On the rekeying (in)separability

Kirill Tsaregorodtsev
Researcher at Cryptography laboratory,
JSRPC “Kryptonite”, Moscow, Russia

CTCrypt’2023
RUMP session I[(

KPUNTOHUT

IK Idealized rekeying

Main idea: it is possible to construct encryption scheme SE with (internal) rekeying function
f with the following properties:

IK Idealized rekeying

Main idea: it is possible to construct encryption scheme SE with (internal) rekeying function
f with the following properties:

= if rekeying function f is modelled as a random oracle, the scheme is secure;

IK Idealized rekeying

Main idea: it is possible to construct encryption scheme SE with (internal) rekeying function

f with the following properties:

= if rekeying function f is modelled as a random oracle, the scheme is secure;

= once f is instantiated with any efficiently computable function with “compact”
representation (e.g., hash function; encrypting constants, etc.), the scheme is no longer

secure in any meaningful security model;

IK Idealized rekeying

Main idea: it is possible to construct encryption scheme SE with (internal) rekeying function

f with the following properties:

= if rekeying function f is modelled as a random oracle, the scheme is secure;

= once f is instantiated with any efficiently computable function with “compact”
representation (e.g., hash function; encrypting constants, etc.), the scheme is no longer
secure in any meaningful security model;

= the interpretation of the result: even if the encryption scheme S& admits “idealized”
internal rekeying, there is still no guarantee that it can be instantiated with some rekeying

function;

IK Idealized rekeying

Main idea: it is possible to construct encryption scheme SE with (internal) rekeying function
f with the following properties:

= if rekeying function f is modelled as a random oracle, the scheme is secure;

= once f is instantiated with any efficiently computable function with “compact”
representation (e.g., hash function; encrypting constants, etc.), the scheme is no longer
secure in any meaningful security model;

= the interpretation of the result: even if the encryption scheme S& admits “idealized”
internal rekeying, there is still no guarantee that it can be instantiated with some rekeying
function;

= hence, the consideration of encryption scheme together with rekeying function is
unavoidable,

IK Idealized rekeying

Main idea: it is possible to construct encryption scheme SE with (internal) rekeying function
f with the following properties:

= if rekeying function f is modelled as a random oracle, the scheme is secure;

= once f is instantiated with any efficiently computable function with “compact”
representation (e.g., hash function; encrypting constants, etc.), the scheme is no longer
secure in any meaningful security model;

= the interpretation of the result: even if the encryption scheme S& admits “idealized”
internal rekeying, there is still no guarantee that it can be instantiated with some rekeying
function;

= hence, the consideration of encryption scheme together with rekeying function is
unavoidable,

= (internal) rekeying is the inseparable part of the encryption scheme.

IK Injecting weakness

= Let 8& be a “good"” encryption scheme that admits idealized rekeying; let us screw it up
and obtain a “bad"” scheme S€E.

IK Injecting weakness

= Let 8& be a “good"” encryption scheme that admits idealized rekeying; let us screw it up
and obtain a “bad"” scheme S€E.

= 8& works as follows: on the input m it firstly runs distinguishing algorithm D(f, m):

IK Injecting weakness

= Let 8& be a “good"” encryption scheme that admits idealized rekeying; let us screw it up
and obtain a “bad"” scheme S€E.

= 8& works as follows: on the input m it firstly runs distinguishing algorithm D(f, m):
= if D returns 0, a string of O's is appended to the end of the ciphertext,

IK Injecting weakness

= Let 8& be a “good"” encryption scheme that admits idealized rekeying; let us screw it up
and obtain a “bad"” scheme S€E.
= 8& works as follows: on the input m it firstly runs distinguishing algorithm D(f, m):

= if D returns 0, a string of O's is appended to the end of the ciphertext,
= if D returns 1, the secret key K is appended to the end of the ciphertext.

IK Injecting weakness

= Let 8& be a “good"” encryption scheme that admits idealized rekeying; let us screw it up
and obtain a “bad"” scheme S€E.
= 8& works as follows: on the input m it firstly runs distinguishing algorithm D(f, m):
= if D returns 0, a string of O's is appended to the end of the ciphertext,
= if D returns 1, the secret key K is appended to the end of the ciphertext.

= The resulting ciphertext consists of ct « 8&.Enc(K, m) and 0klen / K.

IK Distinguisher

D(f, m):

= m is interpreted as a pair (7,t), where 7 is some program for the Universal Turing
Machine, t is the maximal number of steps;

IK Distinguisher

D(f, m):

= m is interpreted as a pair (7,t), where 7 is some program for the Universal Turing
Machine, t is the maximal number of steps;

u
= D chooses x < {0,1}X!¢" runs 7 on input x no more than t steps and obtains ;

IK Distinguisher

D(f, m):

= m is interpreted as a pair (7,t), where 7 is some program for the Universal Turing
Machine, t is the maximal number of steps;

u
= D chooses x < {0,1}X!¢" runs 7 on input x no more than t steps and obtains ;

= then D queries f(x) and obtains y’;

IK Distinguisher

D(f, m):

= m is interpreted as a pair (7,t), where 7 is some program for the Universal Turing
Machine, t is the maximal number of steps;

u
= D chooses x < {0,1}X!¢" runs 7 on input x no more than t steps and obtains ;
= then D queries f(x) and obtains y’;
= if y=1y', then D returns 1, otherwise 0.

Main idea: there is no “compact” program 7 on the UTM for the Random Oracle.

IK What can be done then?

= We still want modularity of the analysis, is this possible?

IK What can be done then?

= We still want modularity of the analysis, is this possible?

= Yes, in the following sense: we can consider two separate sub-problems:

IK What can be done then?

= We still want modularity of the analysis, is this possible?
= Yes, in the following sense: we can consider two separate sub-problems:

= How 8& behaves if is used with d independent keys (instead of a “rekeyed” ones)?

IK What can be done then?

= We still want modularity of the analysis, is this possible?
= Yes, in the following sense: we can consider two separate sub-problems:

= How 8& behaves if is used with d independent keys (instead of a “rekeyed” ones)?
= How 8& behaves in one round of rekeying?

IK Leakage/Extractor

Let Leak be a function dependent on the secret key K; EXt is some function (extractor).
Define the following Ext model.

IK Leakage/Extractor

Let Leak be a function dependent on the secret key K; EXt is some function (extractor).
Define the following Ext model.

Advist(A) = P[Expgﬁ'l(ﬂ) - 1] - P[Expgﬁ'o(ﬂ) - 1],

IK Leakage/Extractor

Let Leak be a function dependent on the secret key K; EXt is some function (extractor).
Define the following Ext model.

Advist(A) = P[Expgﬁ'l(ﬂ) - 1] - P[Expgﬁ'o(ﬂ) - 1],

Expgry (A) 0%(m)
K i KGen return Leaky(m)

ifb=0

$
K’ < KGen
else
K' <~ Ext(K)
fi
b iﬂoleak(K,)

return b’

I Extractor

= Ext formalized the following logic: even if the adversary has an access to the “additional
information” about the key K (via Leaky), it cannot distinguish the “real” rekeyed value

$
K' < Ext(K) from the random one K’ < KGen.

I Extractor

= Ext formalized the following logic: even if the adversary has an access to the “additional
information” about the key K (via Leaky), it cannot distinguish the “real” rekeyed value

$
K' < Ext(K) from the random one K’ < KGen.

= This model can be used to partially separate rekeying process from the encryption process
(but not completely! due to the Leakyg).

Thank you for your attention!

Author(s):

Tsaregorodtsev Kirill

Researcher at Cryptography laboratory,
JSRPC “Kryptonite”, Moscow, Russia
k.tsaregorodtsev@kryptonite.ru

