On the rekeying (in)separability

Kirill Tsaregorodtsev Researcher at Cryptography laboratory, JSRPC "Kryptonite", Moscow, Russia

CTCrypt'2023 RUMP session

Main idea: it is possible to construct encryption scheme \mathcal{SE} with (internal) rekeying function f with the following properties:

• if rekeying function f is modelled as a random oracle, the scheme is secure;

- if rekeying function f is modelled as a random oracle, the scheme is secure;
- once f is instantiated with any efficiently computable function with "compact" representation (e.g., hash function; encrypting constants, etc.), the scheme is no longer secure in any meaningful security model;

- if rekeying function f is modelled as a random oracle, the scheme is secure;
- once f is instantiated with any efficiently computable function with "compact" representation (e.g., hash function; encrypting constants, etc.), the scheme is no longer secure in any meaningful security model;
- the interpretation of the result: even if the encryption scheme SE admits "idealized" internal rekeying, there is still no guarantee that it can be instantiated with some rekeying function;

- if rekeying function f is modelled as a random oracle, the scheme is secure;
- once f is instantiated with any efficiently computable function with "compact" representation (e.g., hash function; encrypting constants, etc.), the scheme is no longer secure in any meaningful security model;
- the interpretation of the result: even if the encryption scheme SE admits "idealized" internal rekeying, there is still no guarantee that it can be instantiated with some rekeying function;
- hence, the consideration of encryption scheme together with rekeying function is unavoidable,

- if rekeying function f is modelled as a random oracle, the scheme is secure;
- once f is instantiated with any efficiently computable function with "compact" representation (e.g., hash function; encrypting constants, etc.), the scheme is no longer secure in any meaningful security model;
- the interpretation of the result: even if the encryption scheme SE admits "idealized" internal rekeying, there is still no guarantee that it can be instantiated with some rekeying function;
- hence, the consideration of encryption scheme together with rekeying function is unavoidable,
- (internal) rekeying is the inseparable part of the encryption scheme.

Let SE be a "good" encryption scheme that admits idealized rekeying; let us screw it up and obtain a "bad" scheme SE.

- Let SE be a "good" encryption scheme that admits idealized rekeying; let us screw it up and obtain a "bad" scheme SE.
- SE works as follows: on the input m it firstly runs distinguishing algorithm $\mathcal{D}(f, m)$:

- Let \widehat{SE} be a "good" encryption scheme that admits idealized rekeying; let us screw it up and obtain a "bad" scheme SE.
- SE works as follows: on the input m it firstly runs distinguishing algorithm $\mathcal{D}(f, m)$:
 - if ${\mathcal D}$ returns 0, a string of 0's is appended to the end of the ciphertext,

- Let SE be a "good" encryption scheme that admits idealized rekeying; let us screw it up and obtain a "bad" scheme SE.
- SE works as follows: on the input m it firstly runs distinguishing algorithm $\mathcal{D}(f,m)$:
 - if ${\mathcal D}$ returns 0, a string of 0's is appended to the end of the ciphertext,
 - if \mathcal{D} returns 1, the secret key K is appended to the end of the ciphertext.

- Let \widehat{SE} be a "good" encryption scheme that admits idealized rekeying; let us screw it up and obtain a "bad" scheme SE.
- SE works as follows: on the input m it firstly runs distinguishing algorithm $\mathcal{D}(f,m)$:
 - if \mathcal{D} returns 0, a string of 0's is appended to the end of the ciphertext,
 - if \mathcal{D} returns 1, the secret key K is appended to the end of the ciphertext.
- The resulting ciphertext consists of $ct \leftarrow \widehat{SE}$. Enc(K, m) and $0^{klen} / K$.

m is interpreted as a pair (π, t), where π is some program for the Universal Turing Machine, t is the maximal number of steps;

- *m* is interpreted as a pair (π, t), where π is some program for the Universal Turing Machine, t is the maximal number of steps;
- \mathcal{D} chooses $x \stackrel{\mathcal{U}}{\leftarrow} \{0,1\}^{klen}$, runs π on input x no more than t steps and obtains y;

- *m* is interpreted as a pair (π, t), where π is some program for the Universal Turing Machine, t is the maximal number of steps;
- \mathcal{D} chooses $x \stackrel{\mathcal{U}}{\leftarrow} \{0,1\}^{klen}$, runs π on input x no more than t steps and obtains y;
- then \mathcal{D} queries f(x) and obtains y';

- *m* is interpreted as a pair (π, t), where π is some program for the Universal Turing Machine, t is the maximal number of steps;
- \mathcal{D} chooses $x \stackrel{\mathcal{U}}{\leftarrow} \{0,1\}^{klen}$, runs π on input x no more than t steps and obtains y;
- then \mathcal{D} queries f(x) and obtains y';
- if y = y', then \mathcal{D} returns 1, otherwise 0.

Main idea: there is no "compact" program π on the UTM for the Random Oracle.

• We still want modularity of the analysis, is this possible?

- We still want modularity of the analysis, is this possible?
- Yes, in the following sense: we can consider two separate sub-problems:

- We still want modularity of the analysis, is this possible?
- Yes, in the following sense: we can consider two separate sub-problems:
 - How SE behaves if is used with d independent keys (instead of a "rekeyed" ones)?

- We still want modularity of the analysis, is this possible?
- Yes, in the following sense: we can consider two separate sub-problems:
 - How SE behaves if is used with d independent keys (instead of a "rekeyed" ones)?
 - How SE behaves in **one round** of rekeying?

IK Leakage/Extractor

Let Leak be a function dependent on the secret key K; Ext is some function (extractor). Define the following Ext model.

IK Leakage/Extractor

Let Leak be a function dependent on the secret key K; Ext is some function (extractor). Define the following Ext model.

$$\mathsf{Adv}^{\mathrm{Ext}}_{\mathcal{SE}}(\mathcal{A}) = \mathbb{P}\Big[\mathbf{Exp}^{\mathrm{Ext-1}}_{\mathsf{Ext}}(\mathcal{A}) \to 1\Big] - \mathbb{P}\Big[\mathbf{Exp}^{\mathrm{Ext-0}}_{\mathsf{Ext}}(\mathcal{A}) \to 1\Big],$$

IK Leakage/Extractor

Let Leak be a function dependent on the secret key K; Ext is some function (extractor). Define the following Ext model.

$Adv^{\mathrm{Ext}}_{\mathcal{SE}}(\mathcal{A})$	$= \mathbb{P} \Big[\mathbf{Exp}_{Ext}^{\mathrm{Ext-1}} (\mathcal{A}$	$) \rightarrow 1] - \mathbb{P} \Big[\mathbf{Exp}_{Ext}^{\mathrm{Ext}} \Big]$	$^{0}(\mathcal{A}) \to 1 \Big],$
	$\frac{\mathbf{Exp}_{Ext}^{\mathrm{Ext}-b}(\mathcal{A})}{K \stackrel{\$}{\leftarrow} KGen}$	$\frac{\mathcal{O}^{\text{leak}}(m)}{\text{return } Leak_K(m)}$	
	if $b = 0$		
	$K' \stackrel{\$}{\leftarrow} KGen$		
	else		
	$K' \leftarrow Ext(K)$		
	fi		
	$b' \stackrel{\$}{\leftarrow} \mathcal{A}^{\mathcal{O}^{\mathrm{leak}}}(K')$		
	return b'		

• Ext formalized the following logic: even if the adversary has an access to the "additional information" about the key K (via Leak_K), it cannot distinguish the "real" rekeyed value $K' \leftarrow \text{Ext}(K)$ from the random one $K' \stackrel{\$}{\leftarrow} \text{KGen}$.

- Ext formalized the following logic: even if the adversary has an access to the "additional information" about the key K (via Leak_K), it cannot distinguish the "real" rekeyed value $K' \leftarrow \text{Ext}(K)$ from the random one $K' \stackrel{\$}{\leftarrow} \text{KGen}$.
- This model can be used to partially separate rekeying process from the encryption process (but not completely! due to the Leak_K).

Thank you for your attention!

Author(s):

Tsaregorodtsev Kirill

Researcher at Cryptography laboratory, JSRPC "Kryptonite", Moscow, Russia k.tsaregorodtsev@kryptonite.ru