
On the rekeying (in)separability

Kirill Tsaregorodtsev 
Researcher at Cryptography laboratory,
JSRPC “Kryptonite”, Moscow, Russia

CTCrypt’2023

RUMP session



Idealized rekeying

Main idea: it is possible to construct encryption scheme 𝒮ℰ with (internal) rekeying function
𝑓 with the following properties:

• if rekeying function 𝑓 is modelled as a random oracle, the scheme is secure;
• once 𝑓 is instantiated with any efficiently computable function with “compact”

representation (e.g., hash function; encrypting constants, etc.), the scheme is no longer
secure in any meaningful security model;

• the interpretation of the result: even if the encryption scheme 𝒮ℰ admits “idealized”
internal rekeying, there is still no guarantee that it can be instantiated with some rekeying
function;

• hence, the consideration of encryption scheme together with rekeying function is
unavoidable,

• (internal) rekeying is the inseparable part of the encryption scheme.

1



Idealized rekeying

Main idea: it is possible to construct encryption scheme 𝒮ℰ with (internal) rekeying function
𝑓 with the following properties:

• if rekeying function 𝑓 is modelled as a random oracle, the scheme is secure;

• once 𝑓 is instantiated with any efficiently computable function with “compact”
representation (e.g., hash function; encrypting constants, etc.), the scheme is no longer
secure in any meaningful security model;

• the interpretation of the result: even if the encryption scheme 𝒮ℰ admits “idealized”
internal rekeying, there is still no guarantee that it can be instantiated with some rekeying
function;

• hence, the consideration of encryption scheme together with rekeying function is
unavoidable,

• (internal) rekeying is the inseparable part of the encryption scheme.

1



Idealized rekeying

Main idea: it is possible to construct encryption scheme 𝒮ℰ with (internal) rekeying function
𝑓 with the following properties:

• if rekeying function 𝑓 is modelled as a random oracle, the scheme is secure;
• once 𝑓 is instantiated with any efficiently computable function with “compact”

representation (e.g., hash function; encrypting constants, etc.), the scheme is no longer
secure in any meaningful security model;

• the interpretation of the result: even if the encryption scheme 𝒮ℰ admits “idealized”
internal rekeying, there is still no guarantee that it can be instantiated with some rekeying
function;

• hence, the consideration of encryption scheme together with rekeying function is
unavoidable,

• (internal) rekeying is the inseparable part of the encryption scheme.

1



Idealized rekeying

Main idea: it is possible to construct encryption scheme 𝒮ℰ with (internal) rekeying function
𝑓 with the following properties:

• if rekeying function 𝑓 is modelled as a random oracle, the scheme is secure;
• once 𝑓 is instantiated with any efficiently computable function with “compact”

representation (e.g., hash function; encrypting constants, etc.), the scheme is no longer
secure in any meaningful security model;

• the interpretation of the result: even if the encryption scheme 𝒮ℰ admits “idealized”
internal rekeying, there is still no guarantee that it can be instantiated with some rekeying
function;

• hence, the consideration of encryption scheme together with rekeying function is
unavoidable,

• (internal) rekeying is the inseparable part of the encryption scheme.

1



Idealized rekeying

Main idea: it is possible to construct encryption scheme 𝒮ℰ with (internal) rekeying function
𝑓 with the following properties:

• if rekeying function 𝑓 is modelled as a random oracle, the scheme is secure;
• once 𝑓 is instantiated with any efficiently computable function with “compact”

representation (e.g., hash function; encrypting constants, etc.), the scheme is no longer
secure in any meaningful security model;

• the interpretation of the result: even if the encryption scheme 𝒮ℰ admits “idealized”
internal rekeying, there is still no guarantee that it can be instantiated with some rekeying
function;

• hence, the consideration of encryption scheme together with rekeying function is
unavoidable,

• (internal) rekeying is the inseparable part of the encryption scheme.

1



Idealized rekeying

Main idea: it is possible to construct encryption scheme 𝒮ℰ with (internal) rekeying function
𝑓 with the following properties:

• if rekeying function 𝑓 is modelled as a random oracle, the scheme is secure;
• once 𝑓 is instantiated with any efficiently computable function with “compact”

representation (e.g., hash function; encrypting constants, etc.), the scheme is no longer
secure in any meaningful security model;

• the interpretation of the result: even if the encryption scheme 𝒮ℰ admits “idealized”
internal rekeying, there is still no guarantee that it can be instantiated with some rekeying
function;

• hence, the consideration of encryption scheme together with rekeying function is
unavoidable,

• (internal) rekeying is the inseparable part of the encryption scheme.

1



Injecting weakness

• Let 𝒮ℰ be a “good” encryption scheme that admits idealized rekeying; let us screw it up
and obtain a “bad” scheme 𝒮ℰ.

• 𝒮ℰ works as follows: on the input 𝑚 it firstly runs distinguishing algorithm 𝒟(𝑓,𝑚):
• if 𝒟 returns 0, a string of 0’s is appended to the end of the ciphertext,
• if 𝒟 returns 1, the secret key 𝐾 is appended to the end of the ciphertext.

• The resulting ciphertext consists of 𝑐𝑡 ← 𝒮ℰ.Enc(𝐾,𝑚) and 0𝑘𝑙𝑒𝑛 / 𝐾.

2



Injecting weakness

• Let 𝒮ℰ be a “good” encryption scheme that admits idealized rekeying; let us screw it up
and obtain a “bad” scheme 𝒮ℰ.

• 𝒮ℰ works as follows: on the input 𝑚 it firstly runs distinguishing algorithm 𝒟(𝑓,𝑚):

• if 𝒟 returns 0, a string of 0’s is appended to the end of the ciphertext,
• if 𝒟 returns 1, the secret key 𝐾 is appended to the end of the ciphertext.

• The resulting ciphertext consists of 𝑐𝑡 ← 𝒮ℰ.Enc(𝐾,𝑚) and 0𝑘𝑙𝑒𝑛 / 𝐾.

2



Injecting weakness

• Let 𝒮ℰ be a “good” encryption scheme that admits idealized rekeying; let us screw it up
and obtain a “bad” scheme 𝒮ℰ.

• 𝒮ℰ works as follows: on the input 𝑚 it firstly runs distinguishing algorithm 𝒟(𝑓,𝑚):
• if 𝒟 returns 0, a string of 0’s is appended to the end of the ciphertext,

• if 𝒟 returns 1, the secret key 𝐾 is appended to the end of the ciphertext.

• The resulting ciphertext consists of 𝑐𝑡 ← 𝒮ℰ.Enc(𝐾,𝑚) and 0𝑘𝑙𝑒𝑛 / 𝐾.

2



Injecting weakness

• Let 𝒮ℰ be a “good” encryption scheme that admits idealized rekeying; let us screw it up
and obtain a “bad” scheme 𝒮ℰ.

• 𝒮ℰ works as follows: on the input 𝑚 it firstly runs distinguishing algorithm 𝒟(𝑓,𝑚):
• if 𝒟 returns 0, a string of 0’s is appended to the end of the ciphertext,
• if 𝒟 returns 1, the secret key 𝐾 is appended to the end of the ciphertext.

• The resulting ciphertext consists of 𝑐𝑡 ← 𝒮ℰ.Enc(𝐾,𝑚) and 0𝑘𝑙𝑒𝑛 / 𝐾.

2



Injecting weakness

• Let 𝒮ℰ be a “good” encryption scheme that admits idealized rekeying; let us screw it up
and obtain a “bad” scheme 𝒮ℰ.

• 𝒮ℰ works as follows: on the input 𝑚 it firstly runs distinguishing algorithm 𝒟(𝑓,𝑚):
• if 𝒟 returns 0, a string of 0’s is appended to the end of the ciphertext,
• if 𝒟 returns 1, the secret key 𝐾 is appended to the end of the ciphertext.

• The resulting ciphertext consists of 𝑐𝑡 ← 𝒮ℰ.Enc(𝐾,𝑚) and 0𝑘𝑙𝑒𝑛 / 𝐾.

2



Distinguisher

𝒟(𝑓,𝑚):

• 𝑚 is interpreted as a pair (𝜋, 𝑡), where 𝜋 is some program for the Universal Turing
Machine, 𝑡 is the maximal number of steps;

• 𝒟 chooses 𝑥 𝒰←− {0, 1}𝑘𝑙𝑒𝑛, runs 𝜋 on input 𝑥 no more than 𝑡 steps and obtains 𝑦;
• then 𝒟 queries 𝑓(𝑥) and obtains 𝑦′;
• if 𝑦 = 𝑦′, then 𝒟 returns 1, otherwise 0.

Main idea: there is no “compact” program 𝜋 on the UTM for the Random Oracle.

3



Distinguisher

𝒟(𝑓,𝑚):

• 𝑚 is interpreted as a pair (𝜋, 𝑡), where 𝜋 is some program for the Universal Turing
Machine, 𝑡 is the maximal number of steps;

• 𝒟 chooses 𝑥 𝒰←− {0, 1}𝑘𝑙𝑒𝑛, runs 𝜋 on input 𝑥 no more than 𝑡 steps and obtains 𝑦;

• then 𝒟 queries 𝑓(𝑥) and obtains 𝑦′;
• if 𝑦 = 𝑦′, then 𝒟 returns 1, otherwise 0.

Main idea: there is no “compact” program 𝜋 on the UTM for the Random Oracle.

3



Distinguisher

𝒟(𝑓,𝑚):

• 𝑚 is interpreted as a pair (𝜋, 𝑡), where 𝜋 is some program for the Universal Turing
Machine, 𝑡 is the maximal number of steps;

• 𝒟 chooses 𝑥 𝒰←− {0, 1}𝑘𝑙𝑒𝑛, runs 𝜋 on input 𝑥 no more than 𝑡 steps and obtains 𝑦;
• then 𝒟 queries 𝑓(𝑥) and obtains 𝑦′;

• if 𝑦 = 𝑦′, then 𝒟 returns 1, otherwise 0.

Main idea: there is no “compact” program 𝜋 on the UTM for the Random Oracle.

3



Distinguisher

𝒟(𝑓,𝑚):

• 𝑚 is interpreted as a pair (𝜋, 𝑡), where 𝜋 is some program for the Universal Turing
Machine, 𝑡 is the maximal number of steps;

• 𝒟 chooses 𝑥 𝒰←− {0, 1}𝑘𝑙𝑒𝑛, runs 𝜋 on input 𝑥 no more than 𝑡 steps and obtains 𝑦;
• then 𝒟 queries 𝑓(𝑥) and obtains 𝑦′;
• if 𝑦 = 𝑦′, then 𝒟 returns 1, otherwise 0.

Main idea: there is no “compact” program 𝜋 on the UTM for the Random Oracle.

3



What can be done then?

• We still want modularity of the analysis, is this possible?

• Yes, in the following sense: we can consider two separate sub-problems:
• How 𝒮ℰ behaves if is used with 𝑑 independent keys (instead of a “rekeyed” ones)?
• How 𝒮ℰ behaves in one round of rekeying?

4



What can be done then?

• We still want modularity of the analysis, is this possible?
• Yes, in the following sense: we can consider two separate sub-problems:

• How 𝒮ℰ behaves if is used with 𝑑 independent keys (instead of a “rekeyed” ones)?
• How 𝒮ℰ behaves in one round of rekeying?

4



What can be done then?

• We still want modularity of the analysis, is this possible?
• Yes, in the following sense: we can consider two separate sub-problems:

• How 𝒮ℰ behaves if is used with 𝑑 independent keys (instead of a “rekeyed” ones)?

• How 𝒮ℰ behaves in one round of rekeying?

4



What can be done then?

• We still want modularity of the analysis, is this possible?
• Yes, in the following sense: we can consider two separate sub-problems:

• How 𝒮ℰ behaves if is used with 𝑑 independent keys (instead of a “rekeyed” ones)?
• How 𝒮ℰ behaves in one round of rekeying?

4



Leakage/Extractor

Let Leak be a function dependent on the secret key 𝐾; Ext is some function (extractor).
Define the following Ext model.

AdvExt
𝒮ℰ (𝒜) = ℙ[ExpExt-1

Ext (𝒜) → 1] − ℙ[ExpExt-0
Ext (𝒜) → 1],

ExpExt-𝑏
Ext (𝒜)

𝐾 $←− KGen
if 𝑏 = 0

𝐾′ $←− KGen
else
𝐾′ ← Ext(𝐾)

fi

𝑏′ $←− 𝒜𝒪leak (𝐾′)
return 𝑏′

𝒪leak(𝑚)
return Leak𝐾(𝑚)

5



Leakage/Extractor

Let Leak be a function dependent on the secret key 𝐾; Ext is some function (extractor).
Define the following Ext model.

AdvExt
𝒮ℰ (𝒜) = ℙ[ExpExt-1

Ext (𝒜) → 1] − ℙ[ExpExt-0
Ext (𝒜) → 1],

ExpExt-𝑏
Ext (𝒜)

𝐾 $←− KGen
if 𝑏 = 0

𝐾′ $←− KGen
else
𝐾′ ← Ext(𝐾)

fi

𝑏′ $←− 𝒜𝒪leak (𝐾′)
return 𝑏′

𝒪leak(𝑚)
return Leak𝐾(𝑚)

5



Leakage/Extractor

Let Leak be a function dependent on the secret key 𝐾; Ext is some function (extractor).
Define the following Ext model.

AdvExt
𝒮ℰ (𝒜) = ℙ[ExpExt-1

Ext (𝒜) → 1] − ℙ[ExpExt-0
Ext (𝒜) → 1],

ExpExt-𝑏
Ext (𝒜)

𝐾 $←− KGen
if 𝑏 = 0

𝐾′ $←− KGen
else
𝐾′ ← Ext(𝐾)

fi

𝑏′ $←− 𝒜𝒪leak (𝐾′)
return 𝑏′

𝒪leak(𝑚)
return Leak𝐾(𝑚)

5



Extractor

• Ext formalized the following logic: even if the adversary has an access to the “additional
information” about the key 𝐾 (via Leak𝐾), it cannot distinguish the “real” rekeyed value
𝐾′ ← Ext(𝐾) from the random one 𝐾′ $←− KGen.

• This model can be used to partially separate rekeying process from the encryption process
(but not completely! due to the Leak𝐾).

6



Extractor

• Ext formalized the following logic: even if the adversary has an access to the “additional
information” about the key 𝐾 (via Leak𝐾), it cannot distinguish the “real” rekeyed value
𝐾′ ← Ext(𝐾) from the random one 𝐾′ $←− KGen.

• This model can be used to partially separate rekeying process from the encryption process
(but not completely! due to the Leak𝐾).

6



Author(s):

Thank you for your attention!

Tsaregorodtsev Kirill
Researcher at Cryptography laboratory,
JSRPC “Kryptonite”, Moscow, Russia
k.tsaregorodtsev@kryptonite.ru


