ADAPTED
 SPECTRAL-DIFFERENTIAL METHOD
 FOR CONSTRUCTING DIFFERENTIALLY 4-UNIFORM PIECEWISE-LINEAR SUBSTITUTIONS, ORTHOMORPHISMS, INVOLUTIONS OVER THE FIELD $\mathbb{F}_{2^{n}}$

Menyachikhin Andrey

Introduction

Shannon's properties ${ }^{1}$ are often implemented in modern block ciphers by using three layers in each round:
(-) the round key layer,
(3) the confusion layer,

O diffusion layer.
The confusion layer is often realized as a parallel application of nonlinear substitution boxes (S-boxes)

Remark

For computational reasons (n, n)-functions are better used as s-boxes when n is even, the best being when n is a power of 2 .

In this report, special attention is paid to the differential uniformity of s-boxes.

[^0]
Introduction

A mapping is called differentially \triangle-uniform ${ }^{1,2}$ if for every non-zero input difference and any output difference the number of possible inputs has a uniform upper bound \triangle.

Remark

The existence of differentially 2 -uniform permutations of $\mathbb{F}_{2^{n}}$ for even $n>6$ is an open problem ${ }^{3}$. It is then important to find as many differentially 4 -uniform permutations as possible in even dimension.

[^1]
Introduction

We begin with the known permutations:
© power functions (for example, the inverse function ${ }^{1}-g(x)=x^{2^{n}-2}$; the Gold function ${ }^{2}-g(x)=x^{2^{i}+1}, \operatorname{gcd}(i, n)=2, n \equiv 2(\bmod 4)$; the Kasami function ${ }^{3}-g(x)=x^{2^{2 i}-2^{i}+1}, \operatorname{gcd}(i, n)=2$; the Dobbertin function ${ }^{4}-$ $\left.g(x)=x^{2^{n / 2+n / 4+1}}, 4 \mid n, 8 \nmid n\right) ;$
(2) polynomial functions (for example, binomial functions ${ }^{5}$

$$
\zeta x^{2^{s}+1}+\zeta^{2^{k}} x^{2^{-k}+2^{k+s}}
$$

where ζ is a primitive field element of $\mathbb{F}_{2^{n}}, n \equiv 3 k, k$ is even, $k / 2$ is odd, $3 \nmid k$, $\operatorname{gcd}(n, s)=2,3 \mid(k+s))$.

[^2]
Introduction

We continue with permutations obtained by modifications of known permutations:
© the switching constructions ${ }^{1}$. These permutations were obtained by adding Boolean functions to the inverse function $g(x)=x^{2^{n}-2}$ (for example, constructions of the following type

$$
\begin{gathered}
g(x)=x^{2^{n}-2}+\operatorname{tr}_{n}\left(x^{2}(x+1)^{2^{n}-2}\right) \text { и } \\
g(x)=x^{2^{n}-2}+\operatorname{tr}_{n}\left(x^{\left(2^{n}-2\right) d}+\left(x^{2^{n}-2}+1\right)^{d}\right)
\end{gathered}
$$

where $d=3\left(2^{t}+1\right), 2 \leq t \leq n / 2-1$ and other constructions);
O the Carlet constructions (for example, construction ${ }^{2}$ that consist in restricting APN-functions in $n+1$ variables to a linear manifold of dimension $n=2 k$ and its various generalizations ${ }^{3}$; construction of the following type ${ }^{4}$

$$
g\left(x, x^{\prime}\right)= \begin{cases}\left(x^{2^{n-1}-2}, f(x)\right), & \text { if } x^{\prime}=0 \\ \left(c x^{2^{n-1}-2}, f\left(x c^{2^{n-1}-2}+1\right)\right), & \text { if } x^{\prime}=1\end{cases}
$$

where $n \geq 6, n$ is even, $c \in \mathbb{F}_{2^{n-1}} \backslash \mathbb{F}_{2}, \operatorname{tr}_{n-1}(c)=\operatorname{tr}_{n-1}\left(c^{2^{n-1}}-2\right)=1$, $x \in \mathbb{F}_{2^{n-1}}, x^{\prime} \in \mathbb{F}_{2}, f$ is $n-1$ variables Boolean function);

[^3]
Introduction

O constructions that implement multiplication by cycles (for example, permutation ${ }^{1}$ obtained from the inverse function $g(x)=x^{2^{n}-2}$ by swapping its values at two different points $x_{1}, x_{2} \in \mathbb{F}_{2}^{\times}, \operatorname{tr}_{n}\left(x_{1} x_{2}^{-1}\right) \operatorname{tr}_{n}\left(x_{1}^{-1} x_{2}\right)=1$; permutations ${ }^{2}$ obtained from the inverse function by cyclically shifting the images of the function over some subset

$$
g(x)=\left(\pi_{i}(x)\right)^{2^{n}-2}
$$

where $\pi_{i}=\left(i, c_{i}, c_{i}^{-1}\right), c_{i} \in \mathbb{F}_{2^{n-1}} \backslash \mathbb{F}_{2}, \operatorname{tr}\left(c_{i}\right)=\operatorname{tr}_{n}\left(\left(c_{i}+1\right)^{-1}\right)=1$, $i \in\{0,1\}, \operatorname{tr}_{n}\left(\left(c_{1}+1\right)^{-3}\right)=0, \operatorname{tr}_{n}\left(c_{1}^{-1}\right)=1$; and other constructions);
© permutations obtained by applying affine transformations to an inverse function on some subfields of $\mathbb{F}_{2^{n}}$ (for example, construction of the following type ${ }^{3}$

$$
g(x)= \begin{cases}c_{0} x^{2^{n}}-2+c_{1}, & \text { if } x^{2^{m}}=x, \\ x^{2^{n}-2}, & \text { if } x^{2^{m}} \neq x,\end{cases}
$$

where $\left.c_{0}, c_{1} \in \mathbb{F}_{2^{m}}, n=m k, x \in \mathbb{F}_{2^{n}}\right)$;

[^4]
Introduction

O the butterfly construction ${ }^{1}$ and its various generalizations ${ }^{2,3}$ (for example, construction of the following type ${ }^{4}$
$g\left(x, x^{\prime}\right)=\left(f\left(x, x^{\prime}\right), f\left(x^{\prime}, x\right)\right)$ and $g\left(x, x^{\prime}\right)=\left(f\left(f^{-1}\left(x, x^{\prime}\right), x^{\prime}\right), f^{-1}\left(x, x^{\prime}\right)\right)$, where $x, x^{\prime} \in \mathbb{F}_{2^{n / 2}}, n=4 k+2, k \geq 1, f\left(x, x^{\prime}\right)=\left(x+c_{1} x^{\prime}\right)^{3}+c_{2} x^{\prime 3}$, $c_{1}, c_{2} \in \mathbb{F}_{2^{n / 2}}, c_{2} \neq\left(1+c_{1}\right)^{3}$.

The main idea of this report

Combining an algebraic and heuristic approaches to construction s-boxes with low differential uniformity.
${ }^{1}$ Perrin L., Udovenko A., and Biryukov A.. Cryptanalysis of a theorem: decomposing the only known solution to the big APN problem. Proceedings of CRYPTO 2016, Lecture Notes in Computer Science 9815, part II, 2016, pp. 93-122.
${ }^{2}$ De La Cruz Jimenez R.A. Constructing 8-bit permutations, 8-bit involutions and 8-bit orthomorphisms with almost optimal cryptographic parameters. Mat. Vopr. Kriptogr., 12:3 (2021), pp. 89-124.
${ }^{3}$ Fomin D.B. New classes of 8 -bit permutations based on butterfly structure. Mat. Vopr. Kriptogr., 10:2 (2019), pp. 169-180.
${ }^{4}$ Canteaut A., Duval S., and Perrin L. A generalisation of Dillon's APN permutation with the best known differential and nonlinear properties for all fields of size $24 \mathrm{k}+2$. IEEE Transactions on Information Theory 63:11 (2017), pp. 7575-7591.

Main definitions and notations

Let $H<\mathbb{F}_{2} \times{ }^{n}$ be the subgroup of order l of the multiplicative group of the field $\mathbb{F}_{2^{n}}, 0<l<2^{n}-1,2^{n}-1=l \cdot r$, where $r \in \mathbb{N}, \zeta$ is a primitive field element of $\mathbb{F}_{2^{n}}, H=\left\langle\zeta^{r}\right\rangle$. The group $\mathbb{F}_{2^{n}}^{\times}$is partitioned into cosets of H :

$$
\mathbb{F}_{2^{n}}^{\times}=\bigcup_{i=0}^{r-1} H_{i}, H_{i}=\zeta^{i} H, i=0, \ldots, r-1 .
$$

Definition 1

Piecewise-linear function ${ }^{1-5} g: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is defined as

$$
g(x)= \begin{cases}0, & \text { if } x=0 \\ \zeta^{a_{i}} x, & \text { if } x \in H_{i}\end{cases}
$$

where $a_{i} \in\left\{0, \ldots, 2^{n}-2\right\}, i=0, \ldots, r-1$.
It is well known ${ }^{2,3}$ that function g is bijective if and only if bijective function $\pi: \mathbb{Z}_{r} \rightarrow \mathbb{Z}_{r}$,

$$
\pi(i)=\left(a_{i}+i\right) \bmod r, i=0, \ldots, r-1
$$

Let $L_{r}\left(\mathbb{F}_{2^{n}}\right)$ be the set of all piecewise-linear permutations satisfying conditions of definition 1 .

For all $n>1$ we have

$$
\left|L_{r}\left(\mathbb{F}_{2^{n}}\right)\right|=l^{r} r!
$$

1 Wells C. Groups of permutation polynomials. Monatshefte für Mathematik, 71 (1967), pp. 248-262.

2 Evans A. Orthomorphisms graphs and groups. Springer-Verlag, Berlin, 1992, 114 p.
3 Trishin A.E. The nonlinearity index for a piecewise-linear substitution of the additive group of the field $\mathbb{F}_{2} n$. Prikl. Diskr. Mat., 4:30 (2015), pp. 32-42.
${ }^{4}$ Bugrov A.D. Piecewise-affine permutations of finite fields. Prikl. Diskr. Mat., 4:30 (2015), pp. 5-23.

5 Pogorelov B.A., Pudovkina M.A. Classes of piecewise quasiaffine transformations on the dihedral, the quasidihedral and the modular maximal-cyclic 2 -group. Diskr. Mat., 34:1 (2022), pp. 103-125.

Main definitions and notations

Let $g: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ be a function from a set $\mathbb{F}_{2^{n}}$ to a set $\mathbb{F}_{2^{n}}$. If a set M is a subset of $\mathbb{F}_{2^{n}}$, then the restriction of g to M is the function $g_{M}: M \rightarrow \mathbb{F}_{2^{n}}$.

Definition 2

The differential uniformity $p_{g_{M}}$ of the mapping g_{M} is defined as

$$
p_{g_{M}}=\max _{\alpha \in \mathbb{F}_{2^{n}}^{\times}, \beta \in \mathbb{F}_{2^{n}}} p_{\alpha, \beta}^{g_{M}},
$$

where

$$
p_{\alpha, \beta}^{g_{M}}=|\{x \in M \mid x+\alpha \in M, g(x+\alpha)+g(x)=\beta\}| .
$$

If M is a proper subset of $\mathbb{F}_{2^{n}}$, then the $p_{g_{M}}$ parameter is called the partial differential uniformity of the function g over the set M.

Remarks

(1) Notice that $M \subset \mathbb{F}_{2^{n}}$ may be not closed under operation + in the field $\mathbb{F}_{2^{n}}$.
(The introduced definition is consistent with the known formulation if the set $M \subset \mathbb{F}_{2^{n}}$ is closed under operation + in the field $\mathbb{F}_{2^{n}}$.
(For a chain of subsets $M_{0} \subseteq M_{1} \subseteq \ldots \subseteq M_{s-1} \subseteq \mathbb{F}_{2^{n}}$ we have

$$
p_{g_{M_{0}}} \leq p_{g_{M_{1}}} \leq \ldots \leq p_{g_{M_{s-1}}} \leq p_{g}
$$

The difference distribution table $P\left(g_{M}\right)$ of the mapping g_{M} counts the number of cases when the input difference of a pair is α and the output difference is β.

Main definitions and notations

For the mapping g_{M} and each number $i=0,1, \ldots,|M|$, we define the set

$$
D_{g_{M}, i}=\left\{(\alpha, \beta) \in \mathbb{F}_{2^{n}}^{\times} \times \mathbb{F}_{2^{n}} \mid p_{\alpha, \beta}^{g_{M}}=i\right\} .
$$

Definition 3

The differential spectrum of the mapping g_{M} is defined as

$$
\vec{D}_{g_{M}}=\left(\left|D_{g_{M}, 0}\right|,\left|D_{g_{M}, 1}\right|,\left|D_{g_{M}, 2}\right|, \ldots,\left|D_{g_{M},|M|}\right|\right)
$$

Definition 4

The nonlinearity $n l_{g}$ of the function $g: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is defined as

$$
n l_{g}=2^{n-1}-\frac{1}{2} \max _{\alpha \in \mathbb{F}_{2^{n}, \beta \in \mathbb{F}_{2^{n}}^{\times}}} w_{g_{\beta}}(\alpha),
$$

where $w_{g_{\beta}}(\alpha)=\sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{\operatorname{tr}_{n}(\beta g(x)+\alpha x)}$ is a Walsh transform of a Boolean function $g_{\beta}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ as follows $g_{\beta}(x)=\operatorname{tr}_{n}(\beta g(x))$.

For the function $g: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ and each number $i=0,1, \ldots, 2^{n-1}-2^{\frac{n}{2}-1}$, we define the set

$$
L_{g, i}=\left\{(\alpha, \beta) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}}^{\times} \mid w_{g_{\beta}}(\alpha)=i\right\} .
$$

Definition 5

The linear spectrum of the function g is defined as

$$
\vec{L}_{g}=\left(\left|L_{g, 0}\right|,\left|L_{g, 1}\right|,\left|L_{g, 2}\right|, \ldots,\left|L_{g, 2^{n-1}-2^{\frac{n}{2}-1}}\right|\right)
$$

Definition 6

The generalized algebraic degree $\overline{\lambda_{g}}$ of the permutation $g \in S\left(\mathbb{F}_{2^{n}}\right)$ is defined as

$$
\overline{\lambda_{g}}=\min \left\{\lambda_{g}, \lambda_{g^{-1}}\right\}
$$

where

$$
\lambda_{g}=\min _{\alpha \in \mathbb{F}_{2}^{\times}} \operatorname{deg}(\operatorname{tr}(a g(x))), \lambda_{g^{-1}}=\min _{\alpha \in \mathbb{F}_{2^{n}}^{\times}} \operatorname{deg}\left(\operatorname{tr}\left(a g^{-1}(x)\right)\right),
$$

and deg denotes the algebraic degree of the Zhegalkin polynomial of Boolean function.

Definition 7

Two permutations $g, h \in S\left(\mathbb{F}_{2^{n}}\right)$ are linear equivalent $(g \stackrel{L}{\sim} h)$ if there exist linear permutations $L_{1}, L_{2}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ such that

$$
L_{2} \circ g \circ L_{1}=h
$$

The set of all fixed point of a permutation $g \in S\left(\mathbb{F}_{2}{ }^{n}\right)$ is denoted by F_{g}.

On the differential and linear spectra of piecewise-linear substitutions

Proposition 1

Let $g \in L_{r}\left(\mathbb{F}_{2^{n}}\right)$ and ζ is a primitive field element of $\mathbb{F}_{2^{n}}$. Then $x_{0} \in \mathbb{F}_{2^{n}}$ is a solution to equation $g\left(x+\alpha_{0}\right)+g(x)=\beta_{0}, \alpha_{0}, \beta_{0} \in \mathbb{F}_{2^{n}}$ if and only if $x_{j}=x_{0} \zeta^{r j}$ is a solution to equation $g\left(x+\alpha_{j}\right)+g(x)=\beta_{j}, \alpha_{j}=\alpha_{0} \zeta^{r j}, \beta_{j}=\beta_{0} \zeta^{r j}, j=1,2, \ldots, l-1$.

Corollary

For $g \in L_{r}\left(\mathbb{F}_{2^{n}}\right)$ and any number $i=0,1, \ldots, 2^{n-1}$ we have $\left|D_{g, i}\right| \equiv 0(\bmod l)$.

Proposition 2

Let $g \in L_{r}\left(\mathbb{F}_{2^{n}}\right)$ and ζ is a primitive field element of $\mathbb{F}_{2^{n}}$. Then $x_{0} \in \mathbb{F}_{2^{n}}$ is a solution to equation $\operatorname{tr}_{n}\left(x \cdot \alpha_{0}\right)=\operatorname{tr}_{n}\left(g(x) \cdot \beta_{0}\right), \alpha_{0}, \beta_{0} \in \mathbb{F}_{2}{ }^{n}$ if and only if $x_{j}=x_{0} \zeta^{r j}$ is a solution to equation $\operatorname{tr}_{n}\left(x \cdot \alpha_{j}\right)=\operatorname{tr}_{n}\left(g(x) \cdot \beta_{j}\right), \alpha_{j}=\alpha_{0} \zeta^{r(l-i)}, \beta_{j}=\beta_{0} \zeta^{r(l-j)}$, $j=1,2, \ldots, l-1$.

Corollary

For $g \in L_{r}\left(\mathbb{F}_{2^{n}}\right)$ and any number $i=0,1, \ldots, 2^{n-1}-2^{\frac{n}{2}-1}$ we have $\left|L_{g, i}\right| \equiv 0(\bmod l)$.

The joint distribution of parameters p_{g} and $n l_{g}$ for 10^{8} randomly generated permutations $g \in L_{15}\left(\mathbb{F}_{2^{8}}\right)$

$n l_{g}$	106	104	102	100	98	96	94	92	90	88	86	84	82	80	78	76	74	72	70	68	66	64
6																						
8																						
10																						
12																						
14																						
16																						
18																						
20																						
22																						
24																						
26																						
28																						
30																						
32																						
34																						
36																						
38																						
40																						
42																						
44																						
46																						
48																						
50																						
52																						

0	1	2	2^{2}	2^{3}	2^{4}	2^{5}	2^{6}	2^{7}	2^{8}	2^{9}	2^{10}	2^{11}	2^{12}	2^{13}	2^{14}	2^{15}	2^{16}	2^{17}	2^{18}	2^{19}	2^{20}	2^{21}	2^{22}

The joint distribution of parameters p_{g} and $n l_{g}$ for 10^{8} randomly generated permutations $g \in L_{15}\left(\mathbb{F}_{2^{8}}\right)$

0	1	2	2^{2}	2^{3}	2^{4}	2^{5}	2^{6}	2^{7}	2^{8}	2^{9}	2^{10}	2^{11}	2^{12}	2^{13}	2^{14}	2^{15}	2^{16}	2^{17}	2^{18}	2^{19} 采	2^{20}	2^{21}	2^{22}

Efficient computation of the differential spectrum of piecewise-linear substitutions

We define mapping $\psi: \mathbb{F}_{2^{n}}^{\times} \rightarrow\left\{1, \zeta, \zeta^{2}, \ldots, \zeta^{r-1}\right\}$ as follows $\psi(x)=\zeta^{i}$ if $x \in H_{i}$, $i \in\{0, \ldots, r-1\}$, and for any $x \in \mathbb{F}_{2^{n}}^{\times}$we define the permutation $\sigma_{x} \in S\left(\mathbb{F}_{2^{n}}\right)$ as follows $\sigma_{x}(y)=y x^{-1} \psi(x)$.

Proposition 1 allows us to associate any row of the matrix P_{g}

$$
\left(p_{\alpha, 0}^{g}, p_{\alpha, 1}^{g}, p_{\alpha, \zeta}^{g}, \ldots, p_{\alpha, \zeta^{2}-2}^{g}\right)
$$

with the row

$$
\begin{aligned}
\left(p_{\psi(\alpha), 0}^{g}, p_{\psi(\alpha), 1}^{g}, p_{\psi(\alpha), \zeta}^{g}, \ldots,\right. & \left.p_{\psi(\alpha), \zeta^{2^{n}-2}}^{g}\right)= \\
& =\left(p_{\alpha, \sigma_{\alpha}(0)}^{g}, p_{\alpha, \sigma_{\alpha}(1)}^{g}, p_{\alpha, \sigma_{\alpha}(\zeta)}^{g}, \ldots, p_{\alpha, \sigma_{\alpha}\left(\zeta^{2^{n}-2}\right)}^{g}\right)
\end{aligned}
$$

of the same matrix. Hence, the matrix P_{g} of the permutation $g \in L_{r}\left(\mathbb{F}_{2^{n}}\right)$ has at most r unique rows.

Efficient computation of the differential spectrum of piecewise-linear substitutions

Example 1

Let H is the subgroup of order 5 of $\mathbb{F}_{2^{4}}=\mathbb{F}_{2}[x] / x^{4}+x+1$ and $\zeta=2$ is a primitive field element of $\mathbb{F}_{2^{4}}$. The group $\mathbb{F}_{2^{4}}^{\times}$is partitioned into cosets of H :

$$
\mathbb{F}_{2^{4}}^{\times}=\underbrace{\{8, c, a, f, 1\}}_{H_{0}} \cup \underbrace{\{3, b, 7, d, 2\}}_{H_{1}} \cup \underbrace{\{6,5, e, 9,4\}}_{H_{2}} .
$$

Permutation $g \in L_{3}\left(\mathbb{F}_{2^{4}}\right)$															
0	9	7	d	f	8	1	3	4	a	5	2	6	b	c	e

The difference distribution table $P(g)$ of the permutation g																
$\alpha \beta$	0	1	2	4	8	3	6	c	b	5	a	7	e	f	d	9
1	0	0	4	0	0	0	0	0	0	0	2	4	2	0	2	2
2	0	2	0	2	2	0	0	0	2	2	2	2	2	0	0	0
4	0	4	2	0	0	0	2	2	0	0	0	0	2	2	0	2
8	0	0	2	2	0	4	0	0	0	0	0	0	0	2	4	2
3	0	0	0	0	2	0	2	2	0	0	0	2	2	2	2	2
6	0	2	0	2	4	2	0	0	0	2	2	0	0	0	0	2
c	0	2	4	2	0	2	2	0	4	0	0	0	0	0	0	0
b	0	2	2	2	0	0	0	2	0	2	2	0	0	0	2	2
5	0	0	0	2	2	0	2	4	2	0	0	0	2	2	0	0
a	0	0	0	0	2	4	2	0	2	2	0	4	O	0	0	0
7	0	0	2	2	2	2	2	0	0	0	2	0	2	2	0	0
e	0	2	0	0	0	0	2	2	0	2	4	2	0	0	0	2
f	0	0	0	0	0	0	0	2	4	2	0	2	2	0	4	0
d	0	2	0	0	0	2	2	2	2	2	0	0	0	2	0	2
9	0	0	0	2	2	0	0	0	0	2	2	0	2	4	2	0

Efficient computation of the differential spectrum of piecewise-linear substitutions

Denote by $H_{\left(i_{0}, \ldots, i_{s-1}\right)}=\bigcup_{j=0}^{s-1} H_{i_{j}} \cup\{0\}$, where $s \in\{1, \ldots, r\}$. Consider the mapping $g_{\left(i_{0}, \ldots, i_{s-1}\right)}: H_{\left(i_{0}, \ldots, i_{s-1}\right)} \rightarrow \mathbb{F}_{2^{n}}$, which is the restriction of the permutation $g \in L_{r}\left(\mathbb{F}_{2}{ }^{n}\right)$ to the set $H_{\left(i_{0}, \ldots, i_{s-1}\right)}$. Proposition 1 gives us the following algorithm for calculating the differential spectrum of the mapping $g_{\left(i_{0}, \ldots, i_{s-1}\right)}: H_{\left(i_{0}, \ldots, i_{s-1}\right)} \rightarrow \mathbb{F}_{2^{n}}$ (see Fig. 1).

Figure 1. The idea of algorithm 1

Proposition 3

Differential spectrum $\vec{D}_{g_{H}\left(i_{0}, \ldots, i_{s-1}\right)}$ of the mapping $g_{H_{\left(i_{0}, \ldots, i_{s-1}\right)}}, s \in\{1, \ldots, r\}$, can be calculated using algorithm 1 with complexity t,

$$
t \leq c l s^{2}, c=\text { const }
$$

Remark

For $s=r$ the complexity of algorithm 1 is l times lower than the complexity of the classical approach.

Efficient computation of the differential spectrum of piecewise-linear substitutions

Algorithm 1 can be easily modified for the case when it is necessary to calculate the differential spectrum $\vec{D}_{g_{H}\left(i_{0}, \ldots, i_{s-1+k}\right)}$ of the mapping $g_{H_{\left(i_{0}, \ldots, i_{s-1+k}\right)}}$ from the known mapping $g_{\left(i_{0}, \ldots, i_{s-1}\right)}$, difference distribution table $P_{g_{H}\left(i_{0}, \ldots, i_{s-1}\right)}$ and differential spectrum $\vec{D}_{g_{H}\left(i_{0}, \ldots, i_{s-1}\right)}$ (see Fig. 2).

Figure 2. The idea of algorithm 2

Proposition 4

Differential spectrum $\vec{D}_{g_{H}\left(i_{0}, \ldots, i_{s-1+k}\right)}$ of the mapping $g_{H_{\left(i_{0}, \ldots, i_{s-1+k}\right)}}$, $s \in\{1, \ldots, r-1\}$, can be calculated from the differential spectrum $\vec{D}_{g_{H}}{ }_{\left(i_{0}, \ldots, i_{s-1}\right)}$ and the submatrix $P_{g_{H}}{ }_{\left(i_{0}, \ldots, i_{s-1}\right)}\binom{1, \zeta, \zeta^{2}, \ldots, \zeta^{r-1}}{0,1, \zeta, \ldots, \zeta^{2^{n}-2}}$ of the matrix $P_{g_{H}}{ }_{\left(i_{0}, \ldots, i_{s-1}\right)}$ of the mapping $g_{\left(_{\left(i_{0}, \ldots, i_{s-1}\right)}\right.}$ using algorithm 2 with t complexity,

$$
t \leq c l s, c=\text { const }
$$

[^5]
Adapted spectral-differential method for constructing

s-boxes

Figure 3. The main idea of algorithm 3 implementing the adapted spectral-differential method

Proposition 5

For $n, r, w \in \mathbb{N}, r \mid 2^{n}-1$ we have the following complexity t of algorithm 3:

$$
t \leq c w 2^{n}(r-1)\left(2^{n-1}+n+\log w+r / 2\right), \text { where } c=\text { const. }
$$

${ }^{1}$ Menyachikhin A.V. Spectral-linear and spectral-differential methods for generating s-boxes having almost optimal cryptographic parameters. Mat. Vopr. Kriptogr., 8:2 (2017), pp. 9 寻 97 -116

Examples of differentially 4-uniform piecewise-linear permutations $g \in L_{15}\left(\mathbb{F}_{2^{8}}\right)$ constructed using algorithm 3
Let $\mathbb{F}_{2^{8}}=\mathbb{F}_{2}[x] / x^{8}+x^{4}+x^{3}+x+1, \zeta=3$ is a primitive field element of $\mathbb{F}_{2^{8}}$

$\vec{a}_{g}=\left(a_{0}, a_{1}, \ldots, a_{14}\right)$														p_{g}	$\left\|D_{g, p_{q}}\right\|$	$n l_{g}$	$\left\|L_{g, n l_{g}}\right\|$	$\overline{\lambda_{g}}$
ef e1	11	b4	35	44	ea	9a	f2	d1	46	9c	18	56	80	4	3825	102	34	7
ef e1	25	5	42	73	ab	82	cd	29	d3	17	ae	9 f	e0	4	4029	106	102	7
ef d	3 c	52	88	83	a8	59	29	6 d	84	d9	4 e	3 a	f9	4	4029	102	17	7
ef dd	79	86	2	9 b	3 f	2 b	2d	70	4 e	83	d5	e7	2 a	4	4131	104	68	7
ef de	9 a	44	5	2	ab	73	8 e	10	eb	5 f	42	60	ae	4	4182	102	17	7
ef de	34	70	10	c5	cd	83	22	ed	23	c0	ca	b8	cf	4	4233	104	17	7
ef d	43	86	16	73	df	3	bc	b8	ce	57	7 e	7 f	44	4	4233	104	34	7
ef dd	3 e	91	7 c	e3	d6	da	b2	2	8 f	33	17	fb	5 c	4	4233	102	17	7
ef dd	f9	c6	1 b	5 f	c0	7 e	81	49	c1	d	b7	7 f	6 e	4	4233	102	34	7
ef e1	be	14	20	f8	57	8 a	52	d0	1 f	db	16	22	a0	4	4233	100	17	7
ef e3	23	a	15	83	d1	91	f	84	4 c	94	bb	3 e	d0	4	4284	106	102	7
ef de	12	51	d8	c6	f	c3	91	f8	6 a	a6	7 b	d5	f5	4	4284	104	17	7
ef de	63	bd	d6	f	6 a	2c	16	62	78	70	fc	f3	41	4	4284	104	68	7
ef e1	a	5 c	e4	c7	5 a	f3	45	e5	32	e8	74	8d	a2	4	4335	106	204	7
ef d	f8	ab	57	15	a4	2 e	94	55	5 f	7 e	46	2d	31	4	4335	104	17	7
ef e1	ac	63	8 e	ed	b4	3 c	46	f4	19	68	74	d4	6 e	4	4335	104	34	7

Involutive piecewise-linear permutations

Definition 8

A substitution $g \in S\left(\mathbb{F}_{2^{n}}\right)$ is called involutive if for all $x \in \mathbb{F}_{2^{n}}$ we have $g(g(x))=x$.
It is easy to see that function $g \in L_{r}\left(\mathbb{F}_{2^{n}}\right)$ is involutive if and only if for any elements $i=0, \ldots, r-1$ we have

$$
a_{i}+a_{\pi(i)} \equiv 0 \bmod r
$$

where $\pi: \mathbb{Z}_{r} \rightarrow \mathbb{Z}_{r}, \pi(i)=\left(a_{i}+i\right) \bmod r, i=0, \ldots, r-1$.
Let $I L_{r}\left(\mathbb{F}_{2^{n}}\right)$ be the set of all involutive piecewise-linear permutations from the set $L_{r}\left(\mathbb{F}_{2^{n}}\right)$.

Since l and r are odd, then

$$
a_{0}=0
$$

$$
a_{2}=2^{n}-1-a_{1}
$$

$$
\begin{gathered}
a_{i} \\
a_{r-1}=2^{n}-1-a_{i}
\end{gathered}
$$

0

Proposition 6
For all $n>1$ we have

$$
\left|I L_{r}\left(\mathbb{F}_{2^{n}}\right)\right|=1+\sum_{i=0}^{\frac{r-3}{2}} C_{r}^{2 i+1} l^{\frac{r-2 i-1}{2}}(r-2 i-2)!!
$$

$$
\left|\left\{g \in I L_{r}\left(\mathbb{F}_{2^{n}}\right)| | F(g) \mid=l+1\right\}\right|=\left(1+l^{\frac{r-1}{2}} r!!\right) \ll l^{r} r!=\left|L_{r}\left(\mathbb{F}_{2^{n}}\right)\right|
$$

The joint distribution of parameters p_{g} and $n l_{g}$ for 10^{8} randomly generated involutive permutations $g \in I L_{15}\left(\mathbb{F}_{2^{8}}\right)$

0	1	2	2^{2}	2^{3}	2^{4}	2^{5}	2^{6}	2^{7}	2^{8}	2^{9}	2^{10}	2^{11}	2^{12}	2^{13}	2^{14}	2^{15}	2^{16}	2^{17}	2^{18}	2^{19}	2^{20}	2^{21}	2^{22}

Examples of differentially 4-uniform piecewise-linear involutions $g \in I L_{15}\left(\mathbb{F}_{2^{8}}\right)$ constructed using algorithm 3
Let $\mathbb{F}_{2^{8}}=\mathbb{F}_{2}[x] / x^{8}+x^{4}+x^{3}+x+1, \zeta=3$ is a primitive field element of $\mathbb{F}_{2^{8}}$

Piecewise-linear orthomorphisms

Definition 9

A permutation $g \in S\left(\mathbb{F}_{2^{n}}\right)$ is called an orthomorphism ${ }^{1-4}$ of the group $\mathbb{F}_{2^{n}}^{+}$if the mapping $g^{\prime}: \mathbb{F}_{2}{ }^{n} \rightarrow \mathbb{F}_{2^{n}}$ defined by the rule $g^{\prime}(x)=x+g(x)$ is a permutation from $S\left(\mathbb{F}_{2^{n}}\right)$.

It is well known ${ }^{4}$ that function g is an orthomorphism if and only if $a_{i} \neq 0$ for all $i=0, \ldots, r-1$ and bijective function $\pi^{\prime}: \mathbb{Z}_{r} \rightarrow \mathbb{Z}_{r}$,

$$
\pi^{\prime}(i)=\left(\log _{\zeta}\left(\zeta^{a_{i}}+1\right)+i\right) \bmod r, i=0, \ldots, r-1
$$

Let $\operatorname{Orth}\left(\mathbb{F}_{2^{n}}\right)$ be the set of all orthomorphisms of the group $\mathbb{F}_{2^{n}}^{+}$and let $O L_{r}\left(\mathbb{F}_{2^{n}}\right)$ be the set of all orthomorphisms from the set $L_{r}\left(\mathbb{F}_{2^{n}}\right)$.

For $r=1$ we have $\left|O L_{1}\left(\mathbb{F}_{2^{n}}\right)\right|=2^{n}-2$.
For $r=2^{n}-1$ we have $\left|O L_{2^{n}-1}\left(\mathbb{F}_{2^{n}}\right)\right|=\frac{\left|\operatorname{Orth}\left(\mathbb{F}_{2^{n}}\right)\right|}{2^{n}}$.
Calculating $\left|\operatorname{Orth}\left(\mathbb{F}_{2^{n}}\right)\right|$ for sufficiently large $n \in \mathbb{N}$ is an open problem.
${ }^{1}$ Mann H. B. On orthogonal Latin squares. Bulletin of the American Mathematical Society, 1944, Vol. 50, Pp. 249-257.
${ }^{2}$ Sachkov V. N. Deficiencies of finite group permutations. Tr. Diskr. Mat., 2003, T. 7, Pp. 156-175.
${ }^{3}$ Niederreiter H. and Robinson K. Complete mappings of finite fields. Australian Mathematical Society, 1982, Vol. 33, Issue. 2, Pp. 197-212.
${ }^{4}$ Evans A. Orthomorphisms graphs and groups. Springer-Verlag, Berlin, 1992, 114 p.

Examples of differentially 4-uniform piecewise-linear orthomorphisms $g \in O L_{15}\left(\mathbb{F}_{2^{8}}\right)$ constructed using algorithm 3

Let $\mathbb{F}_{2^{8}}=\mathbb{F}_{2}[x] / x^{8}+x^{4}+x^{3}+x+1, \zeta=3$ is a primitive field element of $\mathbb{F}_{2^{8}}$

$\vec{a}_{g}=\left(a_{0}, a_{1}, \ldots, a_{14}\right)$															p_{g}	$\left\|D_{g, p_{g}}\right\|$	$n l_{g}$	$\left\|L_{g, n l_{g}}\right\|$	$\overline{\lambda_{g}}$
36	8 e	b1	5 c	3	ec	b0	50	a7	a	23	dc	a6	6 e	84	4	4743	102	17	7
26	ee	f8	fa	3d	b8	d	63	ac	81	89	ec	fe	80	21	4	4845	104	34	7
b7	99	bb	85	2 b	20	3 e	16	89	15	6 b	19	88	d	42	4	4998	102	17	7

Linear equivalence of piecewise-linear permutations

Proposition 7

Let $g, g^{\prime} \in L_{r}\left(\mathbb{F}_{2^{n}}\right)$ given by the vectors $\left(a_{0}, a_{1}, \ldots, a_{r-1}\right)$ and $\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots, a_{r-1}^{\prime}\right)$ respectively, $a_{i}, a_{i}^{\prime} \in\left\{0, \ldots, 2^{n}-2\right\}, i=0, \ldots, r-1, \zeta$ is a primitive field element of $\mathbb{F}_{2^{n}}$. Then $g \stackrel{L}{\sim} g^{\prime}$ if there exists such $j \in\left\{0, \ldots, 2^{n}-2\right\}$ that for any $i=0, \ldots, r-1$ we have

$$
a_{i}^{\prime}=\left(a_{i}+j\right) \bmod 2^{n}-1 .
$$

Proposition 8

Let $g, g^{\prime} \in L_{r}\left(\mathbb{F}_{2^{n}}\right)$ given by the vectors $\left(a_{0}, a_{1}, \ldots, a_{r-1}\right)$ and $\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots, a_{r-1}^{\prime}\right)$ respectively, $a_{i}, a_{i}^{\prime} \in\left\{0, \ldots, 2^{n}-2\right\}, i=0, \ldots, r-1, \zeta$ is a primitive field element of $\mathbb{F}_{2^{n}}$. Then $g \stackrel{L}{\sim} g^{\prime}$ if there exists such $j \in\{0, \ldots, r-1\}$ that for any $i=0, \ldots, r-1$ we have

$$
a_{i}^{\prime}=a_{i+j \bmod r} .
$$

Corollary

If under the conditions of proposition g is an involutive permutation, then g^{\prime} is also an involutive permutation.

Corollary

If under the conditions of proposition g is an orthomorphism, then g^{\prime} is also an orthomorphism.

Proposition 9

Let $g, g^{\prime} \in L_{r}\left(\mathbb{F}_{2^{n}}\right)$ given by the vectors $\left(a_{0}, a_{1}, \ldots, a_{r-1}\right)$ and $\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots, a_{r-1}^{\prime}\right)$ respectively, $a_{i}, a_{i}^{\prime} \in\left\{0, \ldots, 2^{n}-2\right\}, i=0, \ldots, r-1, \zeta$ is a primitive field element of $\mathbb{F}_{2^{n}}$. Then $g \stackrel{L}{\sim} g^{\prime}$ if there exists such $j \in\{1, \ldots, n-1\}$ that for any $i=0, \ldots, r-1$ we have

$$
a_{i}^{\prime}=2^{n-j} \cdot a_{i \cdot 2^{j} \bmod r} \bmod 2^{n}-1 .
$$

Corollary

If under the conditions of proposition g is an involutive permutation, then g^{\prime} is also an involutive permutation.

Corollary

If under the conditions of proposition g is an orthomorphism, then g^{\prime} is also an orthomorphism.

The problem of checking linear equivalence between two partially given

piecewise-linear permutations

Piecewise-linear permutation $g \in L_{r}\left(\mathbb{F}_{2^{n}}\right)$ can be defined by the vector

$$
\vec{a}_{g}=\left(a_{0}, a_{1}, \ldots, a_{r-1}\right),
$$

where $a_{i} \in\left\{0, \ldots, 2^{n}-2\right\}, i=0, \ldots, r-1$.
We define mappings $\tau_{1}, \tau_{2}, \tau_{3}:\left\{0, \ldots, 2^{n}-2\right\}^{r} \rightarrow\left\{0, \ldots, 2^{n}-2\right\}^{r}$ as follows

$$
\begin{gathered}
\tau_{1}\left(a_{0}, \ldots, a_{r-1}\right)=\left(\left(a_{0}+1\right) \bmod 2^{n}-1, \ldots,\left(a_{r-1}+1\right) \bmod 2^{n}-1\right) \\
\tau_{2}\left(a_{0}, a_{1}, \ldots, a_{r-1}\right)=\left(a_{1}, a_{2}, \ldots, a_{0}\right) \\
\tau_{3}\left(a_{0}, \ldots, a_{r-1}\right)=\left(2^{n-1} \cdot a_{0} \bmod 2^{n}-1, \ldots, 2^{n-1} \cdot a_{r-1} \bmod 2^{n}-1\right)
\end{gathered}
$$

Let us associate the partially defined permutation $g \in L_{r}\left(\mathbb{F}_{2^{n}}\right)$ with the vector

$$
\vec{a}_{g}=\left(*, \ldots, *, a_{i_{0}}, *, \ldots, *, a_{i_{1}}, *, \ldots, *, a_{i_{d-1}}, *, \ldots, *\right),
$$

where the symbol * denotes undefined positions of the vector (the permutation g on the elements of the corresponding cosets is not defined). Two partially given vectors \vec{a}_{g} и \vec{a}_{h} are called linearly equivalent if there exist such $j_{1} \in\left\{0, \ldots, 2^{n}-2\right\}$, $j_{2} \in\{0, \ldots, r-1\}, j_{3} \in\{0, \ldots, n-1\}$ that we have

$$
\vec{a}_{h}=\tau_{3}^{j_{3}}\left(\tau_{2}^{j_{2}}\left(\tau_{1}^{j_{1}}\left(\vec{a}_{g}\right)\right)\right)
$$

Remark

Linear equivalence of vectors \vec{a}_{g} and \vec{a}_{h} can be checked when $d \mid r$ and for any $j=0, \ldots, d-1$ we have $i_{j} \equiv c \bmod \frac{r}{d}, c=$ const.

The problem of checking linear equivalence between two partially given piecewise-linear permutations

Example 2

Let $\mathbb{F}_{2^{6}}=\mathbb{F}_{2}[x] / x^{6}+x+1, \zeta=2$ is a primitive field element of $\mathbb{F}_{2^{6}}$. It is easy to see that the partially given vector $\vec{a}_{g}=(3 c, *, *, 20, *, *, 21, *, *)$ linear equivalent to any partially given vector \vec{a}_{h} from the following table.

j_{1}	j_{2}	j_{3}	\vec{a}_{h}								
6	3	3	3c	*	*	34	*	*	18	*	*
7	6	3	3c	*		20	*		5	*	*
18	0	4	3c	*	*	b	*	*	f	*	*
18	6	2	3c	*	*	33	*	*	2c	*	*
19	3	2	3c	*	*	d	*	*	4	*	*
24	3	1	3c	*	*	1c	*	*	2a	*	*
25	6	1	3c	*	*	b	*	*	1d	*	*
27	6	0	3c	*	*	18	*	*	3b	*	*
28	3	0	3c	*	*	3d	*	*	19	*	*
33	0	5	3c	*	*	6	*	*	4	*	*
42	0	3	3c	*	*	21	*		19	*	*
45	6	4	3c	*	*	2a	*	*	38	*	*
46	3	4	3c	*	*	1	*	*	2 e	*	*
54	0	2	3c	*	*	35	*	*	6	*	*
60	0	1	3c	*	*	f	*	*	2e	*	*
60	3	5	3c	*	*	3a	*	*	33	*	*
61	6	5	3c	*	*	35	*	*	3 e	*	*

Bounds on the differential uniformity of piecewise-linear permutations

 over the field $\mathbb{F}_{2^{n}}$Obtaining bounds on the differential uniformity of piecewise-linear permutations is related to the study of the additive properties of multiplicative subgroups $\mathbb{F}_{2^{n}}^{\times}$.

Lemma 1

Let $n, r, l \in \mathbb{N}, 2^{n}-1=r l, \zeta$ is a primitive field element of $\mathbb{F}_{2^{n}}, H=\left\langle\zeta^{r}\right\rangle$ is the subgroup of order l of $\mathbb{F}_{2^{n}}^{\times}, H_{i}=\zeta^{i} H, i=0, \ldots, r-1, g \in L_{r}\left(\mathbb{F}_{2^{n}}\right)$ is a permutation given by the set of pairwise distinct numbers ($a_{0}, a_{1}, \ldots, a_{r-1}$). Then the difference equation

$$
g(x)+g(x+\alpha)=\beta, \alpha, \beta \in \mathbb{F}_{2^{n}}^{\times}
$$

for any $i \neq j$ has at most one solution $x_{1} \in H_{i}$ satisfying the condition $x_{1}+\alpha \in H_{j}$.

Bounds on the differential uniformity of piecewise-linear permutations over the field $\mathbb{F}_{2^{n}}$

Lemma 2

Let $n, r, l \in \mathbb{N}, 2^{n}-1=r l, \zeta$ is a primitive field element of $\mathbb{F}_{2^{n}}, H=\left\langle\zeta^{r}\right\rangle$ is the subgroup of order l of $\mathbb{F}_{2^{n}}^{\times}, H_{i}=\zeta^{i} H, i=0, \ldots, r-1, g \in L_{r}\left(\mathbb{F}_{2^{n}}\right)$ is a permutation given by the set of pairwise distinct numbers $\left(a_{0}, a_{1}, \ldots, a_{r-1}\right)$. Let, in addition, the difference equation

$$
g(x)+g(x+\alpha)=\beta, \alpha, \beta \in \mathbb{F}_{2^{n}}^{\times}(*)
$$

have solutions $x_{1}, x_{1}+\alpha \in H_{i} \cup\{0\}$. Then for any $j \neq i$ equation ($*$) has no solutions $x_{2} \in H_{j}$ satisfying the condition $x_{2}+\alpha \in H_{i} \cup H_{j}$.

Bounds on the differential uniformity of piecewise-linear permutations over the field $\mathbb{F}_{2^{n}}$

Theorem

Let $n, r, l \in \mathbb{N}, 2^{n}-1=r l, \zeta$ is a primitive field element of $\mathbb{F}_{2^{n}}, H=\left\langle\zeta^{r}\right\rangle$ is the subgroup of order l of $\mathbb{F}_{2^{n}}^{\times}, g \in L_{r}\left(\mathbb{F}_{2^{n}}\right)$ is a permutation given by the set of pairwise distinct numbers $\left(a_{0}, a_{1}, \ldots, a_{r-1}\right)$. Then we have lower and upper bounds on the differential uniformity of g :

$$
\begin{gathered}
\max \left\{\sum_{s=1}^{t}(-1)^{s+1} \sum_{n_{1} \leq \ldots \leq n_{s}} 2^{\operatorname{gcd}\left(n_{1}, n_{2}, \ldots, n_{s}\right)}, 2\left\lfloor\frac{l+1}{2 r}\right\rfloor\right\} \leq \\
\leq p_{g} \leq \\
\leq 2 \max \{\lfloor\varphi(r, l)\rfloor, \varphi(r-1, l)+ \\
\left.+\max \left\{\left\lfloor\varphi\left(l / m_{n_{t}}, m_{n_{t}}\right)\right\rfloor, \frac{m_{n_{t}}+1}{2}+\varphi\left(l / m_{n_{t}}-1, m_{n_{t}}\right)\right\}\right\}
\end{gathered}
$$

where $m_{n_{1}}<m_{n_{2}}<\ldots<m_{n_{t}}$ is the complete list of divisors of l of the form $m_{n_{k}}=2^{n_{k}}-1, k=1, \ldots, t, \varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}, \varphi(x, y)=\frac{x \cdot \min \{x-1, y\}}{2}$.

Bounds on the differential uniformity of piecewise-linear permutations over the field $\mathbb{F}_{2^{n}}$

Remark

The lower and upper bounds proved in the theorem for $r=2^{n}-1$ are also valid in the case when the numbers from the set $\left(a_{0}, a_{1}, \ldots, a_{r-1}\right)$ are not pairwise distinct.

Theorem gives us necessary conditions for the existence of APN substitutions.

Corollary

If $g \in S\left(\mathbb{F}_{2^{6}}\right), p_{g}=2, g(0)=0$, then $g \in L_{r}\left(\mathbb{F}_{2^{6}}\right)$, where $r \notin\{1,3,7,9,21\}$.

Corollary

If there is a permutation $g \in S\left(\mathbb{F}_{2} 8\right)$ such that $p_{g}=2, g(0)=0$, then $g \in L_{r}\left(\mathbb{F}_{2^{8}}\right)$, where $r \notin\{1,3,5,17,85\}$.

Remark

An upper bound for p_{g} is not always trivial for $r \geq 2^{n / 2}+1$. For example, if $g \in L_{r}\left(\mathbb{F}_{2^{12}}\right)$, where $r \in\{91,117,195,455\}$, then we have

$$
p_{g} \leq 4094
$$

The reachability of the lower and upper bounds on the differential uniformity of piecewise-linear permutations

Let $n=6,2^{6}-1=r l, r, l \in \mathbb{N}, \zeta$ is a primitive field element of $\mathbb{F}_{2^{6}}$, $H=\left\langle\zeta^{r}\right\rangle$ is the subgroup of order l of $\mathbb{F}_{2^{6}}^{\times}$. The following table for different values of $l \in\{1,3,7,9,21,63\}$ contains the minimum and maximum values of p_{g} among all permutations $g \in L_{r}\left(\mathbb{F}_{2}{ }^{6}\right)$. The table also contains the lower and upper bounds obtained in the theorem for the values p_{g}.

$\|H\|$	A lower bound on p_{g}	$\min _{g \in L_{r}\left(\mathbb{F}_{2} 6\right)} p_{g}$	$\max _{g \in L_{r}\left(\mathbb{F}_{2} 6\right)} p_{g}$	An upper bound on p_{g}
1	2	2	64	64
3	4	4	64	64
7	8	8	64	64
9	4	4	22	42
21	10	10	12	12
63	64	64	64	64

The reachability of the lower and upper bounds on the differential uniformity of piecewise-linear permutations
Let $n=8,2^{8}-1=r l, r, l \in \mathbb{N}, \zeta$ is a primitive field element of $\mathbb{F}_{2^{8}}$, $H=\left\langle\zeta^{r}\right\rangle$ is the subgroup of order l of $\mathbb{F}_{2^{8}}^{\times}$. The following table for different values of $l \in\{1,3,5,15,17,51,85,255\}$ contains the best and worst known values of p_{g} for permutations $g \in L_{r}\left(\mathbb{F}_{2} 8\right)$. The table also contains the lower and upper bounds obtained in the theorem for the values p_{g}.

$\|H\|$	A lower bound on p_{g}	Best-known example	A worst case example	An upper bound on p_{g}
1	2	4	256	256
3	4	4	256	256
5	2	4	216	256
15	16	16	256	256
17	2	4	56	210
51	12	12	20	64
85	30	30	32	88
255	256	256	256	256

Thanks for attention

[^0]: 1 Shannon C. A mathematical theory of cryptography, Tech. Rep. MM 45-110-02, Bell Labs. Tech. Memo., 1945.

[^1]: ${ }^{1}$ Nyberg K. Differentially uniform mappings for cryptography. Proceedings of EUROCRYPT 1993, Lecture Notes in Computer Science 765, 1994, pp. 55-64.

 2 Sachkov V.N. Combinatorial properties of differentially 2 -uniform substitutions. Mat. Vopr. Kriptogr., 6:1 (2015), pp. 159-179.
 ${ }^{3}$ Carlet C. Open questions on nonlinearity and on APN functions. Proceedings of Arithmetic of Finite Fields 5th International Workshop, WAIFI 2014, LNCS 9061 (2015), pp. 83-107.

[^2]: ${ }^{1}$ Nyberg K. Differentially uniform mappings for cryptography. Proceedings of EUROCRYPT 1993, Lecture Notes in Computer Science 765, 1994, pp. 55-64.
 ${ }^{2}$ Gold R. Maximal recursive sequences with 3 -valued recursive crosscorrelation functions. IEEE Transactions on Information Theory 14, 1968, pp. 154-156.
 ${ }^{3}$ Kasami T. The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes. Information and Control 18, 1971, pp. 369-394.
 ${ }^{4}$ Dobbertin H. One-to-one highly nonlinear power functions on $\operatorname{GF}(2 \mathrm{n})$. Applicable Algebra in Engineering, Communication and Computing (AAECC), 9:2(1998), pp. 139-152.
 ${ }^{5}$ Bracken C., Tan C. and Tan Y. Binomial differentially 4 uniform permutations with high nonlinearity. Finite Fields and Their Applications 18:3(2012), pp. 537-546.

[^3]: ${ }^{1}$ Qu L., Tan Y., Tan C. H., and Li C. Constructing differentially 4-uniform permutations over via the switching method. IEEE Transactions on Information Theory 59:7(2013), pp. 4675-4686.
 ${ }^{2}$ Carlet C. Boolean functions for cryptography and coding theory. Cambridge University Press, 2020, 574 p .
 ${ }^{3}$ Davydov S.A., Kruglov I.A. A method of construction of differentially 4 -uniform permutations over V_{m} for even m. Diskr. Mat., 31:2 (2019), pp. 69-76.
 ${ }^{4}$ Carlet C., Tang D., Tang X., and Liao Q. New construction of differentially 4-uniform bijections. Proceedings of INSCRYPT 2013, LNCScience 8567 (2014), pp. 22-38.

[^4]: ${ }^{1}$ Yu Y., Wang M., Li Y. Constructing low differential uniformity functions from known ones. Chinese Journal of Electronics, 22:3 (2013), pp. 495-499.

 2 Fu S. and Feng X. Involutory differentially 4 -uniform permutations from known constructions. Designs, Codes and Cryptography 87:1(2018), pp. 31-56.

 3 Zha Z., Hu L., and Sun S. Constructing new differentially 4-uniform permutations from the inverse function. Finite Fields and Their Applications 25 (2014), pp. 64-78.

[^5]: ${ }^{1}$ Menyachikhin A.V. The change in linear and differential characteristics of substitution after the multiplication by transposition. Mat. Vopr. Kriptogr., 11:2 (2020), pp. 111-123.

