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Introduction



Branch number importance

Linear transformations are used to construct block ciphers and hash
functions.

High branch numbers of the linear transformation matrix and its
transpose are needed to protect against differential and linear
methods of cryptanalisys.

2



MDS matrices over 𝔽2𝑠

It is possible to construct 𝑀𝐷𝑆 matrices using the following classes
of matrices:

• Cauchy matrices (used in STREEBOG hash function);
• Vandermonde matrices;
• recursive (also named serial) matrices (used in PHOTON hash
function, KUZNYECHIK block cipher);

• Hadamard matrices;
• circulant matrices (search methods, used in AES block cipher,
SM4 block cipher, WHIRLPOOL hash function);

• etc.
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Efficiency of using circulant matrices

We consider linear transformations, defined by multiplication in the
ring 𝑅 = 𝔽2[𝑥]/𝑓(𝑥).
Advantages of our approach:

! Software implementation is reduced to small count of the
processor instructions usage (thanks to the use 𝐶𝐿𝑀𝑈𝐿
instruction set).

! Software implementation requires small amount of memory,
much less then LUT-tables.

This class generalize the class of circulant matrices over 𝔽2:

Circulant matrices
over 𝔽2

⊂ Matrices of multiplication in
ring 𝑅 = 𝔽2[𝑥]/𝑓(𝑥)
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Definitions and preliminaries



Basic definitions

Let 𝑄 be a field 𝔽2𝑠 .

Definition
The weight of ⃗𝑎 ∈ 𝑄𝑚, denoted 𝑤𝑡( ⃗𝑎), is the number of nonzero
coordinates of ⃗𝑎.

Definition
Branch number of matrix 𝐴 ∈ 𝑄𝑚,𝑚 is the following number:

𝜏(𝐴) = 𝑚𝑖𝑛
�⃗�≠0⃗

[𝑤𝑡( ⃗𝑎) + 𝑤𝑡( ⃗𝑎𝐴)].

It is obviously that 𝜏(𝐴) ≤ 𝑚 + 1 and 𝜏(𝐴) = 𝜏(𝐴−1), if 𝐴−1 exists.
Definition
If 𝜏(𝐴) = 𝑚 + 1, 𝐴 is Maximum Distance Separable (further MDS)
matrix.
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Decomposition of the circulant matrices over 𝔽2𝑠

Definition

Let 𝑃 = 𝔽2 be the field of two elements, 𝑄 = (𝑃[𝑥]/𝑔(𝑥), +, ⋅) and
𝑔(𝑥) be irreducible polynomial of degree 𝑠 over 𝑃. Let 𝐵𝑚×𝑚 be a
matrix over 𝑄, which transforms vectors from 𝑄𝑚. Since elements
of 𝑄 are row vectors over 𝑃, it is possible to consider 𝐵 as linear
transformation of row vectors of length 𝑛 = 𝑚𝑠 over 𝑃 and there
exist corresponding matrix 𝐴𝑛×𝑛 over 𝑃.
In such case we said: matrix 𝐴 = 𝐴(𝐵, 𝑔(𝑥)) implements linear
transformation 𝐵 on binary vectors.
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Basic definitions

Let 𝑃 be a field 𝔽2 and ⃗𝑎 ∈ 𝑃𝑚𝑠. We split ⃗𝑎 into 𝑠-subvectors:
subvector ⃗𝑎(𝑖, 𝑠) with number 𝑖 is subvector of length 𝑠 equal to

(𝑎(𝑖+1)𝑠−1, 𝑎(𝑖+1)𝑠−2, ..., 𝑎𝑖𝑠), 𝑖 ∈ {0, ..., 𝑚 − 1}.

Then ⃗𝑎 = ( ⃗𝑎(𝑚 − 1, 𝑠), ..., ⃗𝑎(0, 𝑠)).
Definition
𝑠-weight of vector ⃗𝑎 ∈ 𝑃𝑚𝑠, denoted 𝑤𝑡𝑠( ⃗𝑎), is the number of
nonzero 𝑠-subvectors of vector ⃗𝑎.

Definition
Branch number on 𝑠-subvectors of matrix 𝐴 ∈ 𝑃𝑚𝑠,𝑚𝑠 is the
following number:

𝜏𝑠(𝐴) = 𝑚𝑖𝑛
�⃗�∈𝑃𝑚𝑠⧵0⃗

[𝑤𝑡𝑠( ⃗𝑎) + 𝑤𝑡𝑠( ⃗𝑎𝐴)].
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Basic definitions

Remark
Let 𝑓(𝑥) be polynomial of degree 𝑛 over, 𝑃𝑛[𝑥] = 𝑃[𝑥]/𝑓(𝑥) be the
polynomial ring over 𝑃 with addition and multiplication modulo
𝑓(𝑥). Note that 𝑃𝑛[𝑥] is vector space of dimension 𝑛 over 𝑃. There
exist isomorphic mapping between 𝑃𝑛 and 𝑃𝑛[𝑥]:

𝜑(𝑎𝑛−1, ..., 𝑎1, 𝑎0) = 𝑎𝑛−1𝑥𝑛−1 + ... + 𝑎1𝑥 + 𝑎0

Further we will equate row vectors of length 𝑛 with corresponding
polynomials from 𝑃𝑛[𝑥].
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Linear transformations and their
software implementation



String operations as processor instructions

Let 𝑃 be a field 𝔽2. We consider the following operations on bit
strings, which are implemented on computers as a processor
instructions:

1. XOR(�⃗�, ⃗𝛽) is bitwise addition of strings modulo 2.
2. AND(�⃗�, ⃗𝛽) is bitwise conjunction of strings.
3. OR(�⃗�, ⃗𝛽) is bitwise disjunction of strings.
4. SHFT(�⃗�) is left (right) shift of the string by 𝑖 positions with zero
padding.

5. CLMUL(�⃗�, ⃗𝛽) is multiplication of binary strings of length 𝑛 as
polynomials of degree 𝑛 − 1 over 𝑃. The result is a string of
length 2𝑛.
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Multiplication by an element of the ring

Definition
Let 𝑓(𝑥) be a polynomial of degree 𝑛 over 𝑃. Linear transformation,
which corresponds to multiplication by an element 𝑎(𝑥) of the ring
𝑅 = 𝑃[𝑥]/𝑓(𝑥), is the following transformation:

̂𝑎𝑓(𝑥) ∶ ℎ(𝑥) → ℎ(𝑥)𝑎(𝑥) mod 𝑓(𝑥), ℎ(𝑥) ∈ 𝑅

The linear transformation matrix has the form:

𝐴𝑎(𝑥),𝑓(𝑥) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

̂𝑎𝑓(𝑥)(𝑥𝑛−1)
...

̂𝑎𝑓(𝑥)(𝑥𝑖)
...

̂𝑎𝑓(𝑥)(𝑥)
̂𝑎𝑓(𝑥)(1)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑎(𝑥) · 𝑥𝑛−1 mod 𝑓(𝑥)
...

𝑎(𝑥) · 𝑥𝑖 mod 𝑓(𝑥)
...

𝑎(𝑥) · 𝑥 mod 𝑓(𝑥)
𝑎(𝑥)

⎞
⎟
⎟
⎟
⎟
⎟
⎠
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Implementation of linear transformation

Statement 1

Let 𝑓(𝑥) = 𝑥𝑛 + 𝑓𝑛−1𝑥𝑛−1 + ... + 𝑓0 = 𝑥𝑛 + 𝑓(𝑥) be a polynomial of
degree 𝑛 over 𝑃, 𝑎(𝑥) be a polynomial of degree less than 𝑛 over 𝑃.
Then the following statements are true for the transformation
̂𝑎 = ̂𝑎𝑓(𝑥):

1. If 𝑑𝑒𝑔 𝑓(𝑥) ≤ 𝑛/2, then transformation ̂𝑎 can be implemented in
5 processor instructions: 3 𝐶𝐿𝑀𝑈𝐿 + 2 𝑋𝑂𝑅.

2. If 𝑑𝑒𝑔 𝑓(𝑥) + 𝑑𝑒𝑔 𝑎(𝑥) ≤ 𝑛, then transformation ̂𝑎 can be
implemented in 3 processor instructions: 2 𝐶𝐿𝑀𝑈𝐿 + 1 𝑋𝑂𝑅.

3. If 𝑑𝑒𝑔 𝑓(𝑥) = 0, then transformation ̂𝑎 can be implemented in 2
processor instructions: 1 𝐶𝐿𝑀𝑈𝐿 + 1 𝑋𝑂𝑅.

4. To implement the transformation ̂𝑎, it is necessary to store the
polynomials 𝑎(𝑥) and 𝑓(𝑥) in memory in cases 1-2, and only the
polynomial 𝑎(𝑥) in case 3.
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Features of circulant matrices implementation

The circulant matrix looks like this:

𝐶𝑛×𝑛 = 𝐶𝑖𝑟𝑐(𝑐𝑛−1, ..., 𝑐0) =

⎛
⎜
⎜
⎜
⎜
⎝

𝑐0 𝑐𝑛−1 ... 𝑐2 𝑐1
𝑐1 𝑐0 ... 𝑐3 𝑐2
...
𝑐𝑛−2 𝑐𝑛−3 ... 𝑐0 𝑐𝑛−1
𝑐𝑛−1 𝑐𝑛−2 ... 𝑐1 𝑐0

⎞
⎟
⎟
⎟
⎟
⎠

Statement 2
Let 𝑓(𝑥) = 𝑥𝑛 + 1 be a polynomial over 𝑃, ̂𝑎 = ̂𝑎𝑓(𝑥). Then:

1. Matrix of the linear transformation ̂𝑎 is circulant matrix over 𝑃.
2. Branch numbers on 𝑠-subvectors of the matrices 𝐴 and 𝐴𝑇 are
the same.

3. If 𝑛 is even and the transformation ̂𝑎 is an involution, then for
any 𝑠 ≥ 1 the branch number on 𝑠-subvectors of matrix
𝐴𝑎(𝑥),𝑓(𝑥) does not exceed 4.
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𝑀𝐷𝑆 matrix search

Transformations with the following maximum branch numbers on
𝑠-subvectors have been founded by enumeration on computers
among transformations of the form 𝐴𝑎(𝑥),𝑥𝑛+1:

Matrix size
𝑠-subvector size 4-bit 6-bit 8-bit

4 × 4 5 (𝑀𝐷𝑆) 5 (𝑀𝐷𝑆) 5 (𝑀𝐷𝑆)
6 × 6 6 6 6
8 × 8 7 - 8
16 × 16 12 - -
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Matrix decomposition into a sum
of matrices 𝐴𝑎(𝑥),𝑓(𝑥)



Matrix decomposition into a sum of matrices 𝐴𝑎(𝑥),𝑓(𝑥)

Let 𝐴 ∈ 𝑃𝑛×𝑛, 𝑓(𝑥) = 𝑥𝑛 +𝑓𝑛−1𝑥𝑛−1 + ... + 𝑓1𝑥 + 1 be polynomial over 𝑃,
𝑎𝑖(𝑥) be polynomials over 𝑃 of degree less than 𝑛, 𝑖 ∈ 1, 𝑡.
We consider the following decomposition:

𝐴 =
𝑡
∑
𝑖=1

𝐷𝑖𝐴𝑖,

where 𝐷𝑖 = 𝑑𝑖𝑎𝑔𝑛×𝑛(𝑑𝑖,𝑛−1, ..., 𝑑𝑖,0), 𝑑𝑖,𝑗 ∈ {0, 1}, 𝐴𝑖 = 𝐴𝑎𝑖(𝑥),𝑓(𝑥).

Remark
Multiplication by matrices 𝐷𝑖 is implemented by instruction 𝐴𝑁𝐷,
by matrices 𝐴𝑖 – according Statement 1. Sum is implemented by
instruction 𝑋𝑂𝑅.
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Number of summands in matrix decomposition

Since 𝑓(0) = 1, there exist matrix 𝐴−1𝑥,𝑓(𝑥):

𝐴−1𝑥,𝑓(𝑥) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑥𝑛−2
...
𝑥𝑖−1
...
1

𝑥−1 mod 𝑓(𝑥)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

Definition
Let 𝑅𝑒𝑣𝑓(𝑥) ∶ 𝑃𝑛,𝑛 → 𝑃𝑛,𝑛 be transformation, which result on matrix 𝐴
is matrix 𝐵 such as every row ⃗𝐵𝑖 = 𝐴𝑖 · 𝐴−𝑖𝑥,𝑓(𝑥).

Theorem
The minimum number of summands 𝑡 in the decomposition of
matrix 𝐴 is equal to rank of the matrix 𝐵 = 𝑅𝑒𝑣𝑓(𝑥)(𝐴).

15



Probabilistic relations in matrix rows

Let 𝐴 ∈ 𝑃𝑛×𝑛. We consider the set of the vectors:

Ω⃗𝑗 = (𝐴𝑗 ∥ 0) + (0 ∥ 𝐴𝑗+1), 𝑗 ∈ 0, 𝑛 − 2

of length 𝑛 + 1 over 𝑃. Due to the decomposition of matrix A we
obtain vector that Ω⃗𝑗 is equal to:

Ω⃗𝑗 =
𝑡
∑
𝑖=1

𝑑𝑖,𝑗(𝐴𝑖,𝑗 ∥ 0) +
𝑡
∑
𝑖=1

𝑑𝑖,𝑗+1(0 ∥ 𝐴𝑖,𝑗+1)

Probability space Θ: let all 𝑑𝑖,𝑗 and all coefficients of the
polynomials 𝑎𝑖(𝑥) be mutually independent random variables with a
uniform distribution on 𝑃 = 𝔽2.
In case of probability space Θ matrix 𝐴 is random matrix defined by
its decomposition.
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Probabilistic relations in matrix rows

Theorem

Let probability space Θ be defined, 𝐴 be 𝑛 × 𝑛 random matrix
defined by the decomposition with 𝑡 summands. Then for matrix 𝐴
any Ω⃗𝑗 equals ⃗𝑓 with probability:

Pr(Ω⃗𝑗 = ⃗𝑓) ≥ 2𝑡 − 1
22𝑡+1 ,

where ⃗𝑓 is vector of coefficients of the polynomial 𝑓(𝑥).
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Decomposition of the circulant
matrices over 𝔽2𝑠



Decomposition of the circulant matrices over 𝔽2𝑠

Let 𝑃 be a field 𝔽2 and 𝑄 = (𝑃[𝑥]/𝑔(𝑥), +, ⋅) with some irreducible
polynomial 𝑔(𝑥) of degree 𝑠 over 𝑃, 𝑄 ≅ 𝔽2𝑠 , 𝑓(𝑥) = 𝑥𝑛 + 1.

Statement 3
Let 𝐶 = 𝐶𝑚×𝑚 be circulant matrix over 𝑄, 𝑛 = 𝑚𝑠 and matrix
𝐴𝑛×𝑛 = 𝐴(𝐶, 𝑔(𝑥)) implements corresponding 𝐶 transformation on
binary vectors of length 𝑛. Then:

1. There exist decomposition for matrix 𝐴 and polynomial 𝑥𝑛 + 1,
which consists of no more than 𝑠 summands.

2. If binary representation of any element of matrix 𝐶 contains
𝑠 − 𝑘 zeros in most significant bits, then there exist
decomposition for matrix 𝐴, which consists of no more 𝑘
summands.
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Matrix decomposition into a sum of matrices 𝐴𝑎(𝑥),𝑓(𝑥)

Definition
Let 𝛼 be byte, 𝛼 = (𝛼7, ..., 𝛼0), then
𝐷𝑖𝑎𝑔𝑚×𝑚(0𝑥𝛼) = 𝑑𝑖𝑎𝑔8𝑚×8𝑚(𝛼7, ..., 𝛼0, ..., 𝛼7, ..., 𝛼0)
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Some examples

Example 1 (Whirlpool)
Matrix 𝐴(𝑊, 𝑔(𝑥)) is used in the linear transformation of Whirlpool
hash function, where 𝑊 is 8 × 8 𝑀𝐷𝑆 circulant matrix over 𝔽28 and
𝑔(𝑥) = 𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1.

𝑊 = 𝐶𝑖𝑟𝑐28(0𝑥01, 0𝑥04, 0𝑥01, 0𝑥08, 0𝑥05, 0𝑥02, 0𝑥09, 0𝑥01).

Matrix 𝐴(𝑊, 𝑔(𝑥)) decomposition consists of four summands:

𝐴(𝑊, 𝑔(𝑥)) = 𝐶𝑖𝑟𝑐2(0𝑥01, 0𝑥04, 0𝑥01, 0𝑥08, 0𝑥05, 0𝑥02, 0𝑥09, 0𝑥01)+
+ 𝐷𝑖𝑎𝑔(0𝑥20)𝐶𝑖𝑟𝑐2(0𝑥00, 0𝑥00, 0𝑥00, 0𝑥08, 0𝑥𝑒8, 0𝑥00, 0𝑥08, 0𝑥𝑒8)+
+ 𝐷𝑖𝑎𝑔(0𝑥40)𝐶𝑖𝑟𝑐2(0𝑥00, 0𝑥04, 0𝑥74, 0𝑥08, 0𝑥𝑒𝑐, 0𝑥74, 0𝑥08, 0𝑥𝑒8)+
+ 𝐷𝑖𝑎𝑔(0𝑥80)𝐶𝑖𝑟𝑐2(0𝑥00, 0𝑥04, 0𝑥74, 0𝑥08, 0𝑥𝑒𝑐, 0𝑥76, 0𝑥32, 0𝑥𝑒8).
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Some examples

Example 2 (Alternative to Whirlpool matrix)
Let 𝑔(𝑥) = 𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1. Then the matrix
𝑉 = 𝐶𝑖𝑟𝑐28(0𝑥01, 0𝑥02, 0𝑥03, 0𝑥05, 0𝑥04, 0𝑥03, 0𝑥07, 0𝑥07) is also
8 × 8 𝑀𝐷𝑆 circulant matrix over 𝔽28 and there exist matrix
𝐴(𝑉, 𝑔(𝑥)) decomposition, which consists of three summands:

𝐴(𝑉, 𝑔(𝑥)) = 𝐶𝑖𝑟𝑐2(0𝑥01, 0𝑥02, 0𝑥03, 0𝑥05, 0𝑥04, 0𝑥03, 0𝑥07, 0𝑥07)+
+ 𝐷𝑖𝑎𝑔(0𝑥40)𝐶𝑖𝑟𝑐2(0𝑥74, 0𝑥00, 0𝑥00, 0𝑥04, 0𝑥70, 0𝑥74, 0𝑥04, 0𝑥70)+
+ 𝐷𝑖𝑎𝑔(0𝑥80)𝐶𝑖𝑟𝑐2(0𝑥4𝑒, 0𝑥02, 0𝑥38, 0𝑥3𝑒, 0𝑥70, 0𝑥76, 0𝑥3𝑐, 0𝑥48).
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Some examples

Example 3 (AES)
Matrix 𝐴(𝐿, 𝑔(𝑥)) is used in the linear transformation of AES block
cipher, where 𝐿 = 𝐶𝑖𝑟𝑐28(0𝑥03, 0𝑥01, 0𝑥01, 0𝑥02) is 4 × 4 𝑀𝐷𝑆
circulant matrix over 𝔽28 , 𝑔(𝑥) = 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1. Matrix
𝐴(𝐿, 𝑔(𝑥)) decomposition consists of two summands:

𝐴(𝐿, 𝑔(𝑥)) = 𝐶𝑖𝑟𝑐2(0𝑥03, 0𝑥01, 0𝑥01, 0𝑥02)+
+ 𝐷𝑖𝑎𝑔(0𝑥80)𝐶𝑖𝑟𝑐2(0𝑥34, 0𝑥36, 0𝑥00, 0𝑥02).

Example 4
There exist 4 × 4 𝑀𝐷𝑆 matrix on 8 − 𝑠𝑢𝑏𝑣𝑒𝑐𝑡𝑜𝑟𝑠 over 𝔽2:

𝐿′ = 𝐶𝑖𝑟𝑐2(0𝑥01, 0𝑥04, 0𝑥04, 0𝑥05).
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Matrix decomposition into a sum of matrices 𝐴𝑎(𝑥),𝑓(𝑥)

Statement 4
Let decomposition

𝐴 =
𝑡
∑
𝑖=1

𝐷𝑖𝐴𝑖,

where 𝐷𝑖 = 𝑑𝑖𝑎𝑔𝑛×𝑛(𝑑𝑖,𝑛−1, ..., 𝑑𝑖,0), 𝑑𝑖,𝑗 ∈ {0, 1}, 𝐴𝑖 = 𝐴𝑎𝑖(𝑥),𝑥𝑛+1

holds for matrix 𝐴 and polynomial 𝑥𝑛 + 1. Then multiplication by
matrix 𝐴 can be implenented by 𝑡 instructions 𝐴𝑁𝐷, 𝑡 instructions
𝐶𝐿𝑀𝑈𝐿 and 2𝑡 − 1 instructions 𝑋𝑂𝑅.
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