# Matrix－vector product of a new class of quasi－involutory MDS matrices 

P．Freyre；E．D．Fiallo；R．Rodríguez

## Introduction

- Maximum Distance Separable (MDS) matrices theoretically ensures a perfect diffusion.
- They have great importance in the design of block ciphers and hash functions.

MDS matrices are in general:
not sparse, have a large description $\Rightarrow$ costly implementations

## Introduction

To reduce implementation costs:

- circulant matrices.

Gupta, K. C., Pandey, S. K., Venkateswarlu, A. On the direct construction of recursive MDS matrices. Designs, Codes and Cryptography, 2017.

- recursive matrices

Gupta, K.C., Pandey, S.K., Samanta, S. Construction of Recursive MDS Matrices Using DLS Matrices. AFRICACRYPT, 2022.

- methods for transforming an MDS matrix into other ones
$\square$ Luong, T. T., Cuong, N. N., Direct exponent and scalar multiplication transformations of mds matrices: some good cryptographic results for dynamic diffusion layers of block ciphers. Journal of Computer Science and Cybernetics, 2016.


## Introduction

Our interest:

- Diffusion layer as MDS matrix-vector product.
- MDS matrix-vector product based on the multiplication of two polynomials modulo a generating polynomial of the cyclic code.
R
Arrozarena, P. F., Fiallo, E. D. Efficient multiplication of a vector by a matrix MDS. Journal of Science and Technology on Information security, 2022.
no need to store the MDS matrix explicitly

Can be applied to involutory MDS matrices?

## Introduction

- Involutory MDS matrices have the main advantage that both encryption and decryption share the same matrix-vector product.
- Finding involutory MDS matrices, in particular large (involutory) MDS matrices, is not an easy.

Quasi-involutory MDS matrix?

- Intuitive idea of a MDS matrix that is close to being involutory.


## Our contribution

A new class of quasi-involutive MDS matrices is proposed.

- matrix-vector product through multiplication of two polynomials modulo a generating polynomial of a:

1. Reed-Solomon (RS) codes
2. CGMN code Diskretnaya Matematika, 2000.

- If $p \neq 2$ in $\mathbb{F}_{p^{n}} \Rightarrow$ the MDS matrix is involutive.
- If $p=2$ in $\mathbb{F}_{p^{n}} \Rightarrow$ the MDS matrix is quasi-involutive:

1. the vector is transformed one step through an LFSR.
2. the multiplication by the inverse matrix can be performed with the original MDS matrix.

## Preliminaries

A linear code $\mathcal{C}$ of length $n$ and dimension $k$ over $\mathbb{F}_{q}$, denoted as $[n, k]_{q}$, is a linear subspace of dimension $k$ of the linear space $\mathbb{F}_{q}^{n}$.

The minimum distance $d$ of $\mathcal{C}$ is the minimum weight if its nonzero vectors and we denote the code as $[n, k, d]_{q}$.

A generator matrix for $\mathcal{C}$ is a matrix whose rows form a basis for $\mathcal{C}$ and it is said to be in standard form if it has the form $\left(I_{k} \mid R\right)$ where $I_{k}$ is a $k \times k$ identity matrix and $R$ is a $k \times(n-k)$ matrix.

## Preliminaries

A linear code such that $d=n-k+1$ (Singleton Bound) is called a Maximum Distance Separable (MDS) code.

A matrix is MDS if and only if all its minors are non zero.

## Cyclic codes

An $[n, k]_{q}$ code is said to be cyclic if a cyclic shift of any element of the code remains in the code.

$$
\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in \mathcal{C} \Rightarrow\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right) \in \mathcal{C}
$$

Can be seen as ideals of $\mathbb{F}_{q}[x] /\left(x^{n}-1\right)$ with every monic polynomial $g(x)$ that divides $x^{n}-1$ as generating polynomial.

The order e of $g(x)$ is the smallest positive integer such that $g(x)$ divides $x^{e}-1$ with $e$ divide $n$.

If $\operatorname{deg}(g)=r \Rightarrow$ the code defined by $g(x)$ has dimension $k=n-r$.

## Cyclic codes

The generator matrix, in standard form, can be given by $\left(I_{k} \mid-R\right)$ with

$$
R=\left(\begin{array}{c}
x^{n-k} \bmod g(x)  \tag{1}\\
x^{n-k+1} \bmod g(x) \\
\vdots \\
x^{n-1} \bmod g(x)
\end{array}\right)
$$

## Reed-Solomon (RS) codes

A $q$-ary RS code over $\mathbb{F}_{q}$ of length $q-1, q>2$, is the cyclic code generated by a polynomial of the form

$$
g(x)=\left(x-\alpha^{a+1}\right)\left(x-\alpha^{a+2}\right) \cdots\left(x-\alpha^{a+\delta-1}\right)
$$

with $a \geq 0$ and $2 \leq \delta \leq q-1$, where $\alpha$ is a primitive element of $\mathbb{F}_{q}$.

It is an MDS code with parameters $[q-1, q-\delta, \delta]_{q}$ and the matrix $R$ is a MDS matrix.

Since $\alpha$ is a primitive element, the order of $g(x)$ is $q-1$.

## CGMN code

The code is composed of segments of length $n$ of the linear recurring sequences that have characteristic polynomial

$$
g(x)=\left(x-\beta_{0}\right) \cdots\left(x-\beta_{m-1}\right)
$$

that is, for $i=0,1, \ldots, n-m+1$ the code has the form
$\mathcal{K}=\left\{(u(0), \ldots, u(n)): u(i+m)=g_{0} u(i)+\cdots+g_{n-1} u(i+m-1)\right\}$
where $g_{0}, \ldots, g_{m-1}$ are the coefficients of $g(x)$.

For certain $\beta_{0}, \ldots, \beta_{m-1}$, it is an MDS code with parameters $[q+1, m, q-m+2]$.

## CGMN code

If $q$ is even or $m$ is odd, then the code is cyclic and the order of the polynomial $g(x)$ is conditioned by the order of the elements $\beta_{0}, \ldots, \beta_{m-1}$.

It is shown that

$$
\operatorname{ord}\left(\beta_{i}\right) \mid q+1,0 \leq i \leq m-1
$$

and $\beta_{i} \neq \beta_{j}, \quad i \neq j, \quad 0 \leq i, j \leq m-1$.

Then, if $q+1$ is prime, the code is cyclic and the order of $g(x)$ is $q+1$.

It is possible to operate by multiplying polynomials

## Quasi-involutive linear transformation

Let $n \in \mathbb{N}$. The biyective linear transformation

$$
\Psi: P[x] / g(x) \rightarrow P[x] / g(x)
$$

defined by

$$
\forall p(x) \in P[x] / g(x): \Psi(p(x))=p(x) \cdot x^{n} \bmod g(x)
$$

is quasi-involutive if its inverse $\Psi^{-1}$ is

$$
\Psi^{-1}(p(x))=\Psi(p(x)) \cdot x \bmod g(x)
$$

## Matrix-vector product

$\square$ Arrozarena, P. F., Fiallo, E. D. Efficient multiplication of a vector by a matrix MDS. Journal of Science and Technology on Information security, 2022.
To multiply a vector by any square MDS submatrix of matrix

$$
R=\left(\begin{array}{c}
x^{n-k} \bmod g(x) \\
x^{n-k+1} \bmod g(x) \\
\vdots \\
x^{n-1} \bmod g(x)
\end{array}\right)
$$

it can be done by multiplying the polynomial that represents the vector by the polynomial corresponding to the first row of the selected submatrix.

## Algorithm 1: Generation of involutory and quasi-involutory MDS matrix.

Input

- The RS or CGMN generating polynomial $g(x) \in \mathbb{F}_{q}[x]$ of degree $n-k$.
- The canonical polynomials $x^{i}, 0 \leq i \leq n-1$.

Output: involutory or quasi-involutory $n \times n$ MDS matrix $M$.
Data : $q=p^{t}, p$ prime and $t \in \mathbb{N}$.
if $p>2$ then
if $g(x)$ is $R S$ then

$$
f(x) \leftarrow\left(-x^{\frac{q-1}{2}} \quad \operatorname{mad} g(x)\right)
$$

if $g(x)$ is CGMN then

$$
f(x) \leftarrow\left(-x^{\frac{q+1}{2}} \quad \operatorname{mad} g(x)\right)
$$

for $i=1$ to $n$ do
$\left\lfloor\quad M_{i} \leftarrow x^{i-1} \cdot f(x) \operatorname{mad} g(x) ;\right.$
if $p=2$ then
if $g(x)$ is $R S$ then
$L f(x) \leftarrow x^{2^{t-1}-1} \operatorname{mad} g(x) ;$
if $g(x)$ is CGMN then
$\left\lfloor f(x) \leftarrow x^{2^{t-1}} \operatorname{mad} g(x) ;\right.$
for $i=1$ to $n$ do
$\left\lfloor\quad M_{i} \leftarrow x^{i-1} \cdot f(x) \operatorname{mad} g(x) ;\right.$

15 return $M$;

## Algorithm 2: Generation of involutory and quasi-involutory MDS inverse matrix.

Input
The RS or CGMN generating polynomial $g(x) \in \mathbb{F}_{q}[x]$ of degree $n-k$.

- The canonical polynomials $x^{i}, 0 \leq i \leq n-1$.

Output: involutory or quasi-involutory $n \times n$ MDS inverse matrix $M^{-1}$.
Data : $q=p^{t}, p$ prime and $t \in \mathbb{N}$.

```
if p>2 then
```

if $g(x)$ is $R S$ then

$$
f(x) \leftarrow\left(-x^{\frac{q-1}{2}} \quad \operatorname{mad} g(x)\right)
$$

if $g(x)$ is CGMN then

$$
f(x) \leftarrow\left(-x^{\frac{q+1}{2}} \quad \operatorname{mad} g(x)\right)
$$

for $i=1$ to $n$ do
$\left\lfloor\quad M_{i} \leftarrow x^{i} \cdot f(x) \operatorname{mad} g(x) ;\right.$

```
if \(p=2\) then
    if \(g(x)\) is \(R S\) then
        \(\left\lfloor f(x) \leftarrow x^{2^{t-1}} \operatorname{mad} g(x)\right.\);
            if \(g(x)\) is CGMN then
                \(\left\lfloor f(x) \leftarrow x^{2^{t-1}+1} \operatorname{mad} g(x) ;\right.\)
            for \(i=1\) to \(n\) do
            \(\left\lfloor\quad M_{i} \leftarrow x^{i-1} \cdot f(x) \operatorname{mad} g(x) ;\right.\)
```

15 return $M^{-1}$;

```
Algorithm 3: Multiplication of a vector by involutory or quasi- involutory MDS matrix
    Input
        - The RS or CGMN generating polynomial \(g(x) \in \mathbb{F}_{q}[x]\) of degree \(n-k\).
        \(>\) The vector of coefficients \(a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)\).
    Output: The vector \(\hat{a}=a \cdot M\).
    Data : \(q=p^{t}, p\) prime and \(t \in \mathbb{N}\).
    if \(p>2\) then
        if \(g(x)\) is \(R S\) then
        \(f(x) \leftarrow\left(-x^{\frac{q-1}{2}} \operatorname{mad} g(x)\right) ;\)
        if \(g(x)\) is CGMN then
        \(f(x) \leftarrow\left(-x^{\frac{q+1}{2}} \quad \operatorname{mad} g(x)\right) ;\)
        \(\hat{a}(x) \leftarrow a(x) \cdot f(x) \operatorname{mad} g(x) ;\)
    if \(p=2\) then
    if \(g(x)\) is \(R S\) then
                \(f(x) \leftarrow x^{2^{t-1}-1} \operatorname{mad} g(x) ;\)
            if \(g(x)\) is CGMN then
            \(f(x) \leftarrow x^{2^{t-1}} \quad \operatorname{mad} g(x) ;\)
    \(\hat{a}(x) \leftarrow a(x) \cdot f(x) \operatorname{mad} g(x) ;\)
return \(\hat{a} / /\) coefficients of \(\hat{a}(x)\)
```


## Algorithm 4: Multiplication of a vector by the inverse of involutory or quasi-involutory MDS matrix

Input
$\rightarrow$ The RS or CGMN generating polynomial $g(x) \in \mathbb{F}_{q}[x]$ of degree $n-k$.
$>$ The vector of coefficients $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$.
Output: The vector $\hat{a}=a \cdot M^{-1}$.
Data : $q=p^{t}, p$ prime and $t \in \mathbb{N}$.
if $p>2$ then
if $g(x)$ is $R S$ then

$$
f(x) \leftarrow\left(-x^{\frac{q-1}{2}} \quad \operatorname{mad} g(x)\right)
$$

if $g(x)$ is CGMN then

$$
f(x) \leftarrow\left(\begin{array}{ll}
-x^{\frac{q+1}{2}} & \operatorname{mad} g(x)
\end{array}\right)
$$

$\hat{a}(x) \leftarrow a(x) \cdot f(x) \operatorname{mad} g(x) ;$
if $p=2$ then
if $g(x)$ is $R S$ then

$$
f(x) \leftarrow x^{2^{t-1}-1} \quad \operatorname{mad} g(x)
$$

if $g(x)$ is CGMN then

$$
f(x) \leftarrow x^{2^{t-1}} \quad \operatorname{mad} g(x)
$$

$a(x) \leftarrow a(x) \cdot x \operatorname{mad} g(x) ;$
$\hat{a}(x) \leftarrow a(x) \cdot f(x) \operatorname{mad} g(x) ;$
4 return $\hat{a} / /$ coefficients of $\hat{a}(x)$

## Example of MDS matrix of size $8 \times 8$ in an RS code

Let's consider the finite field $\mathbb{F}_{2^{8}}$ with polynomial $x^{8}+x^{4}+x^{3}+x^{2}+1$. We have then that $n=2^{8}-1=255, \delta=9, k=2^{8}-9=247$. The generator polynomial is

$$
g(x)=x^{8}+\alpha^{176} x^{7}+\alpha^{240} x^{6}+\alpha^{211} x^{5}+\alpha^{253} x^{4}+\alpha^{220} x^{3}+\alpha^{3} x^{2}+\alpha^{203} x+\alpha^{36}
$$

The matrix $R$ is as follows

$$
R=\left(\begin{array}{c}
x^{8} \bmod g(x) \\
x^{9} \bmod g(x) \\
\vdots \\
x^{254} \bmod g(x)
\end{array}\right)
$$

## Example of MDS matrix of size $8 \times 8$ in an RS code

Applying algorithm 1, the obtained square MDS matrix is

$$
M=\left(\begin{array}{c}
x^{127} \bmod g(x) \\
x^{128} \bmod g(x) \\
\vdots \\
x^{134} \bmod g(x)
\end{array}\right)
$$

## Example of MDS matrix of size $8 \times 8$ in an RS code

Let the vector
$a=\left(\alpha^{7}, \alpha^{123}, \alpha^{58}, \alpha^{91}, \alpha^{72}, \alpha^{45}, \alpha^{208}, \alpha^{237}\right) \in \mathbb{F}_{2^{8}}^{8}$.

To perform the operation $a \cdot M$ applying algorithm 3, the operation

$$
a(x) \cdot\left(x^{2^{8-1}-1} \bmod g(x)\right) \bmod g(x)
$$

must be performed, where

$$
a(x)=\alpha^{7}+\alpha^{123} x+\alpha^{58} x^{2}+\alpha^{91} x^{3}+\alpha^{72} x^{4}+\alpha^{45} x^{5}+\alpha^{208} x^{6}+\alpha^{237} x^{7}
$$

## Example of MDS matrix of size $8 \times 8$ in an RS code

The result is the polynomial
$\hat{a}(x)=\alpha^{209}+\alpha^{15} x+\alpha^{245} x^{2}+\alpha^{90} x^{3}+\alpha^{19} x^{4}+\alpha^{157} x^{5}+\alpha^{52} x^{6}+\alpha^{11} x^{7}$
which represents the vector
$\hat{a}=\left(\alpha^{209}, \alpha^{15}, \alpha^{245}, \alpha^{90}, \alpha^{19}, \alpha^{157}, \alpha^{52}, \alpha^{11}\right)$.

It can be verified by means of the usual multiplication of a vector by a matrix that

$$
\hat{a}=a \cdot M
$$

## Example of MDS matrix of size $8 \times 8$ in an RS code

Applying algorithm 2 is obtained $M^{-1}$

| $M^{-1}=$ | (0xe4 | 0x8e | 0xec | 0x3a | 0x15 | 0x1d | 0xa4 | 0xb9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0xd0 | 0xdb | 0xc0 | 0xf | 0x12 | 0xea | 0x72 | 0x34 |
|  | 0xa8 | 0x95 | 0x3a | 0x35 | 0xdf | 0xe6 | 0x12 | 0x7e |
|  | 0x12 | 0x6c | 0x9f | 0x23 | 0x6b | 0x5d | 0x9e | 0xe8 |
|  | 0xf3 | 0xd1 | 0x7 | 0xd7 | 0xab | 0x4f | 0x93 | 0x74 |
|  | 0x5d | 0x2 | 0x64 | 0x92 | 0xb8 | 0x6f | 0x60 | 0x78 |
|  | 0xf3 | 0xbd | 0xbe | 0x96 | 0x4d | 0xc1 | 0x2c | $0 \times 5 \mathrm{a}$ |
|  | 0x2b | 0xb1 | 0x3d | $0 \times 1 \mathrm{a}$ | 0x90 | 0x1f | 0x8f | 0x30 |

## Example of MDS matrix of size $8 \times 8$ in an RS code

Let the vector
$\hat{a}=a \cdot M=\left(\alpha^{209}, \alpha^{15}, \alpha^{245}, \alpha^{90}, \alpha^{19}, \alpha^{157}, \alpha^{52}, \alpha^{11}\right)$.

To perform the operation $\hat{a} \cdot M^{-1}$ applying algorithm 4, the operations
$\hat{a}(x) \leftarrow \hat{a}(x) \cdot x \bmod g(x) \rightarrow$ one step through an LFSR

$$
\hat{a}(x) \cdot\left(x^{2^{7}-1} \bmod g(x)\right) \bmod g(x)
$$

must be performed, where $\hat{a}(x)$ is the polynomial

$$
\hat{a}(x)=\alpha^{209}+\alpha^{15} x+\alpha^{245} x^{2}+\alpha^{90} x^{3}+\alpha^{19} x^{4}+\alpha^{157} x^{5}+\alpha^{52} x^{6}+\alpha^{11} x^{7}
$$

## Example of MDS matrix of size $8 \times 8$ in an RS code

The result is, in effect, the polynomial
$a(x)=\alpha^{7}+\alpha^{123} x+\alpha^{58} x^{2}+\alpha^{91} x^{3}+\alpha^{72} x^{4}+\alpha^{45} x^{5}+\alpha^{208} x^{6}+\alpha^{237} x^{7}$
which represents the vector
$a=\left(\alpha^{7}, \alpha^{123}, \alpha^{58}, \alpha^{91}, \alpha^{72}, \alpha^{45}, \alpha^{208}, \alpha^{237}\right)$.

## Conclusions

- A new class of quasi-involutive MDS matrices has been defined.
- When the characteristic of the finite field is different from 2, the MDS matrix is involutive.
- When the characteristic is 2 , the MDS matrix is quasi-involutive.
- the inverse matrix-vector product is done first by shifting the vector one position to the right using an LFSR.
- All matrix-vector product is expressed through multiplication of two polynomials modulo a generating polynomial of a cyclic code.

