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Introduction



Security of RFID systems

For RFID systems it is important to find a balance
between technical characteristics and security.

The following security requirement are addressed:
1. Party authentication (unilateral/mutual);
2. Confidentiality (of the additional data);
3. Integrity (of the additional data);
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Technical issues

1. “Near field” communications (i.e. physical restrictions on the reading range); makes the
possibility of relay-attacks less severe.

2. Implementing simplest RFID protocols on passive tags without autonomous power sources.
3. Protected WORM (write once, read many) memory to store shared secret keys.
4. Relatively small gate area; in particular, symmetric-cryptography based protocols are

preferable.
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RFID authentication protocol

Figure 1: Authentication protocol
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Adversarial model



Authentication protocol with optional data transfer

A triple Π = (InitReader, InitTag,Auth) of (probabilistic) algorithms.

• Reader initialization InitReader; no input, returns Reader initial state.
• Tag initialization InitTag; input: a unique Tag 𝐼𝐷, current Reader state, returns Tag

initial state 𝑠𝑡𝑎𝑡𝑒𝐼𝐷, updated Reader state.
• Authentication algorithm Auth; input: participant’s 𝑠𝑡𝑎𝑡𝑒𝐴 and a message 𝑚 to be

processed; returns an updated state 𝑠𝑡𝑎𝑡𝑒′𝐴 and response 𝑚′.
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AUTH+ model

Interface: oracles 𝐶𝑟𝑒𝑎𝑡𝑒𝑇𝑎𝑔, 𝑆𝑡𝑎𝑟𝑡𝑅𝑒𝑎𝑑𝑒𝑟𝑆𝑒𝑠𝑠𝑖𝑜𝑛, 𝑆𝑡𝑎𝑟𝑡𝑇𝑎𝑔𝑆𝑒𝑠𝑠𝑖𝑜𝑛, 𝑆𝑒𝑛𝑑, 𝑅𝑒𝑠𝑢𝑙𝑡,
𝑆𝑒𝑡𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑏, 𝑇𝑒𝑠𝑡𝑏:

• 𝐶𝑟𝑒𝑎𝑡𝑒𝑇𝑎𝑔(𝐼𝐷): creates a new Tag with 𝐼𝐷 via Π.𝐼𝑛𝑖𝑡𝑇𝑎𝑔 and updates Reader database;

• 𝑆𝑡𝑎𝑟𝑡𝑅𝑒𝑎𝑑𝑒𝑟𝑆𝑒𝑠𝑠𝑖𝑜𝑛(𝑚𝑜𝑑𝑒): starts TAM/MAM session on the Reader’s side, returns
session “pointer” 𝜋;

• 𝑆𝑡𝑎𝑟𝑡𝑇𝑎𝑔𝑆𝑒𝑠𝑠𝑖𝑜𝑛(𝐼𝐷): starts session on the Tag’s side; returns session “pointer” 𝜋;
• 𝑅𝑒𝑠𝑢𝑙𝑡(𝜋): returns the result of the session 𝜋;
• 𝑆𝑒𝑡𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑏(𝜋,𝑀0,𝑀1): sets additional data to 𝑀𝑏 in the session 𝜋;
• 𝑆𝑒𝑛𝑑(𝜋,𝑚): sends message 𝑚 in the session 𝜋;
• 𝑇𝑒𝑠𝑡𝑏(𝜋): checks “correctness” of the session 𝜋 (in case 𝑏 ≠ 0).

Goal: guess the bit 𝑏.
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Adversarial capabilities

• create legitimate tags using 𝐶𝑟𝑒𝑎𝑡𝑒𝑇𝑎𝑔 queries;

• start sessions of chosen type using 𝑆𝑡𝑎𝑟𝑡𝑅𝑒𝑎𝑑𝑒𝑟𝑆𝑒𝑠𝑠𝑖𝑜𝑛 or 𝑆𝑡𝑎𝑟𝑡𝑇𝑎𝑔𝑆𝑒𝑠𝑠𝑖𝑜𝑛 queries;
• check the result of the session using 𝑅𝑒𝑠𝑢𝑙𝑡 query;
• send messages to protocol participants using 𝑆𝑒𝑛𝑑 query; messages are transmitted within

some fixed session 𝜋 to the session holder (the Reader is able to participate in parallel
sessions, but for Tags all sessions are strictly sequential, and the adversary is able to send
message only in the current session for the Tag);
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Adversarial capabilities-2

• set additional data to be authenticated and/or encrypted using 𝑆𝑒𝑡𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑏 query; the
bit 𝑏 controls which of the data messages (𝑀0,𝑀1) will be processed; in case of
AE-sessions it is possible that 𝑀0 ≠ 𝑀1 (this oracle formalizes the inability of adversary to
break the confidentiality of the transmitted data);

• test sessions using 𝑇𝑒𝑠𝑡𝑏 query; if the adversary is able to authenticate without the help of
Tag (or Reader), or to forge MAC-value, then it is possible to construct a session 𝜋 for
which there would be no matched session 𝜋′, i.e., it can be tested using 𝑇𝑒𝑠𝑡𝑏(𝜋) query;
the answer helps to guess the bit 𝑏.

Hence, bit 𝑏 controls the following properties: confidentiality, secure participant authentication,
data integrity within the session, integrity “at the session level”.
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More on 𝑇𝑒𝑠𝑡𝑏 oracle

𝑇𝑒𝑠𝑡𝑏(𝜋)
if (𝑏 = 0) then

return 0
else
𝑡1 ← 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠(𝜋)
𝑡2 ← NOT(𝑀𝑎𝑡𝑐ℎ(𝜋, 𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝑠))
return (𝑡1&𝑡2)

fi
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Matched sessions: what and why

• 𝑀𝑎𝑡𝑐ℎ predicate binds two sessions (from the Tag and the Reader “points of view”) in
one object;

• formalizes the following logic: if the authentication finished successfully, then the
legitimate partner was “alive”, i.e. responded properly to the holder’s challenge...

• in case of additional data with integrity check:
• Tag’s MAC value 𝜎1 binds 𝑟, 𝑅 and 𝐷𝑎𝑡𝑎,
• Reader’s MAC value 𝜎2 binds 𝑟 and 𝐷𝑎𝑡𝑎′,
• hence, 𝐷𝑎𝑡𝑎 and 𝐷𝑎𝑡𝑎′ are implicitly binded...

• i.e. if the Reader authentication is correct on the Tag’s side, then it is guaranteed that
𝐷𝑎𝑡𝑎′ is an answer not only to the Tag’s challenge 𝑟, but also to the 𝐷𝑎𝑡𝑎 message.
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MAM-mode with integrity check
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Another few words on 𝑇𝑒𝑠𝑡𝑏

• 𝑀𝑎𝑡𝑐ℎ and 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 filters out “trivial” attacks that shall not be considered as security
violations;

• e.g., if the adversary relays all the messages...
• or interrupts the delivery of the last message in the session.
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Adversarial model for authentication protocol

Goal: predict the bit 𝑏 (which additional data is processed inside 𝑆𝑒𝑡𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑏, whether the
check in 𝑇𝑒𝑠𝑡𝑏 is trivial or not).

Success measure:

Advauth+
Π (𝒜) = ℙ[ExpAUTH+−1

Π (𝒜) → 1] − ℙ[ExpAUTH+−0
Π (𝒜) → 1],

Main aim: estimate the maximal advantage Advauth+
Π (𝒜); the maximum is taken over the

adversarial class with the restrictions on computational complexity of 𝒜 and the number of
queries (as well as other query characteristics that depend on the the particular application of
RFID technology).
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Security reduction



Reduction

• Main goal: decompose the model for the whole protocol to the sub-models for the
sub-modules of the protocol;

• Idea: if main “building blocks” are “good”, then the whole protocol is “good”.
• We were able to decompose AUTH+ to the model for confidentiality only (𝐿𝑂𝑅2), and

the model for the integrity AND authentication (𝐴𝑈𝑇𝐻′);
• The last one is decomposed further to the integrity-only model (𝐸𝑈𝐹-𝐶𝑀𝐴) and

authentication-only model (𝐶ℎ𝑎𝑙);
• Each sub-model can be studied separately.
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Estimating the adversarial advantage

Figure 2: Schematic representation of the proof
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Estimating the adversarial advantage

Theorem
The following inequality holds:

AdvAUTH+

Π (𝑡, 𝑑, 𝒫, 𝒬,ℛ,Θ,ℳ,𝒩,Φ,Ψ, 𝒬, ℳ̂, Φ̂) ≤

≤
𝑑
∑
𝑖=1

Adv𝐿𝑂𝑅2(𝑡 + 𝑇, 𝑞𝑖, 𝜇𝑖, 𝜙𝑖, ̂𝑞𝑖, 𝜇𝑖, 𝜙𝑖)+

+2 ⋅
𝑑
∑
𝑖=1

AdvEUF-CMA(𝑡 + 𝑇, 𝑟𝑖 + 𝑞𝑖 + ̂𝑞𝑖,max (𝜇𝑖 + 2, 𝜇𝑖 + 2, 𝜈𝑖 + 1),

𝜙𝑖 + 2 ⋅ 𝑞𝑖 + 𝜙𝑖 + 2 ⋅ ̂𝑞𝑖 + 𝜓𝑖 + 𝑟𝑖, 𝜃𝑖)+

+2 ⋅
𝑑
∑
𝑖=1

(AdvPRP(𝑡 + 𝑇, 𝑝𝑖 + 𝜃𝑖) +
𝜃𝑖 ⋅ (𝑝𝑖 + 𝜃𝑖)

2𝑅𝑙𝑒𝑛 + 𝜃𝑖|𝐶𝑜𝑛𝑠𝑡𝑠|
|Dom| − 𝑝𝑖 − 𝜃𝑖 + 1).
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Example: simplifying assumptions

Let the following assumptions be true:

• The best estimate for «Magma» block cipher (in)security in sPRP-model is 𝑞⋅𝑡
2256

;

• the pair of modes (𝐶𝐵𝐶, 𝐶𝐵𝐶) with random 𝐼𝑉 is used;
• constant length is 4 bits, challenge length is 60 bits.

Let 𝑝 = max𝑖 𝑝𝑖, 𝜙 = (max𝑖 𝜙𝑖 + max𝑖 𝜙𝑖 + max𝑖 𝜓𝑖), 𝜇 = max𝑖 (𝜇𝑖, 𝜇𝑖, 𝜈𝑖), then it holds that:

AdvAUTH+

Π (𝑡, 𝑑, 𝒫, 𝒬,ℛ,Θ,ℳ,𝒩,Φ,Ψ, 𝒬, ℳ̂, Φ̂) ≤

≤ 6𝑑𝜙2
264 − 𝜙 + (𝑑𝑝

2

258 + 9𝑑𝑝
263 − 𝑝)+

+𝑑𝑝 ⋅ AdvEUF-CMA(3𝑝, 𝜇 + 2, 3𝜙 + 5𝑝) + +𝑑 ⋅ (𝑡 + 𝑇 + 2𝜙) ⋅ (𝑝 + 𝜙)
2255 .
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• the pair of modes (𝐶𝐵𝐶, 𝐶𝐵𝐶) with random 𝐼𝑉 is used;
• constant length is 4 bits, challenge length is 60 bits.

Let 𝑝 = max𝑖 𝑝𝑖, 𝜙 = (max𝑖 𝜙𝑖 + max𝑖 𝜙𝑖 + max𝑖 𝜓𝑖), 𝜇 = max𝑖 (𝜇𝑖, 𝜇𝑖, 𝜈𝑖), then it holds that:

AdvAUTH+

Π (𝑡, 𝑑, 𝒫, 𝒬,ℛ,Θ,ℳ,𝒩,Φ,Ψ, 𝒬, ℳ̂, Φ̂) ≤

≤ 6𝑑𝜙2
264 − 𝜙 + (𝑑𝑝

2

258 + 9𝑑𝑝
263 − 𝑝)+

+𝑑𝑝 ⋅ AdvEUF-CMA(3𝑝, 𝜇 + 2, 3𝜙 + 5𝑝) + +𝑑 ⋅ (𝑡 + 𝑇 + 2𝜙) ⋅ (𝑝 + 𝜙)
2255 .
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