ADAPTED SPECTRAL-DIFFERENTIAL METHOD FOR CONSTRUCTING DIFFERENTIALLY 4-UNIFORM PIECEWISE-LINEAR SUBSTITUTIONS, ORTHOMORPHISMS, INVOLUTIONS OVER THE FIELD \mathbb{F}_{2^n}

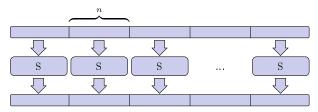
Menyachikhin Andrey

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □ :

Shannon's properties 1 are often implemented in modern block ciphers by using three layers in each round:

- the round key layer,
- the confusion layer,
- O diffusion layer.

The confusion layer is often realized as a parallel application of nonlinear substitution boxes (S-boxes)



Remark

For computational reasons (n, n)-functions are better used as s-boxes when n is even, the best being when n is a power of 2.

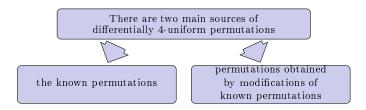
In this report, special attention is paid to the differential uniformity of s-boxes.

¹ Shannon C. A mathematical theory of cryptography, Tech. Rep. MM 45-110-02, Bell Labs. Tech. Memo., 1945.

A mapping is called differentially \triangle -uniform^{1,2} if for every non-zero input difference and any output difference the number of possible inputs has a uniform upper bound \triangle .

Remark

The existence of differentially 2-uniform permutations of \mathbb{F}_{2^n} for even n > 6 is an open problem³. It is then important to find as many differentially 4-uniform permutations as possible in even dimension.



¹ Nyberg K. Differentially uniform mappings for cryptography. Proceedings of EUROCRYPT 1993, Lecture Notes in Computer Science 765, 1994, pp. 55-64.

² Sachkov V.N. Combinatorial properties of differentially 2-uniform substitutions. Mat. Vopr. Kriptogr., 6:1 (2015), pp. 159-179.

³ Carlet C. Open questions on nonlinearity and on APN functions. Proceedings of Arithmetic of Finite Fields 5th International Workshop, WAIFI 2014, LNCS 9061 (2015), pp. 83-107.

We begin with the known permutations:

• power functions (for example, the inverse function¹ - $g(x) = x^{2^n-2}$; the Gold function² - $g(x) = x^{2^{i}+1}$, gcd(i,n) = 2, $n \equiv 2 \pmod{4}$; the Kasami function³ - $g(x) = x^{2^{2i}-2^{i}+1}$, gcd(i,n) = 2; the Dobbertin function⁴ - $g(x) = x^{2^{n/2+n/4+1}}$, $4 \mid n, 8 \nmid n$;

opplynomial functions (for example, binomial functions⁵)

$$\zeta x^{2^s+1} + \zeta^{2^k} x^{2^{-k}+2^{k+s}},$$

where ζ is a primitive field element of \mathbb{F}_{2^n} , $n \equiv 3k$, k is even, k/2 is odd, $3 \nmid k$, $gcd(n,s) = 2, 3 \mid (k+s)$).

¹ Nyberg K. Differentially uniform mappings for cryptography. Proceedings of EUROCRYPT 1993, Lecture Notes in Computer Science 765, 1994, pp. 55-64.

² Gold R. Maximal recursive sequences with 3-valued recursive crosscorrelation functions. IEEE Transactions on Information Theory 14, 1968, pp. 154-156.

³ Kasami T. The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes. Information and Control 18, 1971, pp. 369-394.

⁴ Dobbertin H. One-to-one highly nonlinear power functions on GF(2n). Applicable Algebra in Engineering, Communication and Computing (AAECC), 9:2(1998), pp. 139-152.

⁵ Bracken C., Tan C. and Tan Y. Binomial differentially 4 uniform permutations with high nonlinearity. Finite Fields and Their Applications 18:3(2012), pp. 537-546.

We continue with permutations obtained by modifications of known permutations:

• the switching constructions¹. These permutations were obtained by adding Boolean functions to the inverse function $g(x) = x^{2^n-2}$ (for example, constructions of the following type

$$g(x) = x^{2^{n}-2} + tr_n \left(x^2 \left(x + 1 \right)^{2^{n}-2} \right) \mathbf{H}$$
$$g(x) = x^{2^{n}-2} + tr_n \left(x^{(2^{n}-2)d} + \left(x^{2^{n}-2} + 1 \right)^d \right),$$

where $d = 3(2^t + 1), 2 \le t \le n/2 - 1$ and other constructions);

(a) the Carlet constructions (for example, construction² that consist in restricting APN-functions in n + 1 variables to a linear manifold of dimension n = 2k and its various generalizations³; construction of the following type⁴

$$g(x,x') = \begin{cases} \left(x^{2^{n-1}-2}, f(x)\right), & \text{if } x' = 0, \\ \left(cx^{2^{n-1}-2}, f\left(xc^{2^{n-1}-2} + 1\right)\right), & \text{if } x' = 1, \end{cases}$$

where $n \ge 6$, n is even, $c \in \mathbb{F}_{2^{n-1}} \setminus \mathbb{F}_2$, $tr_{n-1}(c) = tr_{n-1}\left(c^{2^{n-1}} - 2\right) = 1, x \in \mathbb{F}_{2^{n-1}}, x' \in \mathbb{F}_2$, f is $n-1$ variables Boolean function);

 3 Davydov S.A., Kruglov I.A. A method of construction of differentially 4-uniform permutations over V_m for even m. Diskr. Mat., 31:2 (2019), pp. 69-76.

⁴Carlet C., Tang D., Tang X., and Liao Q. New construction of differentially 4-uniform bijections. Proceedings of INSCRYPT 2013, LNCScience 8567 (2014), pp. 22-38.

S Q (

¹ Qu L., Tan Y., Tan C. H., and Li C. Constructing differentially 4-uniform permutations over via the switching method. IEEE Transactions on Information Theory 59:7(2013), pp. 4675-4686.

 $^{^2}$ Carlet C. Boolean functions for cryptography and coding theory. Cambridge University Press, 2020, 574 p.

• constructions that implement multiplication by cycles (for example, permutation¹ obtained from the inverse function $g(x) = x^{2^n-2}$ by swapping its values at two different points $x_1, x_2 \in \mathbb{F}_{2^n}^{\times}$, $tr_n\left(x_1x_2^{-1}\right)tr_n\left(x_1^{-1}x_2\right) = 1$; permutations² obtained from the inverse function by cyclically shifting the images of the function over some subset

$$g\left(x\right) = \left(\pi_{i}\left(x\right)\right)^{2^{n}-2}$$

where
$$\pi_i = (i, c_i, c_i^{-1}), c_i \in \mathbb{F}_{2^{n-1}} \setminus \mathbb{F}_2, tr_n(c_i) = tr_n((c_i+1)^{-1}) = 1,$$

 $i \in \{0, 1\}, tr_n((c_1+1)^{-3}) = 0, tr_n(c_1^{-1}) = 1;$ and other constructions);

• permutations obtained by applying affine transformations to an inverse function on some subfields of \mathbb{F}_{2^n} (for example, construction of the following type³

$$g(x) = \begin{cases} c_0 x^{2^n - 2} + c_1, & \text{if } x^{2^m} = x \\ x^{2^n - 2}, & \text{if } x^{2^m} \neq x \end{cases}$$

where $c_0, c_1 \in \mathbb{F}_{2^m}$, $n = mk, x \in \mathbb{F}_{2^n}$);

¹ Yu Y., Wang M., Li Y. Constructing low differential uniformity functions from known ones. Chinese Journal of Electronics, 22:3 (2013), pp. 495-499.

 2 Fu S. and Feng X. Involutory differentially 4-uniform permutations from known constructions. Designs, Codes and Cryptography 87:1(2018), pp. 31-56.

³ Zha Z., Hu L., and Sun S. Constructing new differentially 4-uniform permutations from the inverse function. Finite Fields and Their Applications 25 (2014), pp. 64-78.

O the butterfly construction 1 and its various generalizations 2,3 (for example, construction of the following type 4

$$g\left(x,x'\right) = \left(f\left(x,x'\right),f\left(x',x\right)\right) \text{ and } g\left(x,x'\right) = \left(f\left(f^{-1}\left(x,x'\right),x'\right),f^{-1}\left(x,x'\right)\right),$$

where $x, x' \in \mathbb{F}_{2^{n/2}}, n = 4k + 2, k \ge 1, f(x, x') = (x + c_1 x')^3 + c_2 x'^3, c_1, c_2 \in \mathbb{F}_{2^{n/2}}, c_2 \ne (1 + c_1)^3.$

The main idea of this report

Combining an algebraic and heuristic approaches to construction s-boxes with low differential uniformity.

・ロト ・回ト ・ヨト ・ヨト

¹ Perrin L., Udovenko A., and Biryukov A.. Cryptanalysis of a theorem: decomposing the only known solution to the big APN problem. Proceedings of CRYPTO 2016, Lecture Notes in Computer Science 9815, part II, 2016, pp. 93-122.

² De La Cruz Jimenez R.A. Constructing 8-bit permutations, 8-bit involutions and 8-bit orthomorphisms with almost optimal cryptographic parameters. Mat. Vopr. Kriptogr., 12:3 (2021), pp. 89-124.

³ Fomin D.B. New classes of 8-bit permutations based on butterfly structure. Mat. Vopr. Kriptogr., 10:2 (2019), pp. 169-180.

⁴ Canteaut A., Duval S., and Perrin L. A generalisation of Dillon's APN permutation with the best known differential and nonlinear properties for all fields of size 24k+2. IEEE Transactions on Information Theory 63:11 (2017), pp. 7575-7591.

Main definitions and notations

Let $H < \mathbb{F}_{2^n}^{\times}$ be the subgroup of order l of the multiplicative group of the field \mathbb{F}_{2^n} , $0 < l < 2^n - 1$, $2^n - 1 = l \cdot r$, where $r \in \mathbb{N}$, ζ is a primitive field element of \mathbb{F}_{2^n} , $H = \langle \zeta^r \rangle$. The group $\mathbb{F}_{2^n}^{\times}$ is partitioned into cosets of H:

$$\mathbb{F}_{2^n}^{\times} = \bigcup_{i=0}^{r-1} H_i, H_i = \zeta^i H, i = 0, ..., r-1.$$

Definition 1

Piecewise-linear function¹⁻⁵ $g: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is defined as $g(x) = \begin{cases} 0, & \text{if } x = 0, \\ \zeta^{a_i} x, & \text{if } x \in H_i, \end{cases}$ where $a_i \in \{0, ..., 2^n - 2\}, i = 0, ..., r - 1.$

It is well known^{2,3} that function g is bijective if and only if bijective function $\pi: \mathbb{Z}_r \to \mathbb{Z}_r, \qquad \pi(i) = (a_i + i) \mod \pi \quad i = 0, \quad r = 1$

$$\pi(i) = (a_i + i) \mod i, i = 0, ..., i = 1$$

Let $L_r \, (\mathbb{F}_{2^n})$ be the set of all piecewise-linear permutations satisfying conditions of definition 1.

For all n > 1 we have

$$|L_r\left(\mathbb{F}_{2^n}\right)| = l^r r!.$$

² Evans A. Orthomorphisms graphs and groups. Springer-Verlag, Berlin, 1992, 114 p.

³ Trishin A.E. The nonlinearity index for a piecewise-linear substitution of the additive group of the field \mathbb{F}_{2^n} . Prikl. Diskr. Mat., 4:30 (2015), pp. 32-42.

 4 Bugrov A.D. Piecewise-affine permutations of finite fields. Prikl. Diskr. Mat., 4:30 (2015), pp. 5-23.

⁵ Pogorelov B.A., Pudovkina M.A. Classes of piecewise quasiaffine transformations on the dihedral, the quasidihedral and the modular maximal-cyclic 2-group. Diskr. Mat., 34:1 (2022), pp. 103-125.

Menyachikhin A.V.

Adapted spectral-differential method

¹ Wells C. Groups of permutation polynomials. Monatshefte für Mathematik, 71 (1967), pp. 248-262.

Main definitions and notations

Let $g: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ be a function from a set \mathbb{F}_{2^n} to a set \mathbb{F}_{2^n} . If a set M is a subset of \mathbb{F}_{2^n} , then the *restriction of* g to M is the function $g_M: M \to \mathbb{F}_{2^n}$.

Definition 2

The differential uniformity p_{g_M} of the mapping g_M is defined as

$$p_{g_M} = \max_{\alpha \in \mathbb{F}_{2n}^{\times}, \beta \in \mathbb{F}_{2n}} p_{\alpha,\beta}^{g_M},$$

where

$$p^{g_{M}}_{\alpha,\beta}=\left|\left\{x\in M\left|x+\alpha\in M,g\left(x+\alpha\right)+g\left(x\right)=\beta\right.\right\}\right|.$$

If M is a proper subset of \mathbb{F}_{2^n} , then the p_{g_M} parameter is called *the partial differential uniformity* of the function g over the set M.

Remarks

- **(**) Notice that $M \subset \mathbb{F}_{2^n}$ may be not closed under operation + in the field \mathbb{F}_{2^n} .
- **②** The introduced definition is consistent with the known formulation if the set $M \subset \mathbb{F}_{2^n}$ is closed under operation + in the field \mathbb{F}_{2^n} .
- **(**) For a chain of subsets $M_0 \subseteq M_1 \subseteq ... \subseteq M_{s-1} \subseteq \mathbb{F}_{2^n}$ we have

$$p_{g_{M_0}} \leq p_{g_{M_1}} \leq \ldots \leq p_{g_{M_{s-1}}} \leq p_g.$$

The difference distribution table $P(g_M)$ of the mapping g_M counts the number of cases when the input difference of a pair is α and the output difference is β .

Main definitions and notations

For the mapping g_M and each number i = 0, 1, ..., |M|, we define the set

$$D_{g_M,i} = \left\{ (\alpha,\beta) \in \mathbb{F}_{2^n}^{\times} \times \mathbb{F}_{2^n} \left| p_{\alpha,\beta}^{g_M} = i \right\}.$$

Definition 3

The differential spectrum of the mapping
$$g_M$$
 is defined as $\vec{D}_{g_M} = \left(|D_{g_M,0}|, |D_{g_M,1}|, |D_{g_M,2}|, ..., |D_{g_M,|M|}|\right)$.

Definition 4

The nonlinearity nl_g of the function $g \colon \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is defined as

$$nl_{g} = 2^{n-1} - \frac{1}{2} \max_{\alpha \in \mathbb{F}_{2^{n}}, \beta \in \mathbb{F}_{2^{n}}^{\times}} w_{g_{\beta}}(\alpha),$$

where $w_{g_{\beta}}(\alpha) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{tr_n(\beta g(x) + \alpha x)}$ is a Walsh transform of a Boolean function $g_{\beta} \colon \mathbb{F}_{2^n} \to \mathbb{F}_2$ as follows $g_{\beta}(x) = tr_n(\beta g(x))$.

For the function $g: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ and each number $i = 0, 1, ..., 2^{n-1} - 2^{\frac{n}{2}-1}$, we define the set

$$L_{g,i} = \left\{ (\alpha, \beta) \in \mathbb{F}_{2^n} \times \mathbb{F}_{2^n}^{\times} \middle| w_{g_\beta} (\alpha) = i \right\}.$$

Definition 5

The linear spectrum of the function g is defined as

$$\vec{L}_g = \left(|L_{g,0}|, |L_{g,1}|, |L_{g,2}|, ..., |L_{g,2^{n-1}-2^{\frac{n}{2}-1}}| \right).$$

Menyachikhin A.V.

9 / 34

Definition 6

The generalized algebraic degree $\overline{\lambda_g}$ of the permutation $g \in S(\mathbb{F}_{2^n})$ is defined as

$$\overline{\lambda_g} = \min\left\{\lambda_g, \lambda_{g^{-1}}\right\},\,$$

where

$$\lambda_{g} = \min_{\alpha \in \mathbb{F}_{2^{n}}^{\times}} \deg\left(tr\left(ag\left(x\right)\right)\right), \lambda_{g^{-1}} = \min_{\alpha \in \mathbb{F}_{2^{n}}^{\times}} \deg\left(tr\left(ag^{-1}\left(x\right)\right)\right)$$

and deg denotes the algebraic degree of the Zhegalkin polynomial of Boolean function.

Definition 7

Two permutations $g, h \in S(\mathbb{F}_{2^n})$ are *linear equivalent* $(g \stackrel{L}{\sim} h)$ if there exist linear permutations $L_1, L_2: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ such that

$$L_2 \circ g \circ L_1 = h.$$

The set of all fixed point of a permutation $g \in S(\mathbb{F}_{2^n})$ is denoted by F_g .

・ロット (四) (日) (日)

Proposition 1

Let $g \in L_r$ (\mathbb{F}_{2^n}) and ζ is a primitive field element of \mathbb{F}_{2^n} . Then $x_0 \in \mathbb{F}_{2^n}$ is a solution to equation $g(x + \alpha_0) + g(x) = \beta_0$, $\alpha_0, \beta_0 \in \mathbb{F}_{2^n}$ if and only if $x_j = x_0 \zeta^{rj}$ is a solution to equation $g(x + \alpha_j) + g(x) = \beta_j$, $\alpha_j = \alpha_0 \zeta^{rj}$, $\beta_j = \beta_0 \zeta^{rj}$, j = 1, 2, ..., l - 1.

Corollary

For $g \in L_r(\mathbb{F}_{2^n})$ and any number $i = 0, 1, ..., 2^{n-1}$ we have $|D_{g,i}| \equiv 0 \pmod{l}$.

Proposition 2

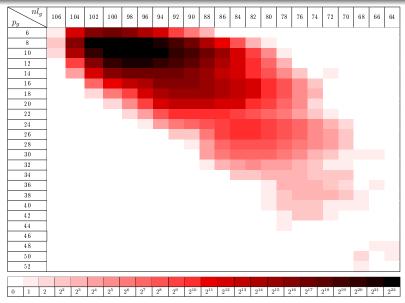
Let $g \in L_r(\mathbb{F}_{2^n})$ and ζ is a primitive field element of \mathbb{F}_{2^n} . Then $x_0 \in \mathbb{F}_{2^n}$ is a solution to equation $tr_n(x \cdot \alpha_0) = tr_n(g(x) \cdot \beta_0)$, $\alpha_0, \beta_0 \in \mathbb{F}_{2^n}$ if and only if $x_j = x_0 \zeta^{rj}$ is a solution to equation $tr_n(x \cdot \alpha_j) = tr_n(g(x) \cdot \beta_j)$, $\alpha_j = \alpha_0 \zeta^{r(l-i)}$, $\beta_j = \beta_0 \zeta^{r(l-j)}$, j = 1, 2, ..., l-1.

Corollary

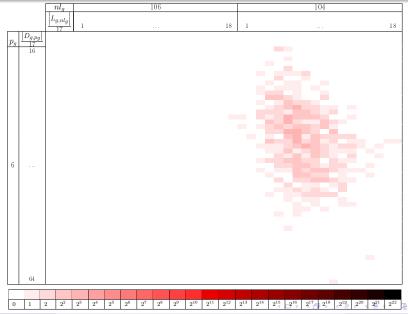
For $g \in L_r(\mathbb{F}_{2^n})$ and any number $i = 0, 1, ..., 2^{n-1} - 2^{\frac{n}{2}-1}$ we have $|L_{g,i}| \equiv 0 \pmod{l}$.

(日) (圖) (문) (문) [

The joint distribution of parameters p_g and nl_g for 10^8 randomly generated permutations $g \in L_{15}(\mathbb{F}_{2^8})$



The joint distribution of parameters p_g and nl_g for 10^8 randomly generated permutations $g \in L_{15}(\mathbb{F}_{2^8})$



Menyachikhin A.V.

Adapted spectral-differential method

13 / 34

Efficient computation of the differential spectrum of piecewise-linear substitutions

We define mapping $\psi \colon \mathbb{F}_{2^n}^{\times} \to \{1, \zeta, \zeta^2, ..., \zeta^{r-1}\}$ as follows $\psi(x) = \zeta^i$ if $x \in H_i$, $i \in \{0, ..., r-1\}$, and for any $x \in \mathbb{F}_{2^n}^{\times}$ we define the permutation $\sigma_x \in S(\mathbb{F}_{2^n})$ as follows $\sigma_x(y) = yx^{-1}\psi(x)$.

Proposition 1 allows us to associate any row of the matrix P_q

$$\left(p^g_{\alpha,0}, p^g_{\alpha,1}, p^g_{\alpha,\zeta}, ..., p^g_{\alpha,\zeta^{2^n-2}}\right)$$

with the row

$$\begin{pmatrix} p_{\psi(\alpha),0}^{g}, p_{\psi(\alpha),1}^{g}, p_{\psi(\alpha),\zeta}^{g}, \dots, p_{\psi(\alpha),\zeta^{2^{n}-2}}^{g} \end{pmatrix} = \\ = \begin{pmatrix} p_{\alpha,\sigma_{\alpha}(0)}^{g}, p_{\alpha,\sigma_{\alpha}(1)}^{g}, p_{\alpha,\sigma_{\alpha}(\zeta)}^{g}, \dots, p_{\alpha,\sigma_{\alpha}(\zeta^{2^{n}-2})}^{g} \end{pmatrix}$$

of the same matrix. Hence, the matrix P_g of the permutation $g \in L_r(\mathbb{F}_{2^n})$ has at most r unique rows.

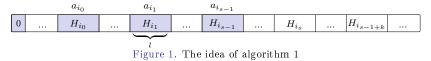
Efficient computation of the differential spectrum of piecewise-linear substitutions

Example 1

Let *H* is the subgroup of order 5 of $\mathbb{F}_{24} = \mathbb{F}_2[x]/x^4 + x + 1$ and $\zeta = 2$ is a primitive field element of \mathbb{F}_{24} . The group \mathbb{F}_{24}^{\times} is partitioned into cosets of *H*:

Efficient computation of the differential spectrum of piecewise-linear substitutions

Denote by $H_{(i_0,...,i_{s-1})} = \bigcup_{j=0}^{s-1} H_{i_j} \cup \{0\}$, where $s \in \{1,...,r\}$. Consider the mapping $g_{H_{(i_0,...,i_{s-1})}} : H_{(i_0,...,i_{s-1})} \to \mathbb{F}_{2^n}$, which is the restriction of the permutation $g \in L_r(\mathbb{F}_{2^n})$ to the set $H_{(i_0,...,i_{s-1})}$. Proposition 1 gives us the following algorithm for calculating the differential spectrum of the mapping $g_{H_{(i_0,...,i_{s-1})}} : H_{(i_0,...,i_{s-1})} \to \mathbb{F}_{2^n}$ (see Fig. 1).



Proposition 3

Differential spectrum $\vec{D}_{g_{H_{(i_0,...,i_{s-1})}}}$ of the mapping $g_{H_{(i_0,...,i_{s-1})}}$, $s \in \{1,...,r\}$, can be calculated using algorithm 1 with complexity t,

$$t \le cls^2, c = const.$$

Remark

For s = r the complexity of algorithm 1 is l times lower than the complexity of the classical approach.

Menyachikhin A.V.

Efficient computation of the differential spectrum of piecewise-linear substitutions

Algorithm 1 can be easily modified for the case when it is necessary to calculate the differential spectrum $\vec{D}_{gH_{(i_0,\dots,i_{s-1}+k)}}$ of the mapping $g_{H_{(i_0,\dots,i_{s-1}+k)}}$ from the known mapping $g_{H_{(i_0,\dots,i_{s-1})}}$, difference distribution table $P_{gH_{(i_0,\dots,i_{s-1})}}$ and differential spectrum $\vec{D}_{g_{H_{\left(i_{0},...,i_{s-1}\right)}}}$ (see Fig. 2).

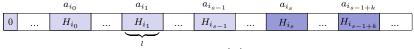


Figure 2. The idea of algorithm 2

Proposition 4

Differential spectrum $\vec{D}_{g_{H_{(i_0,\dots,i_{s-1+k})}}}$ of the mapping $g_{H_{(i_0,\dots,i_{s-1+k})}}$, $s \in \{1, ..., r-1\}$, can be calculated from the differential spectrum $\vec{D}_{gH_{(i_0,...,i_{s-1})}}$ and the submatrix $P_{g_{H_{(i_0,\dots,i_{s-1})}}}\begin{pmatrix}1,\zeta,\zeta^2,\dots,\zeta^{r-1}\\0,1,\zeta,\dots,\zeta^{2^n-2}\end{pmatrix}$ of the matrix $P_{g_{H_{(i_0,\dots,i_{s-1})}}}$ of the mapping $g_{H_{(i_0,\ldots,i_{s-1})}}$ using algorithm 2 with t complexity,

$$t \leq cls, c = const.$$

1 Menvachikhin A.V. The change in linear and differential characteristics of substitution after the multiplication by transposition. Mat. Vopr. Kriptogr., 11:2 (2020), pp. 111-123. Adapted spectral-differential method 17 / 34 Menyachikhin A.V.

Adapted spectral-differential method for constructing s-boxes

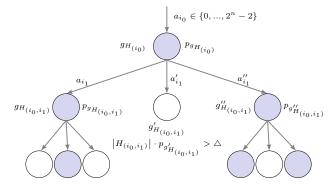


Figure 3. The main idea of algorithm 3 implementing the adapted spectral-differential method

Proposition 5

For $n, r, w \in \mathbb{N}$, $r \mid 2^n - 1$ we have the following complexity t of algorithm 3:

$$t \leq cw2^n (r-1) \left(2^{n-1} + n + \log w + r/2\right)$$
, where $c = const$.

¹ Menyachikhin A.V. Spectral-linear and spectral-differential methods for generating s-boxes having almost optimal cryptographic parameters. Mat. Vopr. Kriptogr., 82 (2017), pp. 97-116. Menyachikhin A.V. Adapted spectral-differential method 18 / 34

Examples of differentially 4-uniform piecewise-linear permutations $g \in L_{15}(\mathbb{F}_{2^8})$ constructed using algorithm 3

	-			'	x	o x	1	æ	$\top x$	1 1									-
					\vec{a}_g	= (6	a_0, a_1	,, a	(14)						p_g	$\left D_{g,p_g} \right $	nl_g	$ L_{g,nl_g} $	$\overline{\lambda_g}$
$\mathbf{e}\mathbf{f}$	e1	11	b4	35	44	ea	9a	f2	d1	46	9c	18	56	80	4	3825	102	34	7
$\mathbf{e}\mathbf{f}$	e1	25	5	42	73	ab	82	$^{\rm cd}$	29	d3	17	ae	9f	e0	4	4029	106	102	7
$\mathbf{e}\mathbf{f}$	dd	$3\mathrm{c}$	52	88	83	a8	59	29	$6\mathrm{d}$	84	d9	4e	3a	f9	4	4029	102	17	7
$\mathbf{e}\mathbf{f}$	dd	79	86	2	9b	3f	$2\mathrm{b}$	2d	70	4e	83	d5	e7	$2\mathrm{a}$	4	41 31	104	68	7
$\mathbf{e}\mathbf{f}$	de	9a	44	5	2	ab	73	$8\mathrm{e}$	10	eb	5f	42	60	ae	4	4182	102	17	7
$\mathbf{e}\mathbf{f}$	de	34	70	10	c5	cd	83	22	ed	23	c0	ca	b8	$\mathbf{c}\mathbf{f}$	4	4233	104	17	7
$\mathbf{e}\mathbf{f}$	dd	43	86	16	73	df	3	$\mathbf{b}\mathbf{c}$	b8	ce	57	7e	7f	44	4	4233	104	34	7
$\mathbf{e}\mathbf{f}$	dd	$3\mathrm{e}$	91	7c	e^{3}	d6	da	b2	2	8f	33	17	$^{\mathrm{fb}}$	5c	4	4233	102	17	7
$\mathbf{e}\mathbf{f}$	dd	f9	c6	$1\mathrm{b}$	5f	c0	7e	81	49	c1	d	b7	7f	6e	4	4233	102	34	7
$\mathbf{e}\mathbf{f}$	e1	be	14	20	f8	57	8a	52	d0	$1\mathrm{f}$	$^{\rm db}$	16	22	a0	4	4233	100	17	7
$\mathbf{e}\mathbf{f}$	e3	23	а	15	83	d1	91	f	84	4c	94	$^{\rm bb}$	3e	d0	4	4284	106	102	7
$\mathbf{e}\mathbf{f}$	de	12	51	d8	c6	f	c3	91	f8	$_{6a}$	a6	7b	d5	f5	4	4284	104	17	7
$\mathbf{e}\mathbf{f}$	de	63	bd	d6	f	6a	$2\mathrm{c}$	16	62	78	70	fc	f3	41	4	4284	104	68	7
$\mathbf{e}\mathbf{f}$	e1	а	5c	e4	c7	5a	f3	45	e5	32	e8	74	8d	a2	4	4335	106	204	7
$\mathbf{e}\mathbf{f}$	dd	f8	ab	57	15	a4	$2\mathrm{e}$	94	55	5f	7e	46	2d	31	4	4335	104	17	7
$\mathbf{e}\mathbf{f}$	e1	ac	63	$8\mathrm{e}$	ed	b4	$3\mathrm{c}$	46	f4	19	68	74	d4	6e	4	4335	104	34	7

Let $\mathbb{F}_{2^8} = \mathbb{F}_2[x]/x^8 + x^4 + x^3 + x + 1$, $\zeta = 3$ is a primitive field element of \mathbb{F}_{2^8}

Menyachikhin A.V.

 $\langle \Box \rangle$

n < (

Involutive piecewise-linear permutations

Definition 8

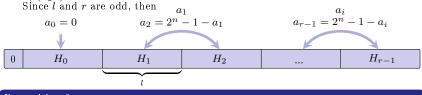
A substitution $g \in S(\mathbb{F}_{2^n})$ is called *involutive* if for all $x \in \mathbb{F}_{2^n}$ we have g(g(x)) = x.

It is easy to see that function $g \in L_r(\mathbb{F}_{2^n})$ is involutive if and only if for any elements i = 0, ..., r - 1 we have

$$a_i + a_{\pi(i)} \equiv 0 \mod r$$
,

where $\pi: \mathbb{Z}_r \to \mathbb{Z}_r, \pi(i) = (a_i + i) \mod r, i = 0, ..., r - 1.$

Let $IL_r(\mathbb{F}_{2^n})$ be the set of all involutive piecewise-linear permutations from the set $L_r(\mathbb{F}_{2^n})$.



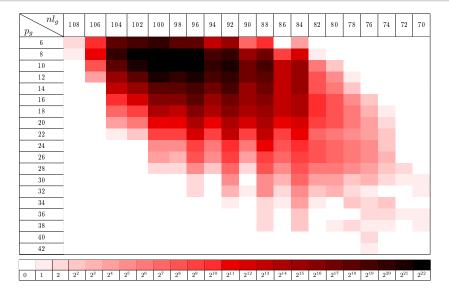
Proposition 6

For all n > 1 we have

$$|IL_r\left(\mathbb{F}_{2^n}\right)| = 1 + \sum_{i=0}^{\frac{r-2}{2}} C_r^{2i+1} l^{\frac{r-2i-1}{2}} \left(r-2i-2\right)!!.$$

$$|\{g \in IL_{r}(\mathbb{F}_{2^{n}}) ||F(g)| = l+1\}| = \left(1 + l^{\frac{r-1}{2}}r!!\right) << l^{r}r! = |L_{r}(\mathbb{F}_{2^{n}})|.$$

The joint distribution of parameters p_g and nl_g for 10^8 randomly generated involutive permutations $g \in IL_{15}(\mathbb{F}_{2^8})$



Examples of differentially 4-uniform piecewise-linear involutions $g \in IL_{15}(\mathbb{F}_{2^8})$ constructed using algorithm 3

					\vec{a}_{g}	= (a	a_0, a_1	,, d	(14)						p_g	$ D_{g,p_g} $	nl_g	$ L_{g,nl_g} $	$\overline{\lambda}_{g}$
0	ee	dd	cc	$^{\rm bb}$	aa	99	88	77	66	55	44	33	22	11	4	255	112	1275	7
0	d_3	$2\mathrm{c}$	f3	c4	$^{3\mathrm{b}}$	с	25	12	1	$_{\rm fe}$	ed	$2\mathrm{e}$	d1	da	4	3774	106	68	7
0	45	4d	15	b2	c5	d9	3a	6d	ea	ba	3f	92	26	c0	4	3876	104	51	7
0	27	74	79	86	25	88	77	15	c5	d8	3a	da	$8 \mathrm{b}$	ea	4	4029	104	17	7
0	b0	44	f6	d6	b6	62	49	29	9	$^{\rm bb}$	2	4f	$^{\rm fd}$	$9\mathrm{d}$	4	4080	100	17	7
0	d	be	e9	5	21	a6	59	$^{\mathrm{de}}$	$_{\rm fa}$	$7\mathrm{b}$	16	41	84	f2	4	41 31	104	136	6
0	72	dd	$8\mathrm{b}$	a0	51	ab	74	10	$\mathbf{e}\mathbf{f}$	$^{8\mathrm{d}}$	ae	54	22	5f	4	41 31	102	34	7
0	e3	51	$1\mathrm{c}$	21	$^{\rm db}$	d8	de	ae	f2	8a	d	27	75	24	4	41 82	106	238	7
0	31	$^{\rm fb}$	7f	af	ce	d7	d4	d6	2b	80	28	29	4	50	4	4233	104	17	7
0	e2	$1\mathrm{d}$	98	d8	67	$3\mathrm{e}$	aa	c1	2	27	$^{\rm fd}$	55	$1\mathrm{f}$	e0	4	4284	106	102	7
0	da	5	c4	$^{3\mathrm{b}}$	9b	7	$_{\rm fa}$	ba	25	64	88	77	f8	45	4	4335	108	646	7
0	d6	e9	7d	5c	29	a3	a9	82	14	16	56	79	86	eb	4	4386	104	119	7
0	\mathbf{af}	c6	63	64	39	7f	6b	f2	94	d	50	9 c	80	9b	4	4386	106	170	7
0	b0	93	c5	70	3a	2f	8d	d0	1	fe	8f	4f	72	6 c	4	4437	104	187	6
0	4f	46	26	82	b0	$5\mathrm{b}$	a4	50	a6	59	d9	b9	$^{\rm af}$	7d	4	4488	106	204	1
0	f7	dc	9c	f1	е	6a	95	8	63	40	$6\mathrm{b}$	23	94	bf	4	4539	102	34	•

Let $\mathbb{F}_{2^8} = \mathbb{F}_2[x]/x^8 + x^4 + x^3 + x + 1$, $\zeta = 3$ is a primitive field element of \mathbb{F}_{2^8}

Menyachikhin A.V.

na(

Definition 9

A permutation $g \in S(\mathbb{F}_{2^n})$ is called an *orthomorphism*¹⁻⁴ of the group $\mathbb{F}_{2^n}^+$ if the mapping $g': \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ defined by the rule g'(x) = x + g(x) is a permutation from $S(\mathbb{F}_{2^n})$.

It is well known⁴ that function g is an orthomorphism if and only if $a_i \neq 0$ for all i = 0, ..., r - 1 and bijective function $\pi' : \mathbb{Z}_r \to \mathbb{Z}_r$,

 $\pi'(i) = \left(\log_{\zeta} \left(\zeta^{a_i} + 1\right) + i\right) \bmod r, i = 0, ..., r - 1.$

Let Orth (\mathbb{F}_{2^n}) be the set of all orthomorphisms of the group $\mathbb{F}_{2^n}^+$ and let $OL_r(\mathbb{F}_{2^n})$ be the set of all orthomorphisms from the set $L_r(\mathbb{F}_{2^n})$.

For r = 1 we have $|OL_1(\mathbb{F}_{2^n})| = 2^n - 2$.

For $r = 2^n - 1$ we have $|OL_{2^n - 1}(\mathbb{F}_{2^n})| = \frac{|Orth(\mathbb{F}_{2^n})|}{2^n}$.

Calculating $|Orth(\mathbb{F}_{2^n})|$ for sufficiently large $n \in \mathbb{N}$ is an open problem.

¹ Mann H. B. On orthogonal Latin squares. Bulletin of the American Mathematical Society, 1944, Vol. 50, Pp. 249-257.

² Sachkov V. N. Deficiencies of finite group permutations. Tr. Diskr. Mat., 2003, T. 7, Pp. 156-175.

³ Niederreiter H. and Robinson K. Complete mappings of finite fields. Australian Mathematical Society, 1982, Vol. 33, Issue. 2, Pp. 197-212.

⁴ Evans A. Orthomorphisms graphs and groups. Springer-Verlag, Berlin, 1992, 114 p.

Examples of differentially 4-uniform piecewise-linear orthomorphisms $g \in OL_{15}(\mathbb{F}_{2^8})$ constructed using algorithm 3

Let $\mathbb{F}_{2^8} = \mathbb{F}_2[x]/x^8 + x^4 + x^3 + x + 1$, $\zeta = 3$ is a primitive field element of \mathbb{F}_{2^8}

	$\vec{a}_g = (a_0, a_1,, a_{14})$											p_g	$\left D_{g,p_{g}} \right $	nl_g	$ L_{g,nl_g} $	$\overline{\lambda_g}$			
36	8e	b1	$5\mathrm{c}$	3	ec	b0	50	a7	а	23	dc	a6	6e	84	4	4743	102	17	7
26	ee	f8	$_{\mathrm{fa}}$	3d	b8	d	63	ac	81	89	ec	$_{\rm fe}$	80	21	4	4845	104	34	7
b7	99	bb	85	$2\mathrm{b}$	20	3e	16	89	15	6b	19	88	d	42	4	4998	102	17	7

Linear equivalence of piecewise-linear permutations

Proposition 7

Let $g, g' \in L_r(\mathbb{F}_{2^n})$ given by the vectors $(a_0, a_1, ..., a_{r-1})$ and $(a'_0, a'_1, ..., a'_{r-1})$ respectively, $a_i, a'_i \in \{0, ..., 2^n - 2\}, i = 0, ..., r - 1, \zeta$ is a primitive field element of \mathbb{F}_{2^n} . Then $g \stackrel{L}{\sim} g'$ if there exists such $j \in \{0, ..., 2^n - 2\}$ that for any i = 0, ..., r - 1 we have

$$a_i' = (a_i + j) \operatorname{mod} 2^n - 1.$$

Proposition 8

Let $g, g' \in L_r(\mathbb{F}_{2^n})$ given by the vectors $(a_0, a_1, ..., a_{r-1})$ and $(a'_0, a'_1, ..., a'_{r-1})$ respectively, $a_i, a'_i \in \{0, ..., 2^n - 2\}, i = 0, ..., r - 1, \zeta$ is a primitive field element of \mathbb{F}_{2^n} . Then $g \stackrel{L}{\sim} g'$ if there exists such $j \in \{0, ..., r-1\}$ that for any i = 0, ..., r - 1 we have

 $a'_i = a_{i+j \mod r}.$

Corollary

If under the conditions of proposition g is an involutive permutation, then g^\prime is also an involutive permutation.

Corollary

If under the conditions of proposition g is an orthomorphism, then g^\prime is also an orthomorphism.

Menyachikhin A.V.

Proposition 9

Let $g, g' \in L_r(\mathbb{F}_{2^n})$ given by the vectors $(a_0, a_1, ..., a_{r-1})$ and $(a'_0, a'_1, ..., a'_{r-1})$ respectively, $a_i, a'_i \in \{0, ..., 2^n - 2\}, i = 0, ..., r - 1, \zeta$ is a primitive field element of \mathbb{F}_{2^n} . Then $g \stackrel{L}{\sim} g'$ if there exists such $j \in \{1, ..., n-1\}$ that for any i = 0, ..., r - 1 we have

 $a'_i = 2^{n-j} \cdot a_{i \cdot 2^j \operatorname{mod} r} \operatorname{mod} 2^n - 1.$

Corollary

If under the conditions of proposition g is an involutive permutation, then g^\prime is also an involutive permutation.

Corollary

If under the conditions of proposition g is an orthomorphism, then g^\prime is also an orthomorphism.

(日) (圖) (문) (문) [

The problem of checking linear equivalence between two partially given piecewise-linear permutations

Piecewise-linear permutation $g \in L_r(\mathbb{F}_{2^n})$ can be defined by the vector

$$\vec{a}_g = (a_0, a_1, ..., a_{r-1}),$$

where $a_i \in \{0, ..., 2^n - 2\}, i = 0, ..., r - 1.$ We define mappings $\tau_1, \tau_2, \tau_3 : \{0, ..., 2^n - 2\}^r \to \{0, ..., 2^n - 2\}^r$ as follows $\tau_1(a_0, ..., a_{r-1}) = ((a_0 + 1) \mod 2^n - 1, ..., (a_{r-1} + 1) \mod 2^n - 1);$ $\tau_2(a_0, a_1, ..., a_{r-1}) = (a_1, a_2, ..., a_0);$ $\tau_3(a_0, ..., a_{r-1}) = (2^{n-1} \cdot a_0 \mod 2^n - 1, ..., 2^{n-1} \cdot a_{r-1} \mod 2^n - 1).$

Let us associate the partially defined permutation $g \in L_r(\mathbb{F}_{2^n})$ with the vector

$$\vec{a}_g = \left(*, \dots, *, a_{i_0}, *, \dots, *, a_{i_1}, *, \dots, *, a_{i_{d-1}}, *, \dots, *\right),$$

where the symbol * denotes undefined positions of the vector (the permutation g on the elements of the corresponding cosets is not defined). Two partially given vectors $\vec{a}_g \bowtie \vec{a}_h$ are called linearly equivalent if there exist such $j_1 \in \{0, ..., 2^n - 2\}$, $j_2 \in \{0, ..., r - 1\}$, $j_3 \in \{0, ..., n - 1\}$ that we have

$$\vec{a}_h = \tau_3^{j_3} \left(\tau_2^{j_2} \left(\tau_1^{j_1} \left(\vec{a}_g \right) \right) \right).$$

Remark

Linear equivalence of vectors \vec{a}_g and \vec{a}_h can be checked when $d \mid r$ and for any j = 0, ..., d-1 we have $i_j \equiv c \mod \frac{r}{d}$, c = const.

The problem of checking linear equivalence between two partially given piecewise-linear permutations

Example 2

Let $\mathbb{F}_{2^6} = \mathbb{F}_2[x]/_{x^6} + x + 1$, $\zeta = 2$ is a primitive field element of \mathbb{F}_{2^6} . It is easy to see that the partially given vector $\vec{a}_g = (3c, *, *, 20, *, *, 21, *, *)$ linear equivalent to any partially given vector \vec{a}_h from the following table.

j_1	j_2	j_3					\vec{a}_h				
6	3	3	3c	*	*	34	*	*	18	*	*
7	6	3	3c	*	*	20	*	*	5	*	*
18	0	4	3c	*	*	b	*	*	f	*	*
18	6	2	3c	*	*	33	*	*	2c	*	*
19	3	2	3c	*	*	d	*	*	4	*	*
24	3	1	3c	*	*	1c	*	*	2a	*	*
25	6	1	3c	*	*	b	*	*	1d	*	*
27	6	0	3c	*	*	18	*	*	$^{3\mathrm{b}}$	*	*
28	3	0	3c	*	*	3d	*	*	19	*	*
33	0	5	3c	*	*	6	*	*	4	*	*
42	0	3	3c	*	*	21	*	*	19	*	*
45	6	4	3c	*	*	2a	*	*	38	*	*
46	3	4	3c	*	*	1	*	*	2e	*	*
54	0	2	3c	*	*	35	*	*	6	*	*
60	0	1	3c	*	*	f	*	*	2e	*	*
60	3	5	3c	*	*	3a	*	*	33	*	*
61	6	5	3c	*	*	35	*	*	3e	*	*

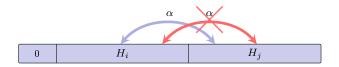
Obtaining bounds on the differential uniformity of piecewise-linear permutations is related to the study of the additive properties of multiplicative subgroups $\mathbb{F}_{2^n}^{\times}$.

Lemma 1

Let $n, r, l \in \mathbb{N}$, $2^n - 1 = rl$, ζ is a primitive field element of \mathbb{F}_{2^n} , $H = \langle \zeta^r \rangle$ is the subgroup of order l of $\mathbb{F}_{2^n}^{\times}$, $H_i = \zeta^i H$, i = 0, ..., r - 1, $g \in L_r(\mathbb{F}_{2^n})$ is a permutation given by the set of pairwise distinct numbers $(a_0, a_1, ..., a_{r-1})$. Then the difference equation

$$g(x) + g(x + \alpha) = \beta, \alpha, \beta \in \mathbb{F}_{2^n}^{\times}$$

for any $i \neq j$ has at most one solution $x_1 \in H_i$ satisfying the condition $x_1 + \alpha \in H_j$.



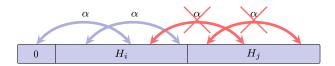
イロト イヨト イヨト イヨト

Lemma 2

Let $n, r, l \in \mathbb{N}$, $2^n - 1 = rl$, ζ is a primitive field element of \mathbb{F}_{2^n} , $H = \langle \zeta^r \rangle$ is the subgroup of order l of $\mathbb{F}_{2^n}^{\times}$, $H_i = \zeta^i H$, i = 0, ..., r - 1, $g \in L_r(\mathbb{F}_{2^n})$ is a permutation given by the set of pairwise distinct numbers $(a_0, a_1, ..., a_{r-1})$. Let, in addition, the difference equation

$$g(x) + g(x + \alpha) = \beta, \alpha, \beta \in \mathbb{F}_{2^n}^{\times}(*)$$

have solutions $x_1, x_1 + \alpha \in H_i \cup \{0\}$. Then for any $j \neq i$ equation (*) has no solutions $x_2 \in H_j$ satisfying the condition $x_2 + \alpha \in H_i \cup H_j$.



イロト イヨト イヨト イヨト

Theorem

Let $n, r, l \in \mathbb{N}$, $2^n - 1 = rl$, ζ is a primitive field element of \mathbb{F}_{2^n} , $H = \langle \zeta^r \rangle$ is the subgroup of order l of $\mathbb{F}_{2^n}^{\times}$, $g \in L_r(\mathbb{F}_{2^n})$ is a permutation given by the set of pairwise distinct numbers $(a_0, a_1, ..., a_{r-1})$. Then we have lower and upper bounds on the differential uniformity of g:

$$\begin{split} \max\left\{\sum_{s=1}^{t} (-1)^{s+1} \sum_{n_1 \leq \ldots \leq n_s} 2^{\gcd(n_1, n_2, \ldots, n_s)}, 2\left\lfloor \frac{l+1}{2r} \right\rfloor\right\} \leq \\ \leq p_g \leq \\ \leq 2 \max\left\{\lfloor \varphi\left(r, l\right) \rfloor, \varphi\left(r-1, l\right) + \\ + \max\left\{\lfloor \varphi\left(l/m_{n_t}, m_{n_t}\right) \rfloor, \frac{m_{n_t}+1}{2} + \varphi\left(l/m_{n_t}-1, m_{n_t}\right) \right\}\right\}, \end{split}$$
where $m_{n_1} < m_{n_2} < \ldots < m_{n_t}$ is the complete list of divisors of l of the form $m_{n_k} = 2^{n_k} - 1, \ k = 1, \ldots, t, \ \varphi \colon \mathbb{R}^2 \to \mathbb{R}, \ \varphi\left(x, y\right) = \frac{x \cdot \min\{x-1, y\}}{2}.$

Remark

The lower and upper bounds proved in the theorem for $r = 2^n - 1$ are also valid in the case when the numbers from the set $(a_0, a_1, ..., a_{r-1})$ are not pairwise distinct.

Theorem gives us necessary conditions for the existence of APN substitutions.

Corollary

If $g \in S(\mathbb{F}_{2^6})$, $p_g = 2$, g(0) = 0, then $g \in L_r(\mathbb{F}_{2^6})$, where $r \notin \{1, 3, 7, 9, 21\}$.

Corollary

If there is a permutation $g \in S(\mathbb{F}_{2^8})$ such that $p_g = 2, g(0) = 0$, then $g \in L_r(\mathbb{F}_{2^8})$, where $r \notin \{1, 3, 5, 17, 85\}$.

Remark

An upper bound for p_g is not always trivial for $r \ge 2^{n/2} + 1$. For example, if $g \in L_r(\mathbb{F}_{2^{12}})$, where $r \in \{91, 117, 195, 455\}$, then we have

$$p_g \le 4094.$$

Menyachikhin A.V.

イロト イヨト イヨト イヨト

The reachability of the lower and upper bounds on the differential uniformity of piecewise-linear permutations

Let n = 6, $2^6 - 1 = rl$, $r, l \in \mathbb{N}$, ζ is a primitive field element of \mathbb{F}_{2^6} , $H = \langle \zeta^r \rangle$ is the subgroup of order l of $\mathbb{F}_{2^6}^{\times}$. The following table for different values of $l \in \{1, 3, 7, 9, 21, 63\}$ contains the minimum and maximum values of p_g among all permutations $g \in L_r(\mathbb{F}_{2^6})$. The table also contains the lower and upper bounds obtained in the theorem for the values p_g .

H	A lower bound	min p_q	max p_q	An upper bound
	on p_g	$\min_{g \in L_r\left(\mathbb{F}_{2^6}\right)} p_g$	$\max_{g \in L_r(\mathbb{F}_{2^6})} p_g$	on p_g
1	2	2	64	64
3	4	4	64	64
7	8	8	64	64
9	4	4	22	42
21	10	10	12	12
63	64	64	64	64

The reachability of the lower and upper bounds on the differential uniformity of piecewise-linear permutations

Let n = 8, $2^8 - 1 = rl$, $r, l \in \mathbb{N}$, ζ is a primitive field element of \mathbb{F}_{2^8} , $H = \langle \zeta^r \rangle$ is the subgroup of order l of $\mathbb{F}_{2^8}^{\times}$. The following table for different values of $l \in \{1, 3, 5, 15, 17, 51, 85, 255\}$ contains the best and worst known values of p_g for permutations $g \in L_r(\mathbb{F}_{2^8})$. The table also contains the lower and upper bounds obtained in the theorem for the values p_g .

	A lower bound	Best-known	A worst case	An upper bound		
H	on p_g	$\mathbf{example}$	$\mathbf{example}$	on p_g		
1	2	4	256	256		
3	4	4	256	256		
5	2	4	216	256		
15	16	16	256	256		
17	2	4	56	210		
51	12	12	20	64		
85	30	30	32	88		
255	256	256	256	256		

イロト イヨト イヨト イヨト

*) Q

Thanks for attention