exceed 𝑄𝑒[𝑖] (𝑄𝑣[𝑖] resp.);

• the total length of the queries∑|𝑚| among queries of the type (𝑖,𝑚) to the 𝒪enc
oracle (∑|𝑐𝑡| among queries of the type (𝑖, 𝑐𝑡) to the 𝒪verify oracle) does not exceed
𝐿𝑒[𝑖] (𝐿𝑣[𝑖] resp.);

• the maximal length of the query max |𝑚| among queries of the type (𝑖,𝑚) to the 𝒪enc
oracle (max |𝑐𝑡| among queries of the type (𝑖, 𝑐𝑡) to the 𝒪verify oracle) does not
exceed 𝑀𝑒[𝑖] (𝑀𝑣[𝑖] resp.);

25



Integrity of ECIES: INT-CTXT model

• Essentially the same as for the case of INT-CTXT model for 𝒜ℰ scheme.

• Noticeable exceptions: generation of a fresh key during each invokation; “number of
parties” 𝐷 is essentially the same as the total number of queries.

• Guarantees: cannot forge a correct ciphertext given an ephemeral public key (i.e., the
key is chosen by the honest party, the goal is to forge for this particular public key).

26



Integrity of ECIES: INT-CTXT model

• Essentially the same as for the case of INT-CTXT model for 𝒜ℰ scheme.
• Noticeable exceptions: generation of a fresh key during each invokation; “number of
parties” 𝐷 is essentially the same as the total number of queries.

• Guarantees: cannot forge a correct ciphertext given an ephemeral public key (i.e., the
key is chosen by the honest party, the goal is to forge for this particular public key).

26



Integrity of ECIES: INT-CTXT model

• Essentially the same as for the case of INT-CTXT model for 𝒜ℰ scheme.
• Noticeable exceptions: generation of a fresh key during each invokation; “number of
parties” 𝐷 is essentially the same as the total number of queries.

• Guarantees: cannot forge a correct ciphertext given an ephemeral public key (i.e., the
key is chosen by the honest party, the goal is to forge for this particular public key).

26



Integrity of ECIES: pseudocode

ExpINT-CTXT
ECIES (𝒜)

(𝑠𝑘, 𝑝𝑘) $←− 𝒦ℰ.KeyPairGen()
𝑠𝑒𝑛𝑡 ← [ ]
𝑤𝑖𝑛 ← 0
𝒜𝒪enc,𝒪verify (𝑝𝑘)
return 𝑤𝑖𝑛

𝒪enc(𝑚)
(𝑒𝑝𝑘, 𝑒𝑠𝑘) $←− 𝒦ℰ.KeyPairGen()
𝑘 ← 𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘)

𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚)
𝑠𝑒𝑛𝑡[𝑒𝑝𝑘] ← 𝑠𝑒𝑛𝑡[𝑒𝑝𝑘] ∪ {𝑐𝑡}
return (𝑒𝑝𝑘, 𝑐𝑡)

𝒪verify(𝑒𝑝𝑘, 𝑐𝑡)
𝑘 ← 𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘)
𝑚 ← 𝒜ℰ.Dec(𝑘, 𝑐𝑡)
𝑡1 ← (𝑚 ≠ ⊥)
𝑡2 ← (𝑠𝑒𝑛𝑡[𝑒𝑝𝑘] ≠ ⊥)
𝑡3 ← (𝑐𝑡 ∉ 𝑠𝑒𝑛𝑡[𝑒𝑝𝑘])
if 𝑡1&𝑡2&𝑡3
𝑤𝑖𝑛 ← 1

fi
return 𝑚

27



Integrity of ECIES: pseudocode

ExpINT-CTXT
ECIES (𝒜)

(𝑠𝑘, 𝑝𝑘) $←− 𝒦ℰ.KeyPairGen()
𝑠𝑒𝑛𝑡 ← [ ]
𝑤𝑖𝑛 ← 0
𝒜𝒪enc,𝒪verify (𝑝𝑘)
return 𝑤𝑖𝑛

𝒪enc(𝑚)
(𝑒𝑝𝑘, 𝑒𝑠𝑘) $←− 𝒦ℰ.KeyPairGen()
𝑘 ← 𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘)

𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚)
𝑠𝑒𝑛𝑡[𝑒𝑝𝑘] ← 𝑠𝑒𝑛𝑡[𝑒𝑝𝑘] ∪ {𝑐𝑡}
return (𝑒𝑝𝑘, 𝑐𝑡)

𝒪verify(𝑒𝑝𝑘, 𝑐𝑡)
𝑘 ← 𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘)
𝑚 ← 𝒜ℰ.Dec(𝑘, 𝑐𝑡)
𝑡1 ← (𝑚 ≠ ⊥)
𝑡2 ← (𝑠𝑒𝑛𝑡[𝑒𝑝𝑘] ≠ ⊥)
𝑡3 ← (𝑐𝑡 ∉ 𝑠𝑒𝑛𝑡[𝑒𝑝𝑘])
if 𝑡1&𝑡2&𝑡3
𝑤𝑖𝑛 ← 1

fi
return 𝑚

27



Integrity of ECIES: pseudocode

ExpINT-CTXT
ECIES (𝒜)

(𝑠𝑘, 𝑝𝑘) $←− 𝒦ℰ.KeyPairGen()
𝑠𝑒𝑛𝑡 ← [ ]
𝑤𝑖𝑛 ← 0
𝒜𝒪enc,𝒪verify (𝑝𝑘)
return 𝑤𝑖𝑛

𝒪enc(𝑚)
(𝑒𝑝𝑘, 𝑒𝑠𝑘) $←− 𝒦ℰ.KeyPairGen()
𝑘 ← 𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘)

𝑐𝑡 $←− 𝒜ℰ.Enc(𝑘,𝑚)
𝑠𝑒𝑛𝑡[𝑒𝑝𝑘] ← 𝑠𝑒𝑛𝑡[𝑒𝑝𝑘] ∪ {𝑐𝑡}
return (𝑒𝑝𝑘, 𝑐𝑡)

𝒪verify(𝑒𝑝𝑘, 𝑐𝑡)
𝑘 ← 𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘)
𝑚 ← 𝒜ℰ.Dec(𝑘, 𝑐𝑡)
𝑡1 ← (𝑚 ≠ ⊥)
𝑡2 ← (𝑠𝑒𝑛𝑡[𝑒𝑝𝑘] ≠ ⊥)
𝑡3 ← (𝑐𝑡 ∉ 𝑠𝑒𝑛𝑡[𝑒𝑝𝑘])
if 𝑡1&𝑡2&𝑡3
𝑤𝑖𝑛 ← 1

fi
return 𝑚

27



Integrity of ECIES: success measure

AdvINT-CTXT
ECIES (𝑡, 𝑞𝑒, 𝑞𝑣, 𝑙𝑒, 𝑙𝑣, 𝜇𝑒, 𝜇𝑣)

maximal advantage AdvINT-CTXT
ECIES (𝒜), where the maximum is taken over the adversaries

𝒜 whose time complexity is at most 𝑡 and with the following restrictions on the oracle
queries:

• the number of queries to the 𝒪enc oracle (to the 𝒪verify oracle) does not exceed 𝑞𝑒
(𝑞𝑣 resp.);

• the total length of the queries∑|𝑚0| = ∑ |𝑚1| to the 𝒪enc oracle (∑|𝑐𝑡| to the 𝒪verify
oracle) does not exceed 𝑙𝑒 (𝑙𝑣 resp.);

• the maximal length of the query max |𝑚0| = max |𝑚1| among queries to the 𝒪enc
oracle (max |𝑐𝑡| among queries to the 𝒪verify oracle) does not exceed 𝜇𝑒 (𝜇𝑣 resp.);

28



Integrity of ECIES: success measure

AdvINT-CTXT
ECIES (𝑡, 𝑞𝑒, 𝑞𝑣, 𝑙𝑒, 𝑙𝑣, 𝜇𝑒, 𝜇𝑣)

maximal advantage AdvINT-CTXT
ECIES (𝒜), where the maximum is taken over the adversaries

𝒜 whose time complexity is at most 𝑡 and with the following restrictions on the oracle
queries:

• the number of queries to the 𝒪enc oracle (to the 𝒪verify oracle) does not exceed 𝑞𝑒
(𝑞𝑣 resp.);

• the total length of the queries∑|𝑚0| = ∑ |𝑚1| to the 𝒪enc oracle (∑|𝑐𝑡| to the 𝒪verify
oracle) does not exceed 𝑙𝑒 (𝑙𝑣 resp.);

• the maximal length of the query max |𝑚0| = max |𝑚1| among queries to the 𝒪enc
oracle (max |𝑐𝑡| among queries to the 𝒪verify oracle) does not exceed 𝜇𝑒 (𝜇𝑣 resp.);

28



Key secrecy for 𝒦ℰ: MODH model

MODH model (multiple oracle Diffie-Hellman8) for the key exchange scheme 𝒦ℰ.

Interface: two oracles 𝒪comb and 𝒪𝑏
kgen:

• oracle 𝒪comb(𝑒𝑝𝑘) generates a key via 𝒦ℰ.Combine function using the ephemeral
key 𝑒𝑝𝑘 and long-term key 𝑠𝑘.

• oracle 𝒪𝑏
kgen generates either random keys of a given length (in case of 𝑏 = 0) or keys

generated via key exchange scheme (in case of 𝑏 = 1) with some restrictions that
exclude trivial attacks, see below;

Goal: guess the bit 𝑏.
Success measure:

AdvMODH
𝒦ℰ (𝒜) = ℙ[ExpMODH-1

𝒦ℰ (𝒜) → 1] − ℙ[ExpMODH-0
𝒦ℰ (𝒜) → 1].

8Abdalla, Bellare, and Rogaway, “The oracle Diffie-Hellman assumptions and an analysis of DHIES.”

29



Key secrecy for 𝒦ℰ: MODH model

MODH model (multiple oracle Diffie-Hellman8) for the key exchange scheme 𝒦ℰ.
Interface: two oracles 𝒪comb and 𝒪𝑏

kgen:

• oracle 𝒪comb(𝑒𝑝𝑘) generates a key via 𝒦ℰ.Combine function using the ephemeral
key 𝑒𝑝𝑘 and long-term key 𝑠𝑘.

• oracle 𝒪𝑏
kgen generates either random keys of a given length (in case of 𝑏 = 0) or keys

generated via key exchange scheme (in case of 𝑏 = 1) with some restrictions that
exclude trivial attacks, see below;

Goal: guess the bit 𝑏.
Success measure:

AdvMODH
𝒦ℰ (𝒜) = ℙ[ExpMODH-1

𝒦ℰ (𝒜) → 1] − ℙ[ExpMODH-0
𝒦ℰ (𝒜) → 1].

8Abdalla, Bellare, and Rogaway, “The oracle Diffie-Hellman assumptions and an analysis of DHIES.”

29



Key secrecy for 𝒦ℰ: MODH model

MODH model (multiple oracle Diffie-Hellman8) for the key exchange scheme 𝒦ℰ.
Interface: two oracles 𝒪comb and 𝒪𝑏

kgen:

• oracle 𝒪comb(𝑒𝑝𝑘) generates a key via 𝒦ℰ.Combine function using the ephemeral
key 𝑒𝑝𝑘 and long-term key 𝑠𝑘.

• oracle 𝒪𝑏
kgen generates either random keys of a given length (in case of 𝑏 = 0) or keys

generated via key exchange scheme (in case of 𝑏 = 1) with some restrictions that
exclude trivial attacks, see below;

Goal: guess the bit 𝑏.
Success measure:

AdvMODH
𝒦ℰ (𝒜) = ℙ[ExpMODH-1

𝒦ℰ (𝒜) → 1] − ℙ[ExpMODH-0
𝒦ℰ (𝒜) → 1].

8Abdalla, Bellare, and Rogaway, “The oracle Diffie-Hellman assumptions and an analysis of DHIES.”

29



Key secrecy for 𝒦ℰ: MODH model

MODH model (multiple oracle Diffie-Hellman8) for the key exchange scheme 𝒦ℰ.
Interface: two oracles 𝒪comb and 𝒪𝑏

kgen:

• oracle 𝒪comb(𝑒𝑝𝑘) generates a key via 𝒦ℰ.Combine function using the ephemeral
key 𝑒𝑝𝑘 and long-term key 𝑠𝑘.

• oracle 𝒪𝑏
kgen generates either random keys of a given length (in case of 𝑏 = 0) or keys

generated via key exchange scheme (in case of 𝑏 = 1) with some restrictions that
exclude trivial attacks, see below;

Goal: guess the bit 𝑏.
Success measure:

AdvMODH
𝒦ℰ (𝒜) = ℙ[ExpMODH-1

𝒦ℰ (𝒜) → 1] − ℙ[ExpMODH-0
𝒦ℰ (𝒜) → 1].

8Abdalla, Bellare, and Rogaway, “The oracle Diffie-Hellman assumptions and an analysis of DHIES.”

29



Key secrecy for 𝒦ℰ: MODH model

MODH model (multiple oracle Diffie-Hellman8) for the key exchange scheme 𝒦ℰ.
Interface: two oracles 𝒪comb and 𝒪𝑏

kgen:

• oracle 𝒪comb(𝑒𝑝𝑘) generates a key via 𝒦ℰ.Combine function using the ephemeral
key 𝑒𝑝𝑘 and long-term key 𝑠𝑘.

• oracle 𝒪𝑏
kgen generates either random keys of a given length (in case of 𝑏 = 0) or keys

generated via key exchange scheme (in case of 𝑏 = 1) with some restrictions that
exclude trivial attacks, see below;

Goal: guess the bit 𝑏.

Success measure:

AdvMODH
𝒦ℰ (𝒜) = ℙ[ExpMODH-1

𝒦ℰ (𝒜) → 1] − ℙ[ExpMODH-0
𝒦ℰ (𝒜) → 1].

8Abdalla, Bellare, and Rogaway, “The oracle Diffie-Hellman assumptions and an analysis of DHIES.”

29



Key secrecy for 𝒦ℰ: MODH model

MODH model (multiple oracle Diffie-Hellman8) for the key exchange scheme 𝒦ℰ.
Interface: two oracles 𝒪comb and 𝒪𝑏

kgen:

• oracle 𝒪comb(𝑒𝑝𝑘) generates a key via 𝒦ℰ.Combine function using the ephemeral
key 𝑒𝑝𝑘 and long-term key 𝑠𝑘.

• oracle 𝒪𝑏
kgen generates either random keys of a given length (in case of 𝑏 = 0) or keys

generated via key exchange scheme (in case of 𝑏 = 1) with some restrictions that
exclude trivial attacks, see below;

Goal: guess the bit 𝑏.
Success measure:

AdvMODH
𝒦ℰ (𝒜) = ℙ[ExpMODH-1

𝒦ℰ (𝒜) → 1] − ℙ[ExpMODH-0
𝒦ℰ (𝒜) → 1].

8Abdalla, Bellare, and Rogaway, “The oracle Diffie-Hellman assumptions and an analysis of DHIES.”

29



Key secrecy for 𝒦ℰ: pseudocode

ExpMODH-𝑏
𝒦ℰ (𝒜)

(𝑠𝑘, 𝑝𝑘) $←− 𝒦ℰ.KeyPairGen()
𝐾𝑒𝑦𝑠 ← [ ]

𝑏′ $←− 𝒜𝒪𝑏
kgen,𝒪comb (𝑝𝑘)

return 𝑏′

𝒪comb(𝑒𝑝𝑘)
if 𝐾𝑒𝑦𝑠[𝑒𝑝𝑘] = ⊥

return 𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘)
else

return 𝐾𝑒𝑦𝑠[𝑒𝑝𝑘]
fi

𝒪𝑏
kgen()

(𝑒𝑠𝑘, 𝑒𝑝𝑘) $←− 𝒦ℰ.KeyPairGen()
if 𝐾𝑒𝑦𝑠[𝑒𝑝𝑘] = ⊥
𝑘 ← 𝒦ℰ.Combine(𝑠𝑘, 𝑒𝑝𝑘)
if (𝑏 = 0)

𝑘 $←− {0, 1}|𝑘|

fi
𝐾𝑒𝑦𝑠[𝑒𝑝𝑘] ← 𝑘

fi
return (𝑒𝑝𝑘, 𝐾𝑒𝑦𝑠[𝑒𝑝𝑘])

30



Key secrecy for 𝒦ℰ: success measure

AdvMODH
𝒦ℰ (𝑡, 𝑞𝑔𝑒𝑛, 𝑞𝑐𝑜𝑚)

maximal advantage AdvMODH
𝒦ℰ (𝒜), where the maximum is taken over the adversaries 𝒜

whose time complexity is at most 𝑡, making at most 𝑞𝑔𝑒𝑛 queries to 𝒪𝑏
kgen, 𝑞𝑐𝑜𝑚 queries to

𝒪comb oracles.

31



Table of Contents

Introduction

The object of study: ECIES scheme

Security models

Main results

32



Multi-user setting is reducible

Proposition

AdvLOR-CCA
𝒜ℰ (𝑡, 𝑄𝑒, 𝑄𝑑, 𝐿𝑒, 𝐿𝑑,𝑀𝑒,𝑀𝑑; 𝐷) ≤

≤ 𝐷 ⋅ AdvLOR-CCA
𝒜ℰ (𝑡 + 𝑇, 𝑞𝑒, 𝑞𝑑, 𝑙𝑒, 𝑙𝑑, 𝜇𝑒, 𝜇𝑑; 1),

• 𝑇 = 𝐷 +∑𝐷
𝑖=1 (𝑄𝑒[𝑖] + 𝑄𝑑[𝑖] + 𝐿𝑒[𝑖] + 𝐿𝑑[𝑖]),

• 𝑞𝑥 = max1≤𝑖≤𝐷 𝑄𝑥[𝑖], 𝑙𝑥 = max1≤𝑖≤𝐷 𝐿𝑥[𝑖], 𝜇𝑥 = max1≤𝑖≤𝐷𝑀𝑥[𝑖], 𝑥 ∈ {𝑒, 𝑑}.

33



Multi-user setting is reducible-2

Proposition

AdvINT-CTXT
𝒜ℰ (𝑡, 𝑄𝑒, 𝑄𝑣, 𝐿𝑒, 𝐿𝑣,𝑀𝑒,𝑀𝑣; 𝐷) ≤

≤ 𝐷 ⋅ AdvINT-CTXT
𝒜ℰ (𝑡 + 𝑇, 𝑞𝑒, 𝑞𝑣, 𝑙𝑒, 𝑙𝑣, 𝜇𝑒, 𝜇𝑣; 1),

• 𝑇 = 𝐷 +∑𝐷
𝑖=1 (𝑄𝑒[𝑖] + 𝑄𝑣[𝑖] + 𝐿𝑒[𝑖] + 𝐿𝑣[𝑖]),

• 𝑞𝑥 = max1≤𝑖≤𝐷 𝑄𝑥[𝑖], 𝑙𝑥 = max1≤𝑖≤𝐷 𝐿𝑥[𝑖], 𝜇𝑥 = max1≤𝑖≤𝐷𝑀𝑥[𝑖], 𝑥 ∈ {𝑒, 𝑣}.

34



Multi-user setting is reducible: ideas

• Main idea: hybrid argument (keys 𝑘𝑖 are independent)...

• i.e., choose one index 𝑗, on which oracle queries are redirected; model the others.
• We assume that key generation and processing one block of a text requires 1 unit of
time.

35



Multi-user setting is reducible: ideas

• Main idea: hybrid argument (keys 𝑘𝑖 are independent)...
• i.e., choose one index 𝑗, on which oracle queries are redirected; model the others.

• We assume that key generation and processing one block of a text requires 1 unit of
time.

35



Multi-user setting is reducible: ideas

• Main idea: hybrid argument (keys 𝑘𝑖 are independent)...
• i.e., choose one index 𝑗, on which oracle queries are redirected; model the others.
• We assume that key generation and processing one block of a text requires 1 unit of
time.

35



MODH model is reducible

Proposition

Assume that the distribution of ephemeral public keys 𝑒𝑝𝑘 generated by
𝒦ℰ.KeyPairGen is uniformly random on 𝐸𝑝𝑘𝑆𝑒𝑡. Then the following inequality holds:

AdvMODH
𝒦ℰ (𝑡, 𝑞𝑔𝑒𝑛, 𝑞𝑐𝑜𝑚) ≤ 𝑞𝑔𝑒𝑛 ⋅ AdvMODH

𝒦ℰ (𝑡 + 𝑞𝑔𝑒𝑛 + 𝑞𝑐𝑜𝑚, 1, 𝑞𝑐𝑜𝑚) +
2 𝑞𝑔𝑒𝑛 𝑞𝑐𝑜𝑚
|𝐸𝑝𝑘𝑆𝑒𝑡| ,

36



MODH model is reducible-2

• Main idea: again hybrid argument...

• but: might be some problem if the key 𝑒𝑝𝑘 generated inside 𝒪𝑏
kgen collides with one

of the keys 𝑒𝑝𝑘 queried by 𝒜 to 𝒪comb oracle.
• Exclude this (bad) event: 𝑞𝑔𝑒𝑛 𝑞𝑐𝑜𝑚

|𝐸𝑝𝑘𝑆𝑒𝑡|
summand.

37



MODH model is reducible-2

• Main idea: again hybrid argument...
• but: might be some problem if the key 𝑒𝑝𝑘 generated inside 𝒪𝑏

kgen collides with one
of the keys 𝑒𝑝𝑘 queried by 𝒜 to 𝒪comb oracle.

• Exclude this (bad) event: 𝑞𝑔𝑒𝑛 𝑞𝑐𝑜𝑚
|𝐸𝑝𝑘𝑆𝑒𝑡|

summand.

37



MODH model is reducible-2

• Main idea: again hybrid argument...
• but: might be some problem if the key 𝑒𝑝𝑘 generated inside 𝒪𝑏

kgen collides with one
of the keys 𝑒𝑝𝑘 queried by 𝒜 to 𝒪comb oracle.

• Exclude this (bad) event: 𝑞𝑔𝑒𝑛 𝑞𝑐𝑜𝑚
|𝐸𝑝𝑘𝑆𝑒𝑡|

summand.

37



Results for ECIES

Assume that the distribution of ephemeral public keys 𝑒𝑝𝑘 generated by
𝒦ℰ.KeyPairGen is uniformly random on 𝐸𝑝𝑘𝑆𝑒𝑡.

Proposition

AdvLOR-CCA
ECIES (𝑡, 𝑞𝑒, 𝑞𝑑, 𝑙𝑒, 𝑙𝑑, 𝜇𝑒, 𝜇𝑑) ≤

≤ 2 ⋅AdvMODH
𝒦ℰ (𝑡 + 𝑇1, 𝑞𝑒, 𝑞𝑑)+ 𝑞𝑒 ⋅AdvLOR-CCA

𝒜ℰ (𝑡 + 𝑇2, 𝑞𝑒, 𝑞𝑑, 𝑙𝑒, 𝑙𝑑, 𝜇𝑒, 𝜇𝑑; 1)+
𝑞𝑒 ⋅ 𝑞𝑑
|𝐸𝑝𝑘𝑆𝑒𝑡| ,

where 𝑇1 = 𝑞𝑒 + 𝑞𝑑 + 𝑙𝑒 + 𝑙𝑑 , 𝑇2 = 𝑞𝑑 + 𝑙𝑑 + 𝑞𝑒 (𝑞𝑒 + 𝑞𝑑 + 𝑙𝑒 + 𝑙𝑑 + 2).

38



Results for ECIES

Assume that the distribution of ephemeral public keys 𝑒𝑝𝑘 generated by
𝒦ℰ.KeyPairGen is uniformly random on 𝐸𝑝𝑘𝑆𝑒𝑡.

Proposition

AdvLOR-CCA
ECIES (𝑡, 𝑞𝑒, 𝑞𝑑, 𝑙𝑒, 𝑙𝑑, 𝜇𝑒, 𝜇𝑑) ≤

≤ 2 ⋅AdvMODH
𝒦ℰ (𝑡 + 𝑇1, 𝑞𝑒, 𝑞𝑑)+ 𝑞𝑒 ⋅AdvLOR-CCA

𝒜ℰ (𝑡 + 𝑇2, 𝑞𝑒, 𝑞𝑑, 𝑙𝑒, 𝑙𝑑, 𝜇𝑒, 𝜇𝑑; 1)+
𝑞𝑒 ⋅ 𝑞𝑑
|𝐸𝑝𝑘𝑆𝑒𝑡| ,

where 𝑇1 = 𝑞𝑒 + 𝑞𝑑 + 𝑙𝑒 + 𝑙𝑑 , 𝑇2 = 𝑞𝑑 + 𝑙𝑑 + 𝑞𝑒 (𝑞𝑒 + 𝑞𝑑 + 𝑙𝑒 + 𝑙𝑑 + 2).

38



Results for ECIES - 2

Proposition

AdvINT-CTXT
ECIES (𝑡, 𝑞𝑒, 𝑞𝑣, 𝑙𝑒, 𝑙𝑣, 𝜇𝑒, 𝜇𝑣) ≤

≤ AdvMODH
𝒦ℰ (𝑡 + 𝑇1, 𝑞𝑒, 𝑞𝑣) + 𝑞𝑒AdvINT-CTXT

𝒜ℰ (𝑡 + 𝑇2, 𝑞𝑒, 𝑞𝑣, 𝑙𝑒, 𝑙𝑣, 𝜇𝑒, 𝜇𝑣; 1) +
𝑞𝑒 ⋅ 𝑞𝑣
|𝐸𝑝𝑘𝑆𝑒𝑡| ,

where 𝑇1 = 𝑞𝑒 + 𝑞𝑣 + 𝑙𝑒 + 𝑙𝑣, 𝑇2 = 𝐷 + 𝑞𝑣 + 𝑙𝑣 + 𝑞𝑒 ⋅ (1 + 𝑞𝑒 + 𝑞𝑣 + 𝑙𝑒 + 𝑙𝑣).

39



Results for ECIES: conclusions

• Main result: decompose the security of ECIES to the security of 𝒜ℰ and 𝒦ℰ.

• One can instantiate ECIES with concrete 𝒜ℰ and 𝒦ℰ and obtain concrete estimates.
• Obtaining estimates for the (in)security of 𝒜ℰ on a single key in LOR-CCA and

INT-CTXT is a well-known problem; many results for specific schemes.
• 𝒦ℰ in MODH is more elaborate...

40



Results for ECIES: conclusions

• Main result: decompose the security of ECIES to the security of 𝒜ℰ and 𝒦ℰ.
• One can instantiate ECIES with concrete 𝒜ℰ and 𝒦ℰ and obtain concrete estimates.

• Obtaining estimates for the (in)security of 𝒜ℰ on a single key in LOR-CCA and
INT-CTXT is a well-known problem; many results for specific schemes.

• 𝒦ℰ in MODH is more elaborate...

40



Results for ECIES: conclusions

• Main result: decompose the security of ECIES to the security of 𝒜ℰ and 𝒦ℰ.
• One can instantiate ECIES with concrete 𝒜ℰ and 𝒦ℰ and obtain concrete estimates.
• Obtaining estimates for the (in)security of 𝒜ℰ on a single key in LOR-CCA and

INT-CTXT is a well-known problem; many results for specific schemes.

• 𝒦ℰ in MODH is more elaborate...

40



Results for ECIES: conclusions

• Main result: decompose the security of ECIES to the security of 𝒜ℰ and 𝒦ℰ.
• One can instantiate ECIES with concrete 𝒜ℰ and 𝒦ℰ and obtain concrete estimates.
• Obtaining estimates for the (in)security of 𝒜ℰ on a single key in LOR-CCA and

INT-CTXT is a well-known problem; many results for specific schemes.
• 𝒦ℰ in MODH is more elaborate...

40



𝒦ℰ in MODH: why problematic?

• Example: VKO scheme.

• To estimate security we must take into consideration how hash function and group
operation are interwined.

• “Bad interaction” may lead to the situation when DDH problem is hard, but ODH
problem is easy.

• Various “idealized” versions of the problem can be studied: Hash as a Random
Oracle9, Generic Group Model10, etc.

9Abdalla, Bellare, and Rogaway, “The oracle Diffie-Hellman assumptions and an analysis of DHIES.”
10Smart, “The exact security of ECIES in the generic group model.”

41



𝒦ℰ in MODH: why problematic?

• Example: VKO scheme.
• To estimate security we must take into consideration how hash function and group
operation are interwined.

• “Bad interaction” may lead to the situation when DDH problem is hard, but ODH
problem is easy.

• Various “idealized” versions of the problem can be studied: Hash as a Random
Oracle9, Generic Group Model10, etc.

9Abdalla, Bellare, and Rogaway, “The oracle Diffie-Hellman assumptions and an analysis of DHIES.”
10Smart, “The exact security of ECIES in the generic group model.”

41



𝒦ℰ in MODH: why problematic?

• Example: VKO scheme.
• To estimate security we must take into consideration how hash function and group
operation are interwined.

• “Bad interaction” may lead to the situation when DDH problem is hard, but ODH
problem is easy.

• Various “idealized” versions of the problem can be studied: Hash as a Random
Oracle9, Generic Group Model10, etc.

9Abdalla, Bellare, and Rogaway, “The oracle Diffie-Hellman assumptions and an analysis of DHIES.”
10Smart, “The exact security of ECIES in the generic group model.”

41



𝒦ℰ in MODH: why problematic?

• Example: VKO scheme.
• To estimate security we must take into consideration how hash function and group
operation are interwined.

• “Bad interaction” may lead to the situation when DDH problem is hard, but ODH
problem is easy.

• Various “idealized” versions of the problem can be studied: Hash as a Random
Oracle9, Generic Group Model10, etc.

9Abdalla, Bellare, and Rogaway, “The oracle Diffie-Hellman assumptions and an analysis of DHIES.”
10Smart, “The exact security of ECIES in the generic group model.”

41



Bibliography i

Abdalla, Michel, Mihir Bellare, and Phillip Rogaway. “The oracle Diffie-Hellman
assumptions and an analysis of DHIES.” In: Topics in Cryptology—CT-RSA 2001: The
Cryptographers’ Track at RSA Conference 2001 San Francisco, CA, USA, April 8–12, 2001
Proceedings. Springer. 2001, pp. 143–158.
Akhmetzyanova, Liliya et al. “Security of Multilinear Galois Mode (MGM).” In: (2019).
https://eprint.iacr.org/2019/123. URL:
https://eprint.iacr.org/2019/123.
Alekseev, Evgeny Konstantinovich et al. “On the cryptographic properties of
algorithms accompanying the applications of standards GOST R 34.11-2012 and GOST R
34.10-2012.” In: Matematicheskie Voprosy Kriptografii [Mathematical Aspects of
Cryptography] 7.1 (2016). In Russian, pp. 5–38.

42

https://eprint.iacr.org/2019/123
https://eprint.iacr.org/2019/123


Bibliography ii

Bellare, Mihir and Chanathip Namprempre. “Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm.” In: Advances in
Cryptology—ASIACRYPT 2000: 6th International Conference on the Theory and
Application of Cryptology and Information Security Kyoto, Japan, December 3–7, 2000
Proceedings 6. Springer. 2000, pp. 531–545.
Gayoso Martínez, V, L Hernández Encinas, and A Queiruga Dios. “Security and practical
considerations when implementing the elliptic curve integrated encryption scheme.”
In: Cryptologia 39.3 (2015), pp. 244–269.
Martínez, V Gayoso, L Hernández Encinas, et al. “A comparison of the standardized
versions of ECIES.” In: 2010 Sixth International Conference on Information Assurance
and Security. IEEE. 2010, pp. 1–4.
Nozdrunov, Vladislav. “Parallel and double block cipher mode of operation
(PD–mode) for authenticated encryption.” In: TC 26 (2017).

43



Bibliography iii

Shoup, Victor. A Proposal for an ISO Standard for Public Key Encryption. Cryptology
ePrint Archive, Paper 2001/112. https://eprint.iacr.org/2001/112. 2001. URL:
https://eprint.iacr.org/2001/112.
Smart, Nigel P. “The exact security of ECIES in the generic group model.” In:
Cryptography and Coding: 8th IMA International Conference Cirencester, UK, December
17–19, 2001 Proceedings 8. Springer. 2001, pp. 73–84.

44

https://eprint.iacr.org/2001/112
https://eprint.iacr.org/2001/112


Author(s):

Tsaregorodtsev Kirill
Researcher at Cryptography laboratory,
JSRPC “Kryptonite”, Moscow, Russia
k.tsaregorodtsev@kryptonite.ru

Thank you for your attention!


	Introduction
	The object of study: ECIES scheme
	Security models
	Main results
	References

