Matrix-vector product of a new class of quasi-involutory MDS matrices

P. Freyre; E.D. Fiallo; R. Rodríguez

< □ > < (四 > < (回 >) < (u >

- Maximum Distance Separable (MDS) matrices theoretically ensures a perfect diffusion.
- They have great importance in the design of block ciphers and hash functions.

MDS matrices are in general:

not sparse, have a large description \Rightarrow costly implementations

To reduce implementation costs:

circulant matrices.

Gupta, K. C., Pandey, S. K., Venkateswarlu, A. On the direct construction of recursive MDS matrices. Designs, Codes and Cryptography, 2017.

recursive matrices

Gupta, K.C., Pandey, S.K., Samanta, S. Construction of Recursive MDS Matrices Using DLS Matrices. AFRICACRYPT, 2022.

methods for transforming an MDS matrix into other ones

Luong, T. T., Cuong, N. N., Direct exponent and scalar multiplication transformations of mds matrices: some good cryptographic results for dynamic diffusion layers of block ciphers. Journal of Computer Science and Cybernetics, 2016.

Our interest:

- Diffusion layer as MDS matrix-vector product.
- MDS matrix-vector product based on the multiplication of two polynomials modulo a generating polynomial of the cyclic code.

Arrozarena, P. F., Fiallo, E. D. *Efficient multiplication of a vector by a matrix MDS.* Journal of Science and Technology on Information security, 2022.

no need to store the MDS matrix explicitly

Can be applied to involutory MDS matrices?

- Involutory MDS matrices have the main advantage that both encryption and decryption share the same matrix-vector product.
- Finding involutory MDS matrices, in particular large (involutory) MDS matrices, is not an easy.

Quasi-involutory MDS matrix?

Intuitive idea of a MDS matrix that is close to being involutory.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Our contribution

A new class of quasi-involutive MDS matrices is proposed.

- matrix-vector product through multiplication of two polynomials modulo a generating polynomial of a:
 - 1. Reed-Solomon (RS) codes
 - 2. CGMN code

Couselo, E., Gonzalez, S., Markov, V., Nechaev, A. *Parameters of recursive MDS-codes*. Diskretnaya Matematika, 2000.

- If $p \neq 2$ in $\mathbb{F}_{p^n} \Rightarrow$ the MDS matrix is involutive.
- If p = 2 in $\mathbb{F}_{p^n} \Rightarrow$ the MDS matrix is quasi-involutive:
 - 1. the vector is transformed one step through an LFSR.
 - 2. the multiplication by the inverse matrix can be performed with the original MDS matrix.

Preliminaries

A linear code C of length n and dimension k over \mathbb{F}_q , denoted as $[n, k]_q$, is a linear subspace of dimension k of the linear space \mathbb{F}_q^n .

The *minimum distance* d of C is the minimum weight if its nonzero vectors and we denote the code as $[n, k, d]_q$.

A generator matrix for C is a matrix whose rows form a basis for C and it is said to be in *standard form* if it has the form $(I_k|R)$ where I_k is a $k \times k$ identity matrix and R is a $k \times (n-k)$ matrix.

Preliminaries

A linear code such that d = n - k + 1 (Singleton Bound) is called a *Maximum Distance Separable (MDS) code*.

A matrix is MDS if and only if all its minors are non zero.

Cyclic codes

An $[n, k]_q$ code is said to be cyclic if a cyclic shift of any element of the code remains in the code.

$$(c_0, c_1, \ldots, c_{n-1}) \in \mathcal{C} \Rightarrow (c_{n-1}, c_0, \ldots, c_{n-2}) \in \mathcal{C}$$

Can be seen as ideals of $\mathbb{F}_q[x]/(x^n-1)$ with every monic polynomial g(x) that divides $x^n - 1$ as generating polynomial.

The order *e* of g(x) is the smallest positive integer such that g(x) divides $x^e - 1$ with *e* divide *n*.

If $deg(g) = r \Rightarrow$ the code defined by g(x) has dimension k = n - r.

Cyclic codes

The generator matrix, in standard form, can be given by $(I_k | -R)$ with

$$R = \begin{pmatrix} x^{n-k} \mod g(x) \\ x^{n-k+1} \mod g(x) \\ \vdots \\ x^{n-1} \mod g(x) \end{pmatrix}$$
(1)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Reed–Solomon (RS) codes

A *q*-ary RS code over \mathbb{F}_q of length q-1, q>2, is the cyclic code generated by a polynomial of the form

$$g(x) = (x - \alpha^{a+1})(x - \alpha^{a+2}) \cdots (x - \alpha^{a+\delta-1})$$

with $a \ge 0$ and $2 \le \delta \le q - 1$, where α is a primitive element of \mathbb{F}_q .

It is an MDS code with parameters $[q - 1, q - \delta, \delta]_q$ and the matrix R is a MDS matrix.

Since α is a primitive element, the order of g(x) is q - 1.

CGMN code

The code is composed of segments of length n of the linear recurring sequences that have characteristic polynomial

$$g(x) = (x - \beta_0) \cdots (x - \beta_{m-1})$$

that is, for i = 0, 1, ..., n - m + 1 the code has the form

$$\mathcal{K} = \{(u(0), \ldots, u(n)) : u(i+m) = g_0 u(i) + \cdots + g_{n-1} u(i+m-1)\}$$

where g_0, \ldots, g_{m-1} are the coefficients of g(x).

For certain $\beta_0, \ldots, \beta_{m-1}$, it is an MDS code with parameters [q+1, m, q-m+2].

CGMN code

If q is even or m is odd, then the code is cyclic and the order of the polynomial g(x) is conditioned by the order of the elements $\beta_0, \ldots, \beta_{m-1}$.

It is shown that

$$ord(eta_i)|q+1, \ 0\leq i\leq m-1$$

and $eta_i
eq eta_j, \ i
eq j, \ 0\leq i,j\leq m-1.$

Then, if q + 1 is prime, the code is cyclic and the order of g(x) is q + 1.

It is possible to operate by multiplying polynomials

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Quasi-involutive linear transformation

Let $n \in \mathbb{N}$. The biyective linear transformation

$$\Psi: P[x]/g(x) \to P[x]/g(x)$$

defined by

$$\forall p(x) \in P[x]/g(x): \Psi(p(x)) = p(x) \cdot x^n \mod g(x)$$

is quasi-involutive if its inverse Ψ^{-1} is

$$\Psi^{-1}(p(x)) = \Psi(p(x)) \cdot x modes x modes g(x)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Matrix-vector product

Arrozarena, P. F., Fiallo, E. D. Efficient multiplication of a vector by a matrix MDS. Journal of Science and Technology on Information security, 2022.

To multiply a vector by any square MDS submatrix of matrix

$$R = \begin{pmatrix} x^{n-k} \mod g(x) \\ x^{n-k+1} \mod g(x) \\ \vdots \\ x^{n-1} \mod g(x) \end{pmatrix}$$

it can be done by multiplying the polynomial that represents the vector by the polynomial corresponding to the first row of the selected submatrix.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Algorithm 1: Generation of involutory and quasi-involutory MDS matrix.

Input :

5

The RS or CGMN generating polynomial $g(x) \in \mathbb{F}_q[x]$ of degree n - k.

The canonical polynomials x^i , $0 \le i \le n-1$.

Output: involutory or quasi-involutory $n \times n$ MDS matrix M. **Data** : $q = p^t$, p prime and $t \in \mathbb{N}$.

$$\begin{bmatrix} f(x) \leftarrow \left(-x^{\frac{q+1}{2}} \mod g(x)\right) \end{bmatrix}$$

for
$$i = 1$$
 to n do

$$M_i \leftarrow x^{i-1} \cdot f(x) \mod g(x)$$

8 if
$$p = 2$$
 then
9 if $g(x)$ is RS then
10 $\left\lfloor f(x) \leftarrow x^{2^{t-1}-1} \mod g(x); \right\}$
11 if $g(x)$ is CGMN then
12 $\left\lfloor f(x) \leftarrow x^{2^{t-1}} \mod g(x); \right\rfloor$
13 for $i = 1$ to n do
14 $\left\lfloor M_i \leftarrow x^{i-1} \cdot f(x) \mod g(x); \right\rfloor$

15 return M;

Algorithm 2: Generation of involutory and quasi-involutory MDS inverse matrix.

Input :

The RS or CGMN generating polynomial $g(x) \in \mathbb{F}_q[x]$ of degree n - k.

The canonical polynomials x^i , $0 \le i \le n-1$.

Output: involutory or quasi-involutory $n \times n$ MDS inverse matrix M^{-1} . **Data** : $q = p^t$, p prime and $t \in \mathbb{N}$.

if p > 2 then 1 2 if g(x) is RS then $f(x) \leftarrow \left(-x^{\frac{q-1}{2}} \mod g(x)\right);$ 3 if g(x) is CGMN then 4 $f(x) \leftarrow \left(-x^{\frac{q+1}{2}} \mod g(x)\right);$ 5 for i = 1 to n do 6 $M_i \leftarrow x^i \cdot f(x) \mod g(x);$ 7 if p = 2 then 8 9 if g(x) is RS then $f(x) \leftarrow x^{2^{t-1}} \mod g(x);$ 10 11 if g(x) is CGMN then $f(x) \leftarrow x^{2^{t-1}+1} \mod g(x);$ 12 13 for i = 1 to n do 14 $M_i \leftarrow x^{i-1} \cdot f(x) \mod g(x);$

15 return M^{-1} ;

Algorithm 3: Multiplication of a vector by involutory or quasiinvolutory MDS matrix

Input : ► The RS or CGMN generating polynomial $g(x) \in \mathbb{F}_{q}[x]$ of degree n - k. The vector of coefficients $a = (a_0, a_1, \ldots, a_{n-1})$. **Output**: The vector $\hat{a} = a \cdot M$. **Data** : $q = p^t$, p prime and $t \in \mathbb{N}$. if p > 2 then 1 2 if g(x) is RS then $f(x) \leftarrow \left(-x^{\frac{q-1}{2}} \mod g(x)\right);$ 3 if g(x) is CGMN then 4 $f(x) \leftarrow \left(-x \frac{q+1}{2} \mod g(x)\right);$ 5 6 $\hat{a}(x) \leftarrow a(x) \cdot f(x) \mod g(x);$ 7 if p = 2 then if g(x) is RS then 8 $f(x) \leftarrow x^{2^{t-1}-1} \mod g(x);$ 9 10 if g(x) is CGMN then $f(x) \leftarrow x^{2^{t-1}} \mod g(x);$ 11 $\hat{a}(x) \leftarrow a(x) \cdot f(x) \mod g(x);$ 12 13 return \hat{a} //coefficients of $\hat{a}(x)$

Algorithm 4: Multiplication of a vector by the inverse of involutory or quasi-involutory MDS matrix

Input :

- The RS or CGMN generating polynomial g(x) ∈ F_q[x] of degree n − k.
- The vector of coefficients $a = (a_0, a_1, \ldots, a_{n-1})$.

```
Output: The vector \hat{a} = a \cdot M^{-1}
     Data : q = p^t, p prime and t \in \mathbb{N}.
     if p > 2 then
 1
 2
              if g(x) is RS then
                     f(x) \leftarrow \left(-x \frac{q-1}{2} \mod g(x)\right);
 3
 4
              if g(x) is CGMN then
                     f(x) \leftarrow \left(-x \frac{q+1}{2} \mod g(x)\right);
 5
 6
              \hat{a}(x) \leftarrow a(x) \cdot f(x) \mod g(x):
 7
     if p = 2 then
              if g(x) is RS then
 8
                     f(x) \leftarrow x^{2^{t-1}-1} \mod g(x);
 9
10
              if g(x) is CGMN then
                     f(x) \leftarrow x^{2^{t-1}} \mod g(x);
11
              a(x) \leftarrow a(x) \cdot x \mod g(x):
12
13
             \hat{a}(x) \leftarrow a(x) \cdot f(x) \mod g(x)
14 return \hat{a} //coefficients of \hat{a}(x)
```

Let's consider the finite field \mathbb{F}_{2^8} with polynomial $x^8 + x^4 + x^3 + x^2 + 1$. We have then that $n = 2^8 - 1 = 255, \ \delta = 9, \ k = 2^8 - 9 = 247$. The generator polynomial is

 $g(x) = x^{8} + \alpha^{176}x^{7} + \alpha^{240}x^{6} + \alpha^{211}x^{5} + \alpha^{253}x^{4} + \alpha^{220}x^{3} + \alpha^{3}x^{2} + \alpha^{203}x + \alpha^{36}x^{6} + \alpha^{36}x^{6}$

The matrix R is as follows

$$R = \begin{pmatrix} x^8 \mod g(x) \\ x^9 \mod g(x) \\ \vdots \\ x^{254} \mod g(x) \end{pmatrix}$$

Applying algorithm 1, the obtained square MDS matrix is

$$M = \begin{pmatrix} x^{127} \mod g(x) \\ x^{128} \mod g(x) \\ \vdots \\ x^{134} \mod g(x) \end{pmatrix}$$

	/0x49	0xe4	0x8e	0xec	0x3a	0x15	0x1d	0xa4\	
M =	0x6d	0xd0	0xdb	0xc0	Oxf	0x12	0xea	0x72	
	0xc4	0xa8	0x95	0x3a	0x35	0xdf	0xe6	0x12	
	0x34	0x12	0x6c	0x9f	0x23	0x6b	0x5d	0x9e	
	0x43	0xf3	0xd1	0x7	0xd7	0xab	0x4f	0x93	
	0xe9	0x5d	0x2	0x64	0x92	0xb8	0x6f	0x60	
	Oxff	0xf3	0xbd	0xbe	0x96	0x4d	0xc1	0x2c	
	(0x3b	0x2b	0xb1	0x3d	0x1a	0x90	0x1f	0x8f/	
	`					$\bullet \Box \bullet$		E ► < E ►	

Let the vector $a = (\alpha^7, \alpha^{123}, \alpha^{58}, \alpha^{91}, \alpha^{72}, \alpha^{45}, \alpha^{208}, \alpha^{237}) \in \mathbb{F}_{2^8}^8$.

To perform the operation $a \cdot M$ applying algorithm 3, the operation

$$a(x) \cdot \left(x^{2^{8-1}-1} \mod g(x)\right) \mod g(x)$$

must be performed, where

$$a(x) = \alpha^{7} + \alpha^{123}x + \alpha^{58}x^{2} + \alpha^{91}x^{3} + \alpha^{72}x^{4} + \alpha^{45}x^{5} + \alpha^{208}x^{6} + \alpha^{237}x^{7}$$

The result is the polynomial

 $\hat{a}(x) = \alpha^{209} + \alpha^{15}x + \alpha^{245}x^2 + \alpha^{90}x^3 + \alpha^{19}x^4 + \alpha^{157}x^5 + \alpha^{52}x^6 + \alpha^{11}x^7$

which represents the vector $\hat{a} = (\alpha^{209}, \alpha^{15}, \alpha^{245}, \alpha^{90}, \alpha^{19}, \alpha^{157}, \alpha^{52}, \alpha^{11}).$

It can be verified by means of the usual multiplication of a vector by a matrix that

$$\hat{a} = a \cdot M$$

Applying algorithm 2 is obtained M^{-1}

М

	(0xe4)	0x8e	0xec	0x3a	0x15	0x1d	0xa4	0xb9
$^{-1} =$	0xd0	0xdb	0xc0	Oxf	0x12	0xea	0x72	0x34
	0xa8	0x95	0x3a	0x35	0xdf	0xe6	0x12	0x7e
	0x12	0x6c	0x9f	0x23	0x6b	0x5d	0x9e	0xe8
	0xf3	0xd1	0x7	0xd7	0xab	0x4f	0x93	0x74
	0x5d	0x2	0x64	0x92	0xb8	0x6f	0x60	0x78
	0xf3	0xbd	0xbe	0x96	0x4d	0xc1	0x2c	0x5a
	(0x2b	0xb1	0x3d	0x1a	0x90	0x1f	0x8f	0x30/

Let the vector $\hat{a} = a \cdot M = (\alpha^{209}, \alpha^{15}, \alpha^{245}, \alpha^{90}, \alpha^{19}, \alpha^{157}, \alpha^{52}, \alpha^{11}).$

To perform the operation $\hat{a} \cdot M^{-1}$ applying algorithm 4, the operations

 $\hat{a}(x) \leftarrow \hat{a}(x) \cdot x \mod g(x) \rightarrow$ one step through an LFSR $\hat{a}(x) \cdot (x^{2^7-1} \mod g(x)) \mod g(x)$ must be performed, where $\hat{a}(x)$ is the polynomial $\hat{a}(x) = \alpha^{209} + \alpha^{15}x + \alpha^{245}x^2 + \alpha^{90}x^3 + \alpha^{19}x^4 + \alpha^{157}x^5 + \alpha^{52}x^6 + \alpha^{11}x^7$

The result is, in effect, the polynomial

$$a(x) = \alpha^{7} + \alpha^{123}x + \alpha^{58}x^{2} + \alpha^{91}x^{3} + \alpha^{72}x^{4} + \alpha^{45}x^{5} + \alpha^{208}x^{6} + \alpha^{237}x^{7}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

which represents the vector $\mathbf{a} = (\alpha^7, \alpha^{123}, \alpha^{58}, \alpha^{91}, \alpha^{72}, \alpha^{45}, \alpha^{208}, \alpha^{237}).$

Conclusions

- A new class of quasi-involutive MDS matrices has been defined.
- When the characteristic of the finite field is different from 2, the MDS matrix is involutive.
- When the characteristic is 2, the MDS matrix is quasi-involutive.
 - the inverse matrix-vector product is done first by shifting the vector one position to the right using an LFSR.
- All matrix-vector product is expressed through multiplication of two polynomials modulo a generating polynomial of a cyclic code.