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Introduction

Shannon's properties1 are often implemented in modern block ciphers by using three
layers in each round:

1 the round key layer,

2 the confusion layer,

3 di�usion layer.

The confusion layer is often realized as a parallel application of nonlinear substi-
tution boxes (S-boxes)

n︷ ︸︸ ︷

S S S ... S

Remark

For computational reasons (n, n)-functions are better used as s-boxes when n is even,
the best being when n is a power of 2.

In this report, special attention is paid to the di�erential uniformity of s-boxes.
1 Shannon C. A mathematical theory of cryptography, Tech. Rep. MM 45-110-02, Bell Labs.

Tech. Memo., 1945.
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Introduction

A mapping is called di�erentially △-uniform1,2 if for every non-zero input di�er-
ence and any output di�erence the number of possible inputs has a uniform upper
bound △.

Remark

The existence of di�erentially 2-uniform permutations of F2n for even n > 6 is an open
problem3. It is then important to �nd as many di�erentially 4-uniform permutations
as possible in even dimension.

There are two main sources of
di�erentially 4-uniform permutations

the known permutations
permutations obtained
by modi�cations of
known permutations

1 Nyberg K. Di�erentially uniform mappings for cryptography. Proceedings of EUROCRYPT
1993, Lecture Notes in Computer Science 765, 1994, pp. 55�64.

2 Sachkov V.N. Combinatorial properties of di�erentially 2-uniform substitutions. Mat. Vopr.
Kriptogr., 6:1 (2015), pp. 159-179.

3 Carlet C. Open questions on nonlinearity and on APN functions. Proceedings of Arithmetic
of Finite Fields 5th International Workshop, WAIFI 2014, LNCS 9061 (2015), pp. 83-107.
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Introduction

We begin with the known permutations:

1 power functions (for example, the inverse function1 � g (x) = x2
n−2; the

Gold function2 � g (x) = x2
i+1, gcd (i, n) = 2, n ≡ 2 (mod 4); the Kasami

function3 � g (x) = x2
2i−2i+1, gcd (i, n) = 2; the Dobbertin function4 �

g (x) = x2
n/2+n/4+1

, 4 | n, 8 ∤ n);
2 polynomial functions (for example, binomial functions5

ζx2
s+1 + ζ2

k
x2

−k+2k+s
,

where ζ is a primitive �eld element of F2n , n ≡ 3k, k is even, k/2 is odd, 3 ∤ k,
gcd (n, s) = 2, 3 | (k + s)).

1 Nyberg K. Di�erentially uniform mappings for cryptography. Proceedings of EUROCRYPT
1993, Lecture Notes in Computer Science 765, 1994, pp. 55�64.

2 Gold R. Maximal recursive sequences with 3-valued recursive crosscorrelation functions.
IEEE Transactions on Information Theory 14, 1968, pp. 154�156.

3 Kasami T. The weight enumerators for several classes of subcodes of the second order binary
Reed�Muller codes. Information and Control 18, 1971, pp. 369�394.

4 Dobbertin H. Îne-to-one highly nonlinear power functions on GF(2n). Applicable Algebra
in Engineering, Communication and Computing (AAECC), 9:2(1998), pp. 139�152.

5 Bracken C., Tan C. and Tan Y. Binomial di�erentially 4 uniform permutations with high
nonlinearity. Finite Fields and Their Applications 18:3(2012), pp. 537-546.

Menyachikhin A.V. Adapted spectral-di�erential method 3 / 34



Introduction
We continue with permutations obtained by modi�cations of known permutations:

1 the switching constructions1. These permutations were obtained by adding
Boolean functions to the inverse function g (x) = x2

n−2 (for example, con-
structions of the following type

g (x) = x2
n−2 + trn

(
x2 (x+ 1)2

n−2
)
è

g (x) = x2
n−2 + trn

(
x(2

n−2)d +
(
x2

n−2 + 1
)d)

,

where d = 3
(
2t + 1

)
, 2 ≤ t ≤ n/2− 1 and other constructions);

2 the Carlet constructions (for example, construction2 that consist in restricting
APN-functions in n+ 1 variables to a linear manifold of dimension n = 2k and
its various generalizations3; construction of the following type4

g
(
x, x′

)
=


(
x2

n−1−2, f (x)
)
, if x′ = 0,(

cx2
n−1−2, f

(
xc2

n−1−2 + 1
))

, if x′ = 1,

where n ≥ 6, n is even, c ∈ F2n−1 \ F2, trn−1 (c) = trn−1

(
c2

n−1 − 2
)

= 1,

x ∈ F2n−1 , x′ ∈ F2, f is n− 1 variables Boolean function);

1 Qu L., Tan Y., Tan C. H., and Li C. Constructing di�erentially 4-uniform permutations over
via the switching method. IEEE Transactions on Information Theory 59:7(2013), pp. 4675�4686.

2 Carlet C. Boolean functions for cryptography and coding theory. Cambridge University
Press, 2020, 574 p.

3 Davydov S.A., Kruglov I.A. A method of construction of di�erentially 4-uniform permuta-
tions over Vm for even m. Diskr. Mat., 31:2 (2019), pp. 69-76.

4Carlet C., Tang D., Tang X., and Liao Q. New construction of di�erentially 4-uniform bi-
jections. Proceedings of INSCRYPT 2013, LNCScience 8567 (2014), pp. 22�38.
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Introduction

3 constructions that implement multiplication by cycles (for example,

permutation1 obtained from the inverse function g (x) = x2
n−2 by swapping

its values at two di�erent points x1, x2 ∈ F×
2n , trn

(
x1x

−1
2

)
trn

(
x−1
1 x2

)
= 1;

permutations2 obtained from the inverse function by cyclically shifting the im-
ages of the function over some subset

g (x) = (πi (x))
2n−2 ,

where πi =
(
i, ci, c

−1
i

)
, ci ∈ F2n−1 \ F2, trn (ci) = trn

(
(ci + 1)−1

)
= 1,

i ∈ {0, 1}, trn
(
(c1 + 1)−3

)
= 0, trn

(
c−1
1

)
= 1; and other constructions);

4 permutations obtained by applying a�ne transformations to an inverse function
on some sub�elds of F2n (for example, construction of the following type3

g (x) =

{
c0x2

n−2 + c1, if x2
m

= x,

x2
n−2, if x2

m ̸= x,

where c0, c1 ∈ F2m , n = mk, x ∈ F2n );

1 Yu Y., Wang M., Li Y. Constructing low di�erential uniformity functions from known ones.
Chinese Journal of Electronics, 22:3 (2013), pp. 495-499.

2 Fu S. and Feng X. Involutory di�erentially 4-uniform permutations from known construc-
tions. Designs, Codes and Cryptography 87:1(2018), pp. 31�56.

3 Zha Z., Hu L., and Sun S. Constructing new di�erentially 4-uniform permutations from the
inverse function. Finite Fields and Their Applications 25 (2014), pp. 64�78.
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Introduction

6 the butter�y construction1 and its various generalizations2,3 (for example, con-
struction of the following type4

g
(
x, x′

)
=

(
f
(
x, x′

)
, f

(
x′, x

))
and g

(
x, x′

)
=

(
f
(
f−1

(
x, x′

)
, x′

)
, f−1

(
x, x′

))
,

where x, x′ ∈ F2n/2 , n = 4k + 2, k ≥ 1, f (x, x′) = (x+ c1x′)
3 + c2x′3,

c1, c2 ∈ F2n/2 , c2 ̸= (1 + c1)
3.

The main idea of this report

Combining an algebraic and heuristic approaches to construction s-boxes with low
di�erential uniformity.

1 Perrin L., Udovenko A., and Biryukov A.. Cryptanalysis of a theorem: decomposing the
only known solution to the big APN problem. Proceedings of CRYPTO 2016, Lecture Notes in
Computer Science 9815, part II, 2016, pp. 93�122.

2 De La Cruz Jimenez R.A. Constructing 8-bit permutations, 8-bit involutions and 8-bit
orthomorphisms with almost optimal cryptographic parameters. Mat. Vopr. Kriptogr., 12:3
(2021), pp. 89-124.

3 Fomin D.B. New classes of 8-bit permutations based on butter�y structure. Mat. Vopr.
Kriptogr., 10:2 (2019), pp. 169-180.

4 Canteaut A., Duval S., and Perrin L. A generalisation of Dillon's APN permutation with the
best known di�erential and nonlinear properties for all �elds of size 24k+2. IEEE Transactions
on Information Theory 63:11 (2017), pp. 7575�7591.
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Main de�nitions and notations
Let H < F×

2n be the subgroup of order l of the multiplicative group of the
�eld F2n , 0 < l < 2n − 1, 2n − 1 = l · r, where r ∈ N, ζ is a primitive �eld el-
ement of F2n , H = ⟨ζr⟩. The group F×

2n is partitioned into cosets of H:

F×
2n =

r−1⋃
i=0

Hi, Hi = ζiH, i = 0, ..., r − 1.

De�nition 1

Piecewise-linear function1−5 g : F2n → F2n is de�ned as

g (x) =

{
0, if x = 0,
ζaix, if x ∈ Hi,

where ai ∈ {0, ..., 2n − 2}, i = 0, ..., r − 1.

It is well known2,3 that function g is bijective if and only if bijective function
π : Zr → Zr, π (i) = (ai + i)mod r, i = 0, ..., r − 1

Let Lr (F2n ) be the set of all piecewise-linear permutations satisfying conditions
of de�nition 1.

For all n > 1 we have |Lr (F2n )| = lrr!.
1 Wells C. Groups of permutation polynomials. Monatshefte f�ur Mathematik, 71 (1967),

pp. 248-262.
2 Evans A. Orthomorphisms graphs and groups. Springer-Verlag, Berlin, 1992, 114 p.
3 Trishin A.E. The nonlinearity index for a piecewise-linear substitution of the additive group

of the �eld F2n . Prikl. Diskr. Mat., 4:30 (2015), pp. 32-42.
4 Bugrov A.D. Piecewise-a�ne permutations of �nite �elds. Prikl. Diskr. Mat., 4:30 (2015),

pp. 5-23.
5 Pogorelov B.A., Pudovkina M.A. Classes of piecewise quasia�ne transformations on the

dihedral, the quasidihedral and the modular maximal-cyclic 2-group. Diskr. Mat., 34:1 (2022),
pp. 103-125.
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Main de�nitions and notations

Let g : F2n → F2n be a function from a set F2n to a set F2n . If a set M is a
subset of F2n , then the restriction of g to M is the function gM : M → F2n .

De�nition 2

The di�erential uniformity pgM of the mapping gM is de�ned as

pgM = max
α∈F×

2n
,β∈F2n

p
gM
α,β ,

where
p
gM
α,β = |{x ∈M |x+ α ∈M, g (x+ α) + g (x) = β }| .

If M is a proper subset of F2n , then the pgM parameter is called the partial
di�erential uniformity of the function g over the set M .

Remarks

1 Notice that M ⊂ F2n may be not closed under operation + in the �eld F2n .
2 The introduced de�nition is consistent with the known formulation if the set
M ⊂ F2n is closed under operation + in the �eld F2n .

3 For a chain of subsets M0 ⊆M1 ⊆ ... ⊆Ms−1 ⊆ F2n we have

pgM0
≤ pgM1

≤ ... ≤ pgMs−1
≤ pg .

The di�erence distribution table P (gM ) of the mapping gM counts the number
of cases when the input di�erence of a pair is α and the output di�erence is β.
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Main de�nitions and notations
For the mapping gM and each number i = 0, 1, ..., |M |, we de�ne the set

DgM ,i =
{
(α, β) ∈ F×

2n × F2n

∣∣∣pgMα,β = i
}
.

De�nition 3

The di�erential spectrum of the mapping gM is de�ned as

D⃗gM =
(
|DgM ,0|, |DgM ,1|, |DgM ,2|, ..., |DgM ,|M||

)
.

De�nition 4

The nonlinearity nlg of the function g : F2n → F2n is de�ned as

nlg = 2n−1 −
1

2
max

α∈F2n ,β∈F×
2n

wgβ (α) ,

where wgβ (α) =
∑

x∈F2n
(−1)trn(βg(x)+αx) is a Walsh transform of a Boolean function

gβ : F2n → F2 as follows gβ (x) = trn (βg (x)).

For the function g : F2n → F2n and each number i = 0, 1, ..., 2n−1 − 2
n
2
−1, we

de�ne the set

Lg,i =
{
(α, β) ∈ F2n × F×

2n

∣∣∣wgβ (α) = i
}
.

De�nition 5

The linear spectrum of the function g is de�ned as

L⃗g =
(
|Lg,0|, |Lg,1|, |Lg,2|, ..., |L

g,2n−1−2
n
2

−1 |
)
.
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Main de�nitions and notations

De�nition 6

The generalized algebraic degree λg of the permutation g ∈ S (F2n ) is de�ned as

λg = min
{
λg , λg−1

}
,

where
λg = min

α∈F×
2n

deg (tr (ag (x))) , λg−1 = min
α∈F×

2n

deg
(
tr

(
ag−1 (x)

))
,

and deg denotes the algebraic degree of the Zhegalkin polynomial of Boolean function.

De�nition 7

Two permutations g, h ∈ S (F2n ) are linear equivalent (g
L∼ h) if there exist linear

permutations L1, L2 : F2n → F2n such that

L2 ◦ g ◦ L1 = h.

The set of all �xed point of a permutation g ∈ S (F2n ) is denoted by Fg .
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On the di�erential and linear spectra of piecewise-linear substitutions

Proposition 1

Let g ∈ Lr (F2n ) and ζ is a primitive �eld element of F2n . Then x0 ∈ F2n is a solution
to equation g (x+ α0)+g (x) = β0, α0, β0 ∈ F2n if and only if xj = x0ζrj is a solution

to equation g (x+ αj) + g (x) = βj , αj = α0ζrj , βj = β0ζrj , j = 1, 2, ..., l − 1.

Corollary

For g ∈ Lr (F2n ) and any number i = 0, 1, ..., 2n−1 we have |Dg,i| ≡ 0 (mod l).

Proposition 2

Let g ∈ Lr (F2n ) and ζ is a primitive �eld element of F2n . Then x0 ∈ F2n is a solution
to equation trn (x · α0) = trn (g (x) · β0), α0, β0 ∈ F2n if and only if xj = x0ζrj is

a solution to equation trn (x · αj) = trn (g (x) · βj), αj = α0ζr(l−i), βj = β0ζr(l−j),
j = 1, 2, ..., l − 1.

Corollary

For g ∈ Lr (F2n ) and any number i = 0, 1, ..., 2n−1−2
n
2
−1 we have |Lg,i| ≡ 0 (mod l).
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The joint distribution of parameters pg and nlg for 10
8

randomly generated permutations g ∈ L15 (F28)

pg

nlg
106 104 102 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

0 1 2 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222
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The joint distribution of parameters pg and nlg for 10
8

randomly generated permutations g ∈ L15 (F28)
nlg 106 104∣∣∣Lg,nlg

∣∣∣
17 1 ... 18 1 ... 18

pg

∣∣Dg,pg

∣∣
17

6

16

...

64

0 1 2 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222
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E�cient computation of the di�erential spectrum

of piecewise-linear substitutions

We de�ne mapping ψ : F×
2n →

{
1, ζ, ζ2, ..., ζr−1

}
as follows ψ (x) = ζi if x ∈ Hi,

i ∈ {0, ..., r − 1}, and for any x ∈ F×
2n we de�ne the permutation σx ∈ S (F2n ) as

follows σx (y) = yx−1ψ (x).
Proposition 1 allows us to associate any row of the matrix Pg(

pgα,0, p
g
α,1, p

g
α,ζ , ..., p

g

α,ζ2
n−2

)
with the row(

pg
ψ(α),0

, pg
ψ(α),1

, pg
ψ(α),ζ

, ..., pg
ψ(α),ζ2

n−2

)
=

=

(
pg
α,σα(0)

, pg
α,σα(1)

, pg
α,σα(ζ)

, ..., pg
α,σα(ζ2

n−2)

)
of the same matrix. Hence, the matrix Pg of the permutation g ∈ Lr (F2n ) has at
most r unique rows.
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E�cient computation of the di�erential spectrum

of piecewise-linear substitutions

Example 1

Let H is the subgroup of order 5 of F24 = F2 [x] /x4 + x+ 1 and ζ = 2 is a primitive

�eld element of F24 . The group F×
24

is partitioned into cosets of H:

F×
24

= {8, c, a, f, 1}︸ ︷︷ ︸
H0

∪{3, b, 7, d, 2}︸ ︷︷ ︸
H1

∪{6, 5, e, 9, 4}︸ ︷︷ ︸
H2

.

Permutation g ∈ L3 (F24 )

0 9 7 d f 8 1 3 4 a 5 2 6 b c e

The di�erence distribution table P (g) of the permutation g

α

β
0 1 2 4 8 3 6 c b 5 a 7 e f d 9

1 0 0 4 0 0 0 0 0 0 0 2 4 2 0 2 2

2 0 2 0 2 2 0 0 0 2 2 2 2 2 0 0 0

4 0 4 2 0 0 0 2 2 0 0 0 0 2 2 0 2

8 0 0 2 2 0 4 0 0 0 0 0 0 0 2 4 2

3 0 0 0 0 2 0 2 2 0 0 0 2 2 2 2 2

6 0 2 0 2 4 2 0 0 0 2 2 0 0 0 0 2

c 0 2 4 2 0 2 2 0 4 0 0 0 0 0 0 0

b 0 2 2 2 0 0 0 2 0 2 2 0 0 0 2 2

5 0 0 0 2 2 0 2 4 2 0 0 0 2 2 0 0

a 0 0 0 0 2 4 2 0 2 2 0 4 0 0 0 0

7 0 0 2 2 2 2 2 0 0 0 2 0 2 2 0 0

e 0 2 0 0 0 0 2 2 0 2 4 2 0 0 0 2

f 0 0 0 0 0 0 0 2 4 2 0 2 2 0 4 0

d 0 2 0 0 0 2 2 2 2 2 0 0 0 2 0 2

9 0 0 0 2 2 0 0 0 0 2 2 0 2 4 2 0
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E�cient computation of the di�erential spectrum

of piecewise-linear substitutions

Denote by H(i0,...,is−1)
=

s−1⋃
j=0

Hij ∪ {0}, where s ∈ {1, ..., r}. Consider

the mapping gH(i0,...,is−1)
: H(i0,...,is−1)

→ F2n , which is the restriction of the

permutation g ∈ Lr (F2n ) to the set H(i0,...,is−1)
. Proposition 1 gives us

the following algorithm for calculating the di�erential spectrum of the mapping
gH(i0,...,is−1)

: H(i0,...,is−1)
→ F2n (see Fig. 1).

ai0 ai1 ais−1

︸ ︷︷ ︸
l

0 ... Hi0 ... Hi1 ... His−1 ... His ... His−1+k ...

Figure 1. The idea of algorithm 1

Proposition 3

Di�erential spectrum D⃗gH
(i0,...,is−1)

of the mapping gH(i0,...,is−1)
, s ∈ {1, ..., r},

can be calculated using algorithm 1 with complexity t,

t ≤ cls2, c = const.

Remark

For s = r the complexity of algorithm 1 is l times lower than the complexity of the
classical approach.
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E�cient computation of the di�erential spectrum

of piecewise-linear substitutions
Algorithm 1 can be easily modi�ed for the case when it is necessary to calculate

the di�erential spectrum D⃗gH
(i0,...,is−1+k)

of the mapping gH(i0,...,is−1+k)
from

the known mapping gH(i0,...,is−1)
, di�erence distribution table PgH

(i0,...,is−1)
and

di�erential spectrum D⃗gH
(i0,...,is−1)

(see Fig. 2).

ai0 ai1 ais−1 ais ais−1+k

︸ ︷︷ ︸
l

0 ... Hi0 ... Hi1 ... His−1 ... His ... His−1+k ...

Figure 2. The idea of algorithm 2

Proposition 4

Di�erential spectrum D⃗gH
(i0,...,is−1+k)

of the mapping gH(i0,...,is−1+k)
,

s ∈ {1, ..., r − 1}, can be calculated from the di�erential spectrum D⃗gH
(i0,...,is−1)

and the submatrix PgH
(i0,...,is−1)

(
1, ζ, ζ2, ..., ζr−1

0, 1, ζ, ..., ζ2
n−2

)
of the matrix PgH

(i0,...,is−1)
of the mapping gH(i0,...,is−1)

using algorithm 2 with t complexity,

t ≤ cls, c = const.

1 Menyachikhin A.V. The change in linear and di�erential characteristics of substitution after
the multiplication by transposition. Mat. Vopr. Kriptogr., 11:2 (2020), pp. 111-123.
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Adapted spectral-di�erential method for constructing

s-boxes

ai0
∈ {0, ..., 2n − 2}

pgH(i0)

∣∣H(i0,i1)

∣∣ · pg′
H(i0,i1)

> △

ai1
a′
i1

a′′
i1

gH(i0)

gH(i0,i1)

g′
H(i0,i1)

g′′
H(i0,i1)

pgH(i0,i1)
pg′′

H(i0,i1)

Figure 3. The main idea of algorithm 3 implementing the adapted
spectral-di�erential method

Proposition 5

For n, r, w ∈ N, r | 2n − 1 we have the following complexity t of algorithm 3:

t ≤ cw2n (r − 1)
(
2n−1 + n+ logw + r

/
2
)
, where c = const.

1 Menyachikhin A.V. Spectral-linear and spectral-di�erential methods for generating s-boxes
having almost optimal cryptographic parameters. Mat. Vopr. Kriptogr., 8:2 (2017), pp. 97-116.
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Examples of di�erentially 4-uniform piecewise-linear permutations

g ∈ L15 (F28) constructed using algorithm 3

Let F28 = F2 [x]
/
x8 + x4 + x3 + x+ 1, ζ = 3 is a primitive �eld element of F28

a⃗g = (a0, a1, ..., a14) pg
∣∣Dg,pg

∣∣ nlg
∣∣Lg,nlg ∣∣ λg

ef e1 11 b4 35 44 ea 9a f2 d1 46 9c 18 56 80 4 3825 102 34 7

ef e1 25 5 42 73 ab 82 cd 29 d3 17 ae 9f e0 4 4029 106 102 7

ef dd 3c 52 88 83 a8 59 29 6d 84 d9 4e 3a f9 4 4029 102 17 7

ef dd 79 86 2 9b 3f 2b 2d 70 4e 83 d5 e7 2a 4 4131 104 68 7

ef de 9a 44 5 2 ab 73 8e 10 eb 5f 42 60 ae 4 4182 102 17 7

ef de 34 70 10 c5 cd 83 22 ed 23 c0 ca b8 cf 4 4233 104 17 7

ef dd 43 86 16 73 df 3 bc b8 ce 57 7e 7f 44 4 4233 104 34 7

ef dd 3e 91 7c e3 d6 da b2 2 8f 33 17 fb 5c 4 4233 102 17 7

ef dd f9 c6 1b 5f c0 7e 81 49 c1 d b7 7f 6e 4 4233 102 34 7

ef e1 be 14 20 f8 57 8a 52 d0 1f db 16 22 a0 4 4233 100 17 7

ef e3 23 a 15 83 d1 91 f 84 4c 94 bb 3e d0 4 4284 106 102 7

ef de 12 51 d8 c6 f c3 91 f8 6a a6 7b d5 f5 4 4284 104 17 7

ef de 63 bd d6 f 6a 2c 16 62 78 70 fc f3 41 4 4284 104 68 7

ef e1 a 5c e4 c7 5a f3 45 e5 32 e8 74 8d a2 4 4335 106 204 7

ef dd f8 ab 57 15 a4 2e 94 55 5f 7e 46 2d 31 4 4335 104 17 7

ef e1 ac 63 8e ed b4 3c 46 f4 19 68 74 d4 6e 4 4335 104 34 7
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Involutive piecewise-linear permutations

De�nition 8

A substitution g ∈ S (F2n ) is called involutive if for all x ∈ F2n we have g (g (x)) = x.

It is easy to see that function g ∈ Lr (F2n ) is involutive if and only if for any
elements i = 0, ..., r − 1 we have

ai + aπ(i) ≡ 0 mod r,

where π : Zr → Zr, π (i) = (ai + i) mod r, i = 0, ..., r − 1.
Let ILr (F2n ) be the set of all involutive piecewise-linear permutations from the

set Lr (F2n ).
Since l and r are odd, then

a0 = 0
a1

a2 = 2n − 1− a1

ai
ar−1 = 2n − 1− ai

︸ ︷︷ ︸
l

0 H0 H1 H2 ... Hr−1

Proposition 6

For all n > 1 we have

|ILr (F2n )| = 1 +

r−3
2∑
i=0

C2i+1
r l

r−2i−1
2 (r − 2i− 2)!!.

|{g ∈ ILr (F2n ) ||F (g)| = l + 1}| =
(
1 + l

r−1
2 r!!

)
<< lrr! = |Lr (F2n )| .
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The joint distribution of parameters pg and nlg for 10
8

randomly generated involutive permutations g ∈ IL15 (F28)

pg

nlg
108 106 104 102 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

0 1 2 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222
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Examples of di�erentially 4-uniform piecewise-linear involutions

g ∈ IL15 (F28) constructed using algorithm 3

Let F28 = F2 [x]
/
x8 + x4 + x3 + x+ 1, ζ = 3 is a primitive �eld element of F28

a⃗g = (a0, a1, ..., a14) pg
∣∣Dg,pg

∣∣ nlg
∣∣Lg,nlg ∣∣ λg

0 ee dd cc bb aa 99 88 77 66 55 44 33 22 11 4 255 112 1275 7

0 d3 2c f3 c4 3b c 25 12 1 fe ed 2e d1 da 4 3774 106 68 7

0 45 4d 15 b2 c5 d9 3a 6d ea ba 3f 92 26 c0 4 3876 104 51 7

0 27 74 79 86 25 88 77 15 c5 d8 3a da 8b ea 4 4029 104 17 7

0 b0 44 f6 d6 b6 62 49 29 9 bb 2 4f fd 9d 4 4080 100 17 7

0 d be e9 5 21 a6 59 de fa 7b 16 41 84 f2 4 4131 104 136 6

0 72 dd 8b a0 51 ab 74 10 ef 8d ae 54 22 5f 4 4131 102 34 7

0 e3 51 1c 21 db d8 de ae f2 8a d 27 75 24 4 4182 106 238 7

0 31 fb 7f af ce d7 d4 d6 2b 80 28 29 4 50 4 4233 104 17 7

0 e2 1d 98 d8 67 3e aa c1 2 27 fd 55 1f e0 4 4284 106 102 7

0 da 5 c4 3b 9b 7 fa ba 25 64 88 77 f8 45 4 4335 108 646 7

0 d6 e9 7d 5c 29 a3 a9 82 14 16 56 79 86 eb 4 4386 104 119 7

0 af c6 63 64 39 7f 6b f2 94 d 50 9c 80 9b 4 4386 106 170 7

0 b0 93 c5 70 3a 2f 8d d0 1 fe 8f 4f 72 6c 4 4437 104 187 6

0 4f 46 26 82 b0 5b a4 50 a6 59 d9 b9 af 7d 4 4488 106 204 7

0 f7 dc 9c f1 e 6a 95 8 63 40 6b 23 94 bf 4 4539 102 34 7
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Piecewise-linear orthomorphisms

De�nition 9

A permutation g ∈ S (F2n ) is called an orthomorphism1−4 of the group F+
2n if

the mapping g′ : F2n → F2n de�ned by the rule g′ (x) = x+ g (x) is a permuta-
tion from S (F2n ).

It is well known4 that function g is an orthomorphism if and only if ai ̸= 0 for
all i = 0, ..., r − 1 and bijective function π′ : Zr → Zr,

π′ (i) =
(
logζ (ζ

ai + 1) + i
)
mod r, i = 0, ..., r − 1.

Let Orth (F2n ) be the set of all orthomorphisms of the group F+
2n and let

OLr (F2n ) be the set of all orthomorphisms from the set Lr (F2n ).
For r = 1 we have |OL1 (F2n )| = 2n − 2.

For r = 2n − 1 we have |OL2n−1 (F2n )| = |Orth(F2n )|
2n

.

Calculating |Orth (F2n )| for su�ciently large n ∈ N is an open problem.
1 Mann H. B. On orthogonal Latin squares. Bulletin of the American Mathematical Society,

1944, Vol. 50, Pp. 249�257.
2 Sachkov V. N. De�ciencies of �nite group permutations. Tr. Diskr. Mat., 2003, Ò. 7,

Pp. 156�175.
3 Niederreiter H. and Robinson K. Complete mappings of �nite �elds. Australian Mathemat-

ical Society, 1982, Vol. 33, Issue. 2, Pp. 197�212.
4 Evans A. Orthomorphisms graphs and groups. Springer-Verlag, Berlin, 1992, 114 p.
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Examples of di�erentially 4-uniform piecewise-linear orthomorphisms

g ∈ OL15 (F28) constructed using algorithm 3

Let F28 = F2 [x]
/
x8 + x4 + x3 + x+ 1, ζ = 3 is a primitive �eld element of F28

a⃗g = (a0, a1, ..., a14) pg
∣∣Dg,pg

∣∣ nlg
∣∣Lg,nlg ∣∣ λg

36 8e b1 5c 3 ec b0 50 a7 a 23 dc a6 6e 84 4 4743 102 17 7

26 ee f8 fa 3d b8 d 63 ac 81 89 ec fe 80 21 4 4845 104 34 7

b7 99 bb 85 2b 20 3e 16 89 15 6b 19 88 d 42 4 4998 102 17 7
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Linear equivalence of piecewise-linear permutations

Proposition 7

Let g, g′ ∈ Lr (F2n ) given by the vectors (a0, a1, ..., ar−1) and
(
a′0, a

′
1, ..., a

′
r−1

)
re-

spectively, ai, a
′
i ∈ {0, ..., 2n − 2}, i = 0, ..., r − 1, ζ is a primitive �eld element of F2n .

Then g
L∼ g′ if there exists such j ∈ {0, ..., 2n − 2} that for any i = 0, ..., r−1 we have

a′i = (ai + j)mod2n − 1.

Proposition 8

Let g, g′ ∈ Lr (F2n ) given by the vectors (a0, a1, ..., ar−1) and
(
a′0, a

′
1, ..., a

′
r−1

)
re-

spectively, ai, a
′
i ∈ {0, ..., 2n − 2}, i = 0, ..., r − 1, ζ is a primitive �eld element of F2n .

Then g
L∼ g′ if there exists such j ∈ {0, ..., r − 1} that for any i = 0, ..., r− 1 we have

a′i = ai+jmodr.

Corollary

If under the conditions of proposition g is an involutive permutation, then g′ is also
an involutive permutation.

Corollary

If under the conditions of proposition g is an orthomorphism, then g′ is also an
orthomorphism.
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Linear equivalence of piecewise-linear permutations

Proposition 9

Let g, g′ ∈ Lr (F2n ) given by the vectors (a0, a1, ..., ar−1) and
(
a′0, a

′
1, ..., a

′
r−1

)
re-

spectively, ai, a
′
i ∈ {0, ..., 2n − 2}, i = 0, ..., r − 1, ζ is a primitive �eld element of F2n .

Then g
L∼ g′ if there exists such j ∈ {1, ..., n− 1} that for any i = 0, ..., r− 1 we have

a′i = 2n−j · ai·2jmodrmod2n − 1.

Corollary

If under the conditions of proposition g is an involutive permutation, then g′ is also
an involutive permutation.

Corollary

If under the conditions of proposition g is an orthomorphism, then g′ is also an
orthomorphism.
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The problem of checking linear equivalence between two partially given

piecewise-linear permutations
Piecewise-linear permutation g ∈ Lr (F2n ) can be de�ned by the vector

a⃗g = (a0, a1, ..., ar−1),

where ai ∈ {0, ..., 2n − 2}, i = 0, ..., r − 1.
We de�ne mappings τ1, τ2, τ3 : {0, ..., 2n − 2}r → {0, ..., 2n − 2}r as follows

τ1 (a0, ..., ar−1) = ((a0 + 1)mod 2n − 1, ..., (ar−1 + 1)mod 2n − 1) ;

τ2 (a0, a1, ..., ar−1) = (a1, a2, ..., a0) ;

τ3 (a0, ..., ar−1) =
(
2n−1 · a0mod 2n − 1, ..., 2n−1 · ar−1mod 2n − 1

)
.

Let us associate the partially de�ned permutation g ∈ Lr (F2n ) with the vector

a⃗g =
(
∗, ..., ∗, ai0 , ∗, ..., ∗, ai1 , ∗, ..., ∗, aid−1

, ∗, ..., ∗
)
,

where the symbol ∗ denotes unde�ned positions of the vector (the permutation g
on the elements of the corresponding cosets is not de�ned). Two partially given
vectors a⃗g è a⃗h are called linearly equivalent if there exist such j1 ∈ {0, ..., 2n − 2},
j2 ∈ {0, ..., r − 1}, j3 ∈ {0, ..., n− 1} that we have

a⃗h = τ j33

(
τ j22

(
τ j11 (a⃗g)

))
.

Remark

Linear equivalence of vectors a⃗g and a⃗h can be checked when d | r and for any
j = 0, ..., d− 1 we have ij ≡ c mod r

d
, c = const.

Menyachikhin A.V. Adapted spectral-di�erential method 27 / 34



The problem of checking linear equivalence between two partially given

piecewise-linear permutations

Example 2

Let F26 = F2 [x]
/
x6 + x+ 1, ζ = 2 is a primitive �eld element of F26 . It is easy to

see that the partially given vector a⃗g = (3c, ∗, ∗, 20, ∗, ∗, 21, ∗, ∗) linear equivalent to
any partially given vector a⃗h from the following table.

j1 j2 j3 a⃗h
6 3 3 3c * * 34 * * 18 * *

7 6 3 3c * * 20 * * 5 * *

18 0 4 3c * * b * * f * *

18 6 2 3c * * 33 * * 2c * *

19 3 2 3c * * d * * 4 * *

24 3 1 3c * * 1c * * 2a * *

25 6 1 3c * * b * * 1d * *

27 6 0 3c * * 18 * * 3b * *

28 3 0 3c * * 3d * * 19 * *

33 0 5 3c * * 6 * * 4 * *

42 0 3 3c * * 21 * * 19 * *

45 6 4 3c * * 2a * * 38 * *

46 3 4 3c * * 1 * * 2e * *

54 0 2 3c * * 35 * * 6 * *

60 0 1 3c * * f * * 2e * *

60 3 5 3c * * 3a * * 33 * *

61 6 5 3c * * 35 * * 3e * *
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Bounds on the di�erential uniformity of piecewise-linear permutations

over the �eld F2n

Obtaining bounds on the di�erential uniformity of piecewise-linear permutations
is related to the study of the additive properties of multiplicative subgroups F×

2n .

Lemma 1

Let n, r, l ∈ N, 2n − 1 = rl, ζ is a primitive �eld element of F2n , H = ⟨ζr⟩ is the

subgroup of order l of F×
2n , Hi = ζiH, i = 0, ..., r − 1, g ∈ Lr (F2n ) is a permutation

given by the set of pairwise distinct numbers (a0, a1, ..., ar−1). Then the di�erence
equation

g (x) + g (x+ α) = β, α, β ∈ F×
2n

for any i ̸= j has at most one solution x1 ∈ Hi satisfying the condition x1 + α ∈ Hj .

α α

0 Hi Hj
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Bounds on the di�erential uniformity of piecewise-linear permutations

over the �eld F2n

Lemma 2

Let n, r, l ∈ N, 2n − 1 = rl, ζ is a primitive �eld element of F2n , H = ⟨ζr⟩ is the

subgroup of order l of F×
2n , Hi = ζiH, i = 0, ..., r − 1, g ∈ Lr (F2n ) is a permutation

given by the set of pairwise distinct numbers (a0, a1, ..., ar−1). Let, in addition, the
di�erence equation

g (x) + g (x+ α) = β, α, β ∈ F×
2n (∗)

have solutions x1, x1+α ∈ Hi∪{0}. Then for any j ̸= i equation (∗) has no solutions
x2 ∈ Hj satisfying the condition x2 + α ∈ Hi ∪Hj .

αα α α

0 Hi Hj
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Bounds on the di�erential uniformity of piecewise-linear permutations

over the �eld F2n

Theorem

Let n, r, l ∈ N, 2n − 1 = rl, ζ is a primitive �eld element of F2n , H = ⟨ζr⟩ is the

subgroup of order l of F×
2n , g ∈ Lr (F2n ) is a permutation given by the set of pairwise

distinct numbers (a0, a1, ..., ar−1). Then we have lower and upper bounds on the
di�erential uniformity of g:

max


t∑

s=1

(−1)s+1
∑

n1≤...≤ns

2gcd(n1,n2,...,ns), 2

⌊
l + 1

2r

⌋ ≤

≤ pg ≤

≤ 2max

{
⌊φ (r, l)⌋ , φ (r − 1, l)+

+max

{
⌊φ (l/mnt ,mnt )⌋ ,

mnt + 1

2
+ φ (l/mnt − 1,mnt )

}}
,

where mn1 < mn2 < ... < mnt is the complete list of divisors of l of the form

mnk = 2nk − 1, k = 1, ..., t, φ : R2 → R, φ (x, y) =
x·min{x−1,y}

2
.
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Bounds on the di�erential uniformity of piecewise-linear permutations

over the �eld F2n

Remark

The lower and upper bounds proved in the theorem for r = 2n − 1 are also valid in
the case when the numbers from the set (a0, a1, ..., ar−1) are not pairwise distinct.

Theorem gives us necessary conditions for the existence of APN substitutions.

Corollary

If g ∈ S (F26 ), pg = 2, g (0) = 0, then g ∈ Lr (F26 ), where r /∈ {1, 3, 7, 9, 21}.

Corollary

If there is a permutation g ∈ S (F28 ) such that pg = 2, g (0) = 0, then g ∈ Lr (F28 ),
where r /∈ {1, 3, 5, 17, 85}.

Remark

An upper bound for pg is not always trivial for r ≥ 2n/2 + 1. For example,
if g ∈ Lr (F212 ), where r ∈ {91, 117, 195, 455}, then we have

pg ≤ 4094.
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The reachability of the lower and upper bounds on the di�erential

uniformity of piecewise-linear permutations

Let n = 6, 26 − 1 = rl, r, l ∈ N, ζ is a primitive �eld element of F26 ,

H = ⟨ζr⟩ is the subgroup of order l of F×
26
. The following table for di�erent val-

ues of l ∈ {1, 3, 7, 9, 21, 63} contains the minimum and maximum values of pg among
all permutations g ∈ Lr (F26 ). The table also contains the lower and upper bounds
obtained in the theorem for the values pg .

|H|
A lower bound min

g∈Lr(F26)
pg max

g∈Lr(F26)
pg

An upper bound

on pg on pg

1 2 2 64 64

3 4 4 64 64

7 8 8 64 64

9 4 4 22 42

21 10 10 12 12

63 64 64 64 64
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The reachability of the lower and upper bounds on the di�erential

uniformity of piecewise-linear permutations
Let n = 8, 28 − 1 = rl, r, l ∈ N, ζ is a primitive �eld element of F28 ,

H = ⟨ζr⟩ is the subgroup of order l of F×
28
. The following table for di�erent val-

ues of l ∈ {1, 3, 5, 15, 17, 51, 85, 255} contains the best and worst known values of pg
for permutations g ∈ Lr (F28 ). The table also contains the lower and upper bounds
obtained in the theorem for the values pg .

|H|
A lower bound Best-known A worst case An upper bound

on pg example example on pg

1 2 4 256 256

3 4 4 256 256

5 2 4 216 256

15 16 16 256 256

17 2 4 56 210

51 12 12 20 64

85 30 30 32 88

255 256 256 256 256
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Thanks for attention


