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Introduction

I Maximum Distance Separable (MDS) matrices
theoretically ensures a perfect diffusion.

I They have great importance in the design of block ciphers
and hash functions.

MDS matrices are in general:
not sparse, have a large description ⇒ costly implementations



Introduction

To reduce implementation costs:
I circulant matrices.

Gupta, K. C., Pandey, S. K., Venkateswarlu, A. On the direct construction of recursive MDS
matrices. Designs, Codes and Cryptography, 2017.

I recursive matrices
Gupta, K.C., Pandey, S.K., Samanta, S. Construction of Recursive MDS Matrices Using DLS
Matrices. AFRICACRYPT, 2022.

I methods for transforming an MDS matrix into other ones
Luong, T. T., Cuong, N. N., Direct exponent and scalar multiplication transformations of mds
matrices: some good cryptographic results for dynamic diffusion layers of block ciphers. Journal of
Computer Science and Cybernetics, 2016.



Introduction

Our interest:
I Diffusion layer as MDS matrix-vector product.
I MDS matrix-vector product based on the multiplication

of two polynomials modulo a generating polynomial of
the cyclic code.

Arrozarena, P. F., Fiallo, E. D. Efficient multiplication of a vector by a matrix MDS. Journal of
Science and Technology on Information security, 2022.

no need to store the MDS matrix explicitly

Can be applied to involutory MDS matrices?



Introduction

I Involutory MDS matrices have the main advantage that
both encryption and decryption share the same
matrix-vector product.

I Finding involutory MDS matrices, in particular large
(involutory) MDS matrices, is not an easy.

Quasi-involutory MDS matrix?
I Intuitive idea of a MDS matrix that is close to being

involutory.



Our contribution

A new class of quasi-involutive MDS matrices is proposed.
I matrix-vector product through multiplication of two

polynomials modulo a generating polynomial of a:
1. Reed-Solomon (RS) codes
2. CGMN code

Couselo, E., Gonzalez, S., Markov, V., Nechaev, A. Parameters of recursive MDS-codes.
Diskretnaya Matematika, 2000.

I If p 6= 2 in Fpn ⇒ the MDS matrix is involutive.
I If p = 2 in Fpn ⇒ the MDS matrix is quasi-involutive:

1. the vector is transformed one step through an LFSR.
2. the multiplication by the inverse matrix can be

performed with the original MDS matrix.



Preliminaries

A linear code C of length n and dimension k over Fq, denoted
as [n, k]q, is a linear subspace of dimension k of the linear
space Fn

q.

The minimum distance d of C is the minimum weight if its
nonzero vectors and we denote the code as [n, k , d ]q.

A generator matrix for C is a matrix whose rows form a basis
for C and it is said to be in standard form if it has the form
(Ik |R) where Ik is a k × k identity matrix and R is a
k × (n − k) matrix.



Preliminaries

A linear code such that d = n − k + 1 (Singleton Bound) is
called a Maximum Distance Separable (MDS) code.

A matrix is MDS if and only if all its minors are non zero.



Cyclic codes

An [n, k]q code is said to be cyclic if a cyclic shift of any
element of the code remains in the code.

(c0, c1, . . . , cn−1) ∈ C ⇒ (cn−1, c0, . . . , cn−2) ∈ C

Can be seen as ideals of Fq[x ]/(xn − 1) with every monic
polynomial g(x) that divides xn − 1 as generating polynomial.

The order e of g(x) is the smallest positive integer such that
g(x) divides x e − 1 with e divide n.

If deg(g) = r ⇒ the code defined by g(x) has dimension
k = n − r .



Cyclic codes

The generator matrix, in standard form, can be given by
(Ik | − R) with

R =


xn−k mod g(x)

xn−k+1 mod g(x)
...

xn−1 mod g(x)

 (1)



Reed–Solomon (RS) codes

A q-ary RS code over Fq of length q − 1, q > 2, is the cyclic
code generated by a polynomial of the form

g(x) = (x − αa+1)(x − αa+2) · · · (x − αa+δ−1)

with a ≥ 0 and 2 ≤ δ ≤ q − 1, where α is a primitive element
of Fq.

It is an MDS code with parameters [q − 1, q − δ, δ]q and the
matrix R is a MDS matrix.

Since α is a primitive element, the order of g(x) is q − 1.



CGMN code

The code is composed of segments of length n of the linear
recurring sequences that have characteristic polynomial

g(x) = (x − β0) · · · (x − βm−1)

that is, for i = 0, 1, . . . , n −m + 1 the code has the form

K = {(u(0), . . . , u(n)) : u(i+m) = g0u(i)+· · ·+gn−1u(i+m−1)}

where g0, . . . , gm−1 are the coefficients of g(x).

For certain β0, . . . , βm−1, it is an MDS code with parameters
[q + 1,m, q −m + 2].



CGMN code

If q is even or m is odd, then the code is cyclic and the order
of the polynomial g(x) is conditioned by the order of the
elements β0, . . . , βm−1.

It is shown that

ord(βi)|q + 1, 0 ≤ i ≤ m − 1

and βi 6= βj , i 6= j , 0 ≤ i , j ≤ m − 1.

Then, if q + 1 is prime, the code is cyclic and the order of
g(x) is q + 1.

It is possible to operate by multiplying polynomials



Quasi-involutive linear transformation

Let n ∈ N. The biyective linear transformation

Ψ : P[x ]/g(x)→ P[x ]/g(x)

defined by

∀p(x) ∈ P[x ]/g(x) : Ψ(p(x)) = p(x) · xn mod g(x)

is quasi-involutive if its inverse Ψ−1 is

Ψ−1(p(x)) = Ψ(p(x)) · x mod g(x)



Matrix-vector product

Arrozarena, P. F., Fiallo, E. D. Efficient multiplication of a vector by a matrix MDS. Journal of Science and
Technology on Information security, 2022.

To multiply a vector by any square MDS submatrix of matrix

R =


xn−k mod g(x)

xn−k+1 mod g(x)
...

xn−1 mod g(x)


it can be done by multiplying the polynomial that represents
the vector by the polynomial corresponding to the first row of
the selected submatrix.



Algorithm 1: Generation of involutory and quasi-involutory
MDS matrix.
Input :

I The RS or CGMN generating polynomial g(x) ∈ Fq [x ] of degree n − k.

I The canonical polynomials x i , 0 ≤ i ≤ n − 1.
Output: involutory or quasi-involutory n × n MDS matrix M.
Data : q = pt , p prime and t ∈ N.

1 if p > 2 then
2 if g(x) is RS then

3 f (x)←
(
−x

q−1
2 m«od g(x)

)
;

4 if g(x) is CGMN then

5 f (x)←
(
−x

q+1
2 m«od g(x)

)
;

6 for i = 1 to n do
7 Mi ← x i−1 · f (x) m«od g(x);

8 if p = 2 then
9 if g(x) is RS then

10 f (x)← x2
t−1−1 m«od g(x);

11 if g(x) is CGMN then
12 f (x)← x2

t−1
m«od g(x);

13 for i = 1 to n do
14 Mi ← x i−1 · f (x) m«od g(x);

15 return M;



Algorithm 2: Generation of involutory and quasi-involutory
MDS inverse matrix.
Input :

I The RS or CGMN generating polynomial g(x) ∈ Fq [x ] of degree n − k.

I The canonical polynomials x i , 0 ≤ i ≤ n − 1.

Output: involutory or quasi-involutory n × n MDS inverse matrix M−1.
Data : q = pt , p prime and t ∈ N.

1 if p > 2 then
2 if g(x) is RS then

3 f (x)←
(
−x

q−1
2 m«od g(x)

)
;

4 if g(x) is CGMN then

5 f (x)←
(
−x

q+1
2 m«od g(x)

)
;

6 for i = 1 to n do
7 Mi ← x i · f (x) m«od g(x);

8 if p = 2 then
9 if g(x) is RS then

10 f (x)← x2
t−1

m«od g(x);

11 if g(x) is CGMN then
12 f (x)← x2

t−1+1 m«od g(x);

13 for i = 1 to n do
14 Mi ← x i−1 · f (x) m«od g(x);

15 return M−1;



Algorithm 3: Multiplication of a vector by involutory or quasi-
involutory MDS matrix
Input :

I The RS or CGMN generating polynomial g(x) ∈ Fq [x ] of degree n − k.
I The vector of coefficients a = (a0, a1, . . . , an−1).

Output: The vector â = a · M.
Data : q = pt , p prime and t ∈ N.

1 if p > 2 then
2 if g(x) is RS then

3 f (x)←
(
−x

q−1
2 m«od g(x)

)
;

4 if g(x) is CGMN then

5 f (x)←
(
−x

q+1
2 m«od g(x)

)
;

6 â(x)← a(x) · f (x) m«od g(x);

7 if p = 2 then
8 if g(x) is RS then
9 f (x)← x2

t−1−1 m«od g(x);

10 if g(x) is CGMN then
11 f (x)← x2

t−1
m«od g(x);

12 â(x)← a(x) · f (x) m«od g(x);

13 return â //coefficients of â(x)



Algorithm 4: Multiplication of a vector by the inverse of invo-
lutory or quasi-involutory MDS matrix
Input :

I The RS or CGMN generating polynomial g(x) ∈ Fq [x ] of degree n − k.
I The vector of coefficients a = (a0, a1, . . . , an−1).

Output: The vector â = a · M−1.
Data : q = pt , p prime and t ∈ N.

1 if p > 2 then
2 if g(x) is RS then

3 f (x)←
(
−x

q−1
2 m«od g(x)

)
;

4 if g(x) is CGMN then

5 f (x)←
(
−x

q+1
2 m«od g(x)

)
;

6 â(x)← a(x) · f (x) m«od g(x);

7 if p = 2 then
8 if g(x) is RS then
9 f (x)← x2

t−1−1 m«od g(x);

10 if g(x) is CGMN then
11 f (x)← x2

t−1
m«od g(x);

12 a(x)← a(x) · x m«od g(x);
13 â(x)← a(x) · f (x) m«od g(x);

14 return â //coefficients of â(x)



Example of MDS matrix of size 8× 8 in an RS
code

Let’s consider the finite field F28 with polynomial
x8 + x4 + x3 + x2 + 1. We have then that
n = 28 − 1 = 255, δ = 9, k = 28 − 9 = 247. The generator
polynomial is

g(x) = x8 + α176x7 + α240x6 + α211x5 + α253x4 + α220x3 + α3x2 + α203x + α36

The matrix R is as follows

R =


x8 mod g(x)
x9 mod g(x)

...
x254 mod g(x)





Example of MDS matrix of size 8× 8 in an RS
code

Applying algorithm 1, the obtained square MDS matrix is

M =


x127 mod g(x)
x128 mod g(x)

...
x134 mod g(x)



M =



0x49 0xe4 0x8e 0xec 0x3a 0x15 0x1d 0xa4
0x6d 0xd0 0xdb 0xc0 0xf 0x12 0xea 0x72
0xc4 0xa8 0x95 0x3a 0x35 0xdf 0xe6 0x12
0x34 0x12 0x6c 0x9f 0x23 0x6b 0x5d 0x9e
0x43 0xf3 0xd1 0x7 0xd7 0xab 0x4f 0x93
0xe9 0x5d 0x2 0x64 0x92 0xb8 0x6f 0x60
0xff 0xf3 0xbd 0xbe 0x96 0x4d 0xc1 0x2c
0x3b 0x2b 0xb1 0x3d 0x1a 0x90 0x1f 0x8f





Example of MDS matrix of size 8× 8 in an RS
code

Let the vector
a = (α7, α123, α58, α91, α72, α45, α208, α237) ∈ F8

28 .

To perform the operation a ·M applying algorithm 3, the
operation

a(x) ·
(
x28−1−1 mod g(x)

)
mod g(x)

must be performed, where

a(x) = α7+α123x+α58x2+α91x3+α72x4+α45x5+α208x6+α237x7



Example of MDS matrix of size 8× 8 in an RS
code

The result is the polynomial

â(x) = α209+α15x+α245x2+α90x3+α19x4+α157x5+α52x6+α11x7

which represents the vector
â = (α209, α15, α245, α90, α19, α157, α52, α11).

It can be verified by means of the usual multiplication of a
vector by a matrix that

â = a ·M



Example of MDS matrix of size 8× 8 in an RS
code

Applying algorithm 2 is obtained M−1

M−1 =



0xe4 0x8e 0xec 0x3a 0x15 0x1d 0xa4 0xb9
0xd0 0xdb 0xc0 0xf 0x12 0xea 0x72 0x34
0xa8 0x95 0x3a 0x35 0xdf 0xe6 0x12 0x7e
0x12 0x6c 0x9f 0x23 0x6b 0x5d 0x9e 0xe8
0xf3 0xd1 0x7 0xd7 0xab 0x4f 0x93 0x74
0x5d 0x2 0x64 0x92 0xb8 0x6f 0x60 0x78
0xf3 0xbd 0xbe 0x96 0x4d 0xc1 0x2c 0x5a
0x2b 0xb1 0x3d 0x1a 0x90 0x1f 0x8f 0x30





Example of MDS matrix of size 8× 8 in an RS
code

Let the vector
â = a ·M = (α209, α15, α245, α90, α19, α157, α52, α11).

To perform the operation â ·M−1 applying algorithm 4, the
operations

â(x)← â(x) · x mod g(x)→ one step through an LFSR

â(x) ·
(
x27−1 mod g(x)

)
mod g(x)

must be performed, where â(x) is the polynomial

â(x) = α209+α15x+α245x2+α90x3+α19x4+α157x5+α52x6+α11x7



Example of MDS matrix of size 8× 8 in an RS
code

The result is, in effect, the polynomial

a(x) = α7+α123x+α58x2+α91x3+α72x4+α45x5+α208x6+α237x7

which represents the vector
a = (α7, α123, α58, α91, α72, α45, α208, α237).



Conclusions

I A new class of quasi-involutive MDS matrices has been
defined.

I When the characteristic of the finite field is different from
2, the MDS matrix is involutive.

I When the characteristic is 2, the MDS matrix is
quasi-involutive.

I the inverse matrix-vector product is done first by shifting
the vector one position to the right using an LFSR.

I All matrix-vector product is expressed through
multiplication of two polynomials modulo a generating
polynomial of a cyclic code.


