The McEliece–type Cryptosystem based on *D*–codes

Yu. V. Kosolapov E. A. Lelyuk

Southern Federal University, Russia, e-mail: yvkosolapov@sfedu.ru, lelukevgeniy@mail.ru

The 12th Workshop on Current Trends in Cryptology (CTCrypt 2023), Volgograd, June 6-9, 2023

1/30

Object of Research

- 3 McEliece-type Cryptosystem Based on *D*-codes
- Security Analysis of the Cryptosystem

< ∃⇒

< 4[™] >

Object of Research

< ∃⇒

- ∢ 🗗 ▶

Competitions for post-quantum algorithms

- NIST PQC (USA, announced in 2016, now 4th round)
- KpqC Competition (South Korea, announced in 2022, now 1st round)

Competitions for post-quantum algorithms

- NIST PQC (USA, announced in 2016, now 4th round)
- KpqC Competition (South Korea, announced in 2022, now 1st round)

McEliece scheme

- Classic McEliece (NIST PQC)
- PALOMA (KpqC Competition)

Keys

- K_{sec} = (S, G_C, P), S ∈ GL_k(F₂), G_C generating matrix of [n, k, d]₂ Goppa code C, P permutation (n × n)-matrix;
- $K_{pub} = (\tilde{G} = SG_CP, t = \lfloor (d-1)/2 \rfloor).$

Keys

K_{sec} = (S, G_C, P), S ∈ GL_k(F₂), G_C — generating matrix of [n, k, d]₂ Goppa code C, P — permutation (n × n)-matrix;
K_{pub} = (G̃ = SG_CP, t = |(d − 1)/2|).

- resistance to structural attacks and attacks on the ciphertext
- fast encryption and decryption

Keys

K_{sec} = (S, G_C, P), S ∈ GL_k(F₂), G_C — generating matrix of [n, k, d]₂ Goppa code C, P — permutation (n × n)-matrix;
K_{nub} = (G̃ = SG_CP, t = |(d − 1)/2|).

- resistance to structural attacks and attacks on the ciphertext
- fast encryption and decryption

Disadvantages

public key size

McEliece Cryptosystem McE(C)

Attempts to reduce the key size

- Reed-Solomon codes
 - proposed (Niederreiter, 1986)
 - attacked by (Sidelnikov & Shestakov, 1992)
- Reed-Muller codes
 - proposed (Sidelnikov, 1994)
 - attacked by (Minder & Shokrollahi, 2007), (Borodin & Chizhov, 2014)
- algebro-geometric codes
 - proposed (Janwa & Moreno, 1996)
 - attacked by (Couvreur et. al., 2017)
- low-density parity-check codes
 - proposed (Baldi et. al., 2013)
 - attacked by (Fabšič et. al., 2017)

- Goppa codes alternate codes
- Attacks on some classes of alternate codes:
 - Wild-Goppa codes: "Polynomial time attack on wild McEliece over quadratic extensions" (Couvreur A., Otmani A., Tillich J. P., 2016)
 - subspace subcodes of Reed-Solomon codes: "On the Security of Subspace Subcodes of Reed-Solomon Codes for Public Key Encryption" (Couvreur A., Lequesne M., 2021)
 - BCH codes: "An Algebraic Attack Against McEliece-like Cryptosystems Based on BCH Codes" (Elbro F., Majenz C., 2022)
- The problem of investigation of other codes in a McEliece-type systems is relevant.

Advantages

- the ability to evaluate the characteristics of the new code through the base codes
- simplification of building a decoder
- the new code belongs to another class
- simplification of the security analysis of a new cryptosystem

Combinations examples:

- direct sum of codes
- combination of codes (repetition codes)
- transition from field extensions to basic fields
- code concatinating
- (U, U + V)-construction and its generalizations
- tensor product of codes and its generalizations

- McEliece-type cryptosystem based on *D*-code construction of Reed-Muller codes
- Security analysis of a cryptosystem based on the properties of the Schur-Hadamard degrees of *D*-codes on Reed-Muller codes.

D-codes

Ξ.

イロト イヨト イヨト イヨト

Tensor product of matrices

• Let
$$A = (a_{i,j}) - (k_1 \times n_1)$$
-matrix, $B - (k_2 \times n_2)$ -matrix
• $A \otimes B = \begin{pmatrix} a_{1,1}B & \cdots & a_{1,n_1}B \\ \vdots & \ddots & \vdots \\ a_{k_1,1}B & \cdots & a_{k_1,n_1}B \end{pmatrix} - (k_1k_2 \times n_1n_2)$ -matrix.

Tensor product of codes

• Let
$$C_i - [n_i, k_i, d_i]_q$$
-code, $i \in \{1, 2\}$.

• $C_1 \otimes C_2 = \mathcal{L}(G_{C_1} \otimes G_{C_2}) - [n_1 n_2, k_1 k_2, d_1 d_2]_q$ -code.

Image: A matrix

3

Let

- $J_1, J_2 \in \mathbb{N}$,
- $S_t = \{C_t(0), \ldots, C_t(J_t)\}, C_t(i) \subseteq \mathbb{F}_q^{n_t}, t = 1, 2,$
- $D_0 = \{(i,j) | i = 0, ..., J_1, j = 0, ..., J_2\},\$
- $D \subseteq D_0$,

•
$$C(D) = \mathcal{L}\left(\bigcup_{(i,j)\in D} C_1(i) \otimes C_2(j)\right).$$

Then *D*-code is a code $\overline{C(D)} \subseteq \mathbb{F}_q^{n_1 n_2}$ dual to C(D).

D-codes (another representation)

Let

•
$$C_t(0) \supset C_t(1) \supset ... \supset C_t(J_t), C_t(i) \in S_t, t = 1, 2,$$

• $\overline{C_t(0)} \subset \overline{C_t(1)} \subset ... \subset \overline{C_t(J_t)}, t = 1, 2,$
• $k_1 < k_2 < ... < k_s, k_i \in \{0, ..., J_1\},$
• $l_1 > l_2 > ... > l_s, l_i \in \{0, ..., J_2\}.$

Then

$$\overline{C(D)} = \sum_{i=1}^{s} \overline{C_1(k_i)} \otimes \overline{C_2(l_i)}.$$

$$\overline{C(D)} \longrightarrow [n, k, d]_q \text{-code, where}$$
• $n = n_1 n_2$,
• $d = d(\overline{C(D)}) = \min\{d(\overline{C_1(k_i)})d(\overline{C_2(l_i)}) \mid i = 1, ..., s\}$

Image: A matrix

æ

The Example of $\overline{C(D)}$ Based on Binary Reed-Muller Codes

Let

$$\begin{split} \mathcal{S}_1 &= \{ C_1(0) = \operatorname{RM}(8,8), C_1(1) = \operatorname{RM}(7,8), ..., \\ &\quad C_1(8) = \operatorname{RM}(0,8), C_1(9) = \{ \bar{0} \} \}, \\ \mathcal{S}_2 &= \{ C_2(0) = \operatorname{RM}(8,8), C_2(1) = \operatorname{RM}(7,8), ..., \\ &\quad C_2(8) = \operatorname{RM}(0,8), C_2(9) = \{ \bar{0} \} \}, \end{split}$$

then

$$\overline{C(D)} = \overline{C_1(3)} \otimes \overline{C_2(6)} + \overline{C_1(5)} \otimes \overline{C_2(4)} =$$

= RM(2,8) \otimes RM(5,8) + RM(4,8) \otimes RM(3,8),

 $\overline{C(D)}$ — [65536, 19821, 512]₂-code.

McEliece-type Cryptosystem Based on *D*-codes

< 3 >

McEliece–type Cryptosystem $McE(\overline{C(D)})$

Keys

• $K_{sec} = (S, G_{\overline{C(D)}}, P), S \in GL_k(\mathbb{F}_2), G_{\overline{C(D)}}$ — generating matrix of *D*-code $\overline{C(D)}$ with parameters $[n, k, d]_2, P$ — permutation $(n \times n)$ -matrix;

•
$$K_{pub} = (\tilde{G} = SG_{\overline{C(D)}}P, t = \lfloor (d-1)/2 \rfloor).$$

Encryption $\mathbf{m} (\in \mathbb{F}_q^k)$:

•
$$\mathbf{z} = \mathbf{m}\tilde{G} + \mathbf{e}$$
, $\operatorname{wt}(\mathbf{e}) = t$.

Decryption $z \in \mathbb{F}_q^n$:

• $\mathbf{m} = S^{-1}\tau(G)^{-1}\tau(\operatorname{Dec}_{\overline{C(D)}}(\mathbf{z}P^{-1}))$, where $\operatorname{Dec}_{\overline{C(D)}} : \mathbb{F}_q^n \to \overline{C(D)}$ efficient decoder for code $\overline{C(D)}$ and τ — any information set.

米間 とくほとくほとう ほ

Security Analysis of the Cryptosystem

∃ →

• Definition for codes $C, D \subseteq \mathbb{F}_q^n$:

 $C \star D = \mathcal{L}(\{\mathbf{x} \star \mathbf{y} | \mathbf{x} \in C, \mathbf{y} \in D\}), \mathbf{x} \star \mathbf{y} = (x_1y_1, ..., x_ny_n)$

- Product properties for some codes:
 - $\operatorname{RM}(r_1, m) \star \operatorname{RM}(r_2, m) = \operatorname{RM}(r_1 + r_2, m)$
 - $\operatorname{GRS}_{k_1} \star \operatorname{GRS}_{k_2} = \operatorname{GRS}_{k_1+k_2-1}$
- Used as code distinguisher

Theorem 1

Let $n_1, n_2 \in \mathbb{N}$, $n = n_1n_2$, C be a [n, k, d]-code satisfying the following conditions:

- $C \subset \mathbb{F}_q^{n_1} \otimes C_2$, $C_2 [n_2, k_2, d_2]$ -code,
- rank $(\tau_i(G_C)) = k_2, \tau_i = \{(i-1)n_2 + 1, ..., in_2\}, i = 1, ..., n_1$
- Attack efficient algorithm for structural attack on McE(C₂),

•
$$C^{\nu} = \mathbb{F}_q^{n_1} \otimes C_2^{\nu}$$
 for some $\nu (\in \mathbb{N})$,

• C_2^{ν} — indecomposable code.

Then there is an efficient algorithm AttackDkey that, given \tilde{G} , finds a permutation π such that

$$\pi(\mathcal{L}(\tilde{G})) \subseteq \mathbb{F}_q^{n_1} \otimes C_2.$$

イロト イヨト イヨト ・

æ

< ∃→

Image: A matrix and a matrix

Image: A matrix

æ

Image: Image:

э

20 / 30

< ∃⇒

< 47 ▶

Combined Attack

э

Let
$$\overline{C(D)}$$
 — $[n, k, d]_2$ -code, $n = n_1 n_2$, C_2 — $[n_2, k_2, d_2]_2$ -code,
 $\overline{C(D)} \subset \mathbb{F}_q^{n_1} \otimes C_2$.
Model for generating error vector e of weight t^1

•
$$\Pr(\mathbf{e}_i = 1) = t/n, i = 1, ..., n$$

•
$$Pr(\mathbf{e}_i = 0) = 1 - t/n, i = 1, ..., n$$

Kosolapov, Lelyuk (SFU)

22 / 30

Number of "good" blocks

• Minimum:

$$N_g^{min} = n_1 - \lfloor (d-1)/(d_2+1) \rfloor.$$

• Average (by the inclusion-exclusion formula):

$$N_g^{avg} = \lfloor n_1 - \sum_{r=0}^{n_1} r \cdot Q_r \rfloor,$$

where
$$Q_r = \frac{C_r(n_1, n_2, t_1, t_2, t)}{\binom{n}{t}}$$
, $C_r(n_1, n_2, t_1, t_2, t) = \sum_{k=r}^{n_1} (-1)^{k-r} {k \choose r} S_k$,
 $S_k = {n_1 \choose k} {n_2 \choose t_2+1} ^k {n_2 \choose t_-(t_2+1)k}$.

Then the probability P_{attack} of the success of the combined attack is estimated as follows:

P_{attack} ≥ P₁ · P₂
P₁ = (^{N_g}_{K_p})/(^{n₁}_{K_p}) — probability of choosing K_p "good" blocks
P₂ — probability that K_pn₂ of selected columns form a matrix of rank k

•
$$P_1^{min} = {\binom{N_g^{min}}{K_p}}/{\binom{n_1}{K_p}}, \ P_1^{avg} = {\binom{N_g^{avg}}{K_p}}/{\binom{n_1}{K_p}}$$

•
$$P_{attack}^{min} \ge P_1^{min} \cdot P_2$$
, $P_{attack}^{avg} \ge P_1^{avg} \cdot P_2$

Tensor product of Reed-Muller codes

• "On some properties of the Schur–Hadamard product for linear codes and their applications" (Deundyak V. M., Kosolapov Yu. V., 2020)

D-codes based on Reed-Muller codes

 "On the structural security of a McEliece-type cryptosystem based on the sum of tensor products of binary Reed-Muller codes" (Kosolapov Yu. V., Lelyuk E. A., 2022)

Table 1: Attack success probability for the tensor product of Reed-Muller codes

$\operatorname{RM}(r_1, m_1) \otimes \operatorname{RM}(r_2, m_2)$	р	K _p	P _{ISD}	P_{attack}^{min}	P_{attack}^{avg}
$\mathrm{RM}(4,7)\otimes\mathrm{RM}(3,7)$	0.1	99	2.379E-14	2.883E-06	3.956E-02
$\mathrm{RM}(5,7)\otimes\mathrm{RM}(3,7)$	0.3	120	1.577E-09	5.945E-05	2.265E-02
$\operatorname{RM}(6,7)\otimes\operatorname{RM}(3,7)$	0.9	127	1.716E-05	7.812E-03	7.812E-03
$\operatorname{RM}(4,8)\otimes\operatorname{RM}(3,8)$	0.2	163	4.868E-30	2.603E-08	8.101E-02
$\mathrm{RM}(5,8)\otimes\mathrm{RM}(3,8)$	0.1	219	1.931E-21	1.488E-07	2.749E-02
$\operatorname{RM}(6,8)\otimes\operatorname{RM}(3,8)$	0.3	247	9.941E-13	1.019E-05	1.179E-02
$\mathrm{RM}(4,8)\otimes\mathrm{RM}(3,7)$	0.2	163	4.412E-22	2.575E-08	8.014E-02
$\mathrm{RM}(4,8)\otimes\mathrm{RM}(2,8)$	0.2	163	2.788E-22	2.551E-08	7.938E-02

Table 2: Attack success probability for D-codes based on Reed-Muller codes

D–code	р	K _p	P _{ISD}	$P_{\scriptscriptstyle attack}^{min}$	$P_{_{attack}}^{_{avg}}$
[[4, 3], [5, 2]]	0.01	219	1.013E-34	1.117E-16	0.145
[[4, 3], [5, 2], [6, 1]]	0.01	247	2.646E-35	0	0.011
[[4, 3], [5, 2], [6, 1], [7, 0]]	0.01	255	2.536E-35	0	0.004

$$\begin{split} & [[r_1^1,r_1^2],\![r_2^1,r_2^2],\ldots] = \\ & = \mathrm{RM}(r_1^1,8) \otimes \mathrm{RM}(r_1^2,8) + \mathrm{RM}(r_2^1,8) \otimes \mathrm{RM}(r_2^2,8) + \ldots \end{split}$$

Table 3: Resistant *D*-codes

#	<i>D</i> –code	k	d	P _{ISD}
1^{2}	[[0, 8], [1, 7], [2, 6], [3, 5], [4, 4], [5, 3], [6, 2], [7, 1], [8, 0]]	39203	256	1.715E-51
2 ³	[[0,8], [1,7], [2,6], [3,5], [4,4], [5,3], [6,2], [7,1]]	39202	256	1.723E-51
3	[[1, 7], [2, 6], [3, 5], [4, 4], [5, 3], [6, 2], [7, 1]]	39201	256	1.732E-51
4	[[1, 7], [2, 6], [3, 5], [4, 4], [5, 3], [6, 2]]	39129	256	2.458E-51
5	[[2,6],[3,5],[4,4],[5,3],[6,2]]	39057	256	3.486E-51
6	[[2,6],[3,5],[4,4],[5,3]]	38021	256	4.796E-49
7	[[3,5],[4,4],[5,3]]	36985	256	5.498E-47
8	[[2, 5], [4, 3]]	19821	512	7.279E-41
9	[[4, 4]]	26569	256	1.156E-29

²" Effective attack on the McEliece cryptosystem based on Reed-Muller codes" (Borodin M. A., Chizhov I. V., 2014)

Kosolapov, Lelyuk (SFU)

Cryptosystem $McE(\overline{C(D)})$

Table 4: Comparison of the characteristics of McEliece-type cryptosystems

Code	Goppa code	Reed–Mu	ller code	<i>D</i> –code	
[<i>n</i> , <i>k</i> , <i>d</i>]	[3488,	[65536 ,	[65536,	[65536,	[65536,
	2720, ≥ 129]	14893, 1024]	39203, 256]	19821, 512]	39201, 256]
Size of publ. key	1.13Mb	116.35Mb	306.27Mb	154.85Mb	306.25Mb
R = k/n	pprox 0.78	pprox 0.23	pprox 0.6	≈ 0.3	pprox 0.6
Decoder	Patterson	Ree	ed	majority–logical	
	decoding	deco	ding	decoding	
t	64	511	127	255	127
PISD	$2^{-142.8}$	$2^{-192.62}$	$2^{-169.37}$	$2^{-136.16}$	$2^{-169.37}$
Structural attacks	_	+		_	

- D-codes based on Reed-Muller codes can be subcodes of Reed-Muller codes ⇒ decoders for Reed-Muller codes can be used.
- Decoders for Reed-Muller codes:
 - Sidelnikov–Pershakov decoder and its modifications: "Decoding Reed—Muller Codes with a Large Number of Errors" (Sidelnikov V. M., Pershakov A. S., 1992),
 - **Dumer's list decoder:** "Recursive decoding and its performance for low-rate Reed-Muller codes" (Dumer I., 2004),
 - permutation decoder: "A new permutation decoding method for Reed-Muller codes" (Kamenev M. et. al., 2019),
 - decoder for low-density codes: "Iterative Reed-Muller Decoding" (Geiselhart M. et. al., 2021).
- Reed–Muller codes are now being actively investigated due to their connection with polar codes.