On the Bit-Slice representations of some nonlinear bijective transformations

Oliver Coy Puente, Rene Fernández Leal and
Reynier Antonio de la Cruz Jiménez

Institute of Cryptography, Havana University, Cuba.

Summary

Introduction

Some nonlinear bijective
transformations
An instance of the permutation
$\pi_{h_{1}, b_{2}, P_{3}}^{\prime}$

```
\mp@subsup{\hat{\pi}}{\psi,h}{}
```

The S-Box of the block cipher Kuznyechik

Bit-Slice
1 Introduction
2 Some nonlinear bijective transformations

- An instance of the permutation $\pi_{h_{1}, h_{2}, \mathcal{P}_{d}}^{\prime}$
- An instance of the permutation $\hat{\pi}_{\psi, h}$
- The S-Box of the block cipher Kuznyechik

3 Bit-Slice representation of studied S-Boxes
■ Bit-Slice representation of $\pi_{h, \mathcal{I}}^{\prime}$
■ Bit-Slice representation of $\hat{\pi}_{\psi, \mathcal{I}}$

- A more compact Bit-Slice representation of the Kuznyechik S-Box

4 Comparing robustness and implementation cost of some S-Boxes
Some nonlinear
Introduction
bijective
transformations
An instance of the permutation
$\pi_{h_{1}, h_{2}, P}$
An instance of the permutation
$\hat{\pi}_{4, h}$
The S-Box of the block cipher
Kuznyechik
Bit-Slice
representation of
studied S-Boxes
Bit-Slice representation of $\pi_{h, I}^{\prime}$
Bit-Slice representation of $\pi_{\psi, I}$
A more compact Bit-Slice
representation of the Kuznyechik
S-Box
Comparing robustness
and implementation
cost of some S-Boxes
Com
Com

Motivation

Cryptography is the field of theoretical and applied research and practical activities related to the development and application of cryptographic information protection methods.

Cryptographic algorithm representations

Introduction

Some nonlinear bijective transformations An instance of the permutation $\pi_{h_{1}, h_{2}, \mathcal{P}_{d}}^{\prime}$ An instance of the permutation $\hat{\pi}_{w, h}$
The S-Box of the block cipher Kuznyechik

Bit-Slice

 representation of studied S-BoxesBit-Slice representation of π^{\prime} Bit-Slice representation of $\hat{\pi}_{\psi, I}$ A more compact Bit-Slice representation of the Kuznyechik S-Box

Comparing robustness and implementation cost of some S-Boxes

Motivation: S-Boxes - a main cryptographic primitive

Introduction

(S)ubstitution-Boxes

In wild of the symmetric Cryptography, S-Boxes are one of the main crypto primitives for building suitable strong cryptographic products.

Motivation: BitSlicing - a simulation of hardware in software

Introduction

The basic concept of Bitslicing ${ }^{1}$ is to simulate a hardware implementation in software.
In the Bit-Slice implementation context, S-Boxes are computed by using binary logical operations

$\mathrm{XOR}: c=a \oplus b$

AND : $c=a \wedge b$

$\mathrm{OR}: c=a \vee b$
NOT $: b=\neg a$

Figure 1: Logical Gates of operations XOR, AND, OR, NOT.

[^0]
Almost Optimal Permutations???

An 8-bit nonlinear bijective transformation without fixed points is called almost optimal permutation if it has:

- (algebraic) minimum degree equal to 7 ;
- (graph) algebraic immunity 3 and 441 equations;
- differential uniformity under 8;
- nonlinearity over 100.

Mission

Introduction

Our Target

To obtain the Bit-Slice representation of some specific almost optimal permutations

Preliminaries

Introduction

We use the notions of Bit-Slice and Gate Equivalent Complexities as implementation criteria.

Definition (Bit-Slice Gate Complexity - BGC²)

The smallest number of operations in XOR, AND, OR, NOT required to implement an S-Box.

[^1]
Preliminaries

Introduction

Definition (Gate Equivalent complexity - GEC^{3})

The smallest number of Gate Equivalents (GEs) required to implement an S-Box, given the cost of atomic operations. (see, Table 1)

Techniques	NAND	XNOR	XOR	AND OR	NOT
UMC 180nm	1.00	3.00	3.00	1.33	0.67
TSMC 65nm	1.00	3.00	3.00	1.50	0.50
Software	-	-	1.00	1.00	1.00

Table 1: Cost of atomic operations under various techniques

[^2]
Some nonlinear bijective transformations

Introduction

Some nonlinear bijective transformations
An instance of the permutation $\pi_{h_{1}, h_{2}, \mathcal{P}_{d}}^{\prime}$ An instance of the permutation $\hat{\pi}_{\psi, h}$
The S-Box of the block cipher Kuznyechik

Bit-Slice representation of studied S-Boxes
Bit-Slice representation of π^{\prime} Bit-Slice representation of $\hat{\pi}_{\psi, I}$ A more compact Bit-Slice A more compact Bit-Slice
representation of the Kuznyechik representation of the Kuznyechik
S-Box

Comparing robustness and implementation cost of some S-Boxes

Let see some 8-bit instances belonging to two classes of nonlinear bijective transformations ${ }^{45}$ and we revisit the TU-decomposition of the S-Box used in the Russian cryptographic standard GOST R 34.12-2015 "Kuznyechik" 6 .

[^3]
An instance of the permutation $\pi_{h_{1}, h_{2}, \mathcal{P}_{d}}^{\prime}$

Introduction

Let $\mathbb{F}_{2^{4}}=\mathbb{F}_{2}[\xi] / \xi^{4} \oplus \xi \oplus 1$ and $\pi_{h, \mathcal{I}}^{\prime}$ be an instance of the class of nonlinear bijective transformation $\pi_{h_{1}, h_{2}, \mathcal{P}_{d}}^{\prime}{ }^{7}$ by choosing:

- $\mathcal{A} \in \mathrm{GA}_{8}\left(\mathbb{F}_{2}\right)$ and $\mathcal{L} \in \mathrm{GL}_{8}\left(\mathbb{F}_{2}\right)$;
- The inversion function \mathcal{I} over $\mathbb{F}_{2^{4}}$ defined by

$$
\begin{equation*}
\mathcal{I}(X)=\mathcal{P}_{14}(X)=X^{14} \tag{1}
\end{equation*}
$$

- A random permutation $h=h_{1}=h_{2} \in S\left(\mathbb{F}_{2^{4}}\right)$.

[^4]An instance of the permutation $\pi_{h_{1}, h_{2}, \mathcal{P}_{d}}^{\prime}$

Introduction

Cryptographic properties of $\pi_{h, \mathcal{I}}^{\prime}$

- Nonlinearity - 108

■ Algebraic Degree - 7
■ Differential Uniformity - 6
■ Graph Algebraic Immunity - 3(441)

Figure 2: High level of view of $\pi_{h, \tau}^{\prime}$.

A variant of $\pi_{h, \mathcal{I}}^{\prime}$

Introduction

The following instance was obtained as a result of a oriented search on the structural elements used in one of the possible modification of $\pi_{h_{1}, h_{2}, \mathcal{P}_{d}}^{\prime}$ that offer the best implementation cost (achieved in this paper) of the resulting almost optimal permutation.
The nonlinear bijective transformation $\dot{\pi}_{\lambda, \tau}$ employ the following components:

- $\mathcal{A} \in \mathrm{GA}_{8}\left(\mathbb{F}_{2}\right), \mathcal{L} \in \mathrm{GL}_{8}\left(\mathbb{F}_{2}\right)$ and $\lambda \in \mathrm{GL}_{4}\left(\mathbb{F}_{2}\right)$;
- The 4-bit nonlinear bijective transformation τ defined over $\mathbb{F}_{2^{4}}$.

A variant of $\pi_{h, \mathcal{I}}^{\prime}$

Introduction

Cryptographic properties of $\dot{\pi}_{\lambda, \tau}$
■ Nonlinearity - 108
■ Algebraic Degree - 7
■ Differential Uniformity - 6
■ Graph Algebraic Immunity - 3(441)

Introduction

Some nonlinear bijective
transformations
An instance of the permutation
An instance of the permutation $\hat{\pi}_{\psi, h}$
The S-Box of the block cipher Kuznyechik

Bit-Slice
representation of studied S-Boxes
Bit-Slice representation of π^{\prime} Bit-Slice representation of $\hat{\pi}_{\psi, I}$ A more compact Bit-Slice A more compact Bit-Slice
representation of the Kuznyechik representation of the Kuznyechik
S-Box
Comparing robustness and implementation cost of some S-Boxes

Let $\mathbb{F}_{2^{4}}=\mathbb{F}_{2}[\xi] / \xi^{4} \oplus \xi \oplus 1$ and $\hat{\pi}_{\psi, \mathcal{I}}$ be an instance of the class of nonlinear bijective transformation $\hat{\pi}_{\psi, h}$ by choosing:

- $\mathcal{A} \in \mathrm{GA}_{8}\left(\mathbb{F}_{2}\right)$ and $\mathcal{L} \in \mathrm{GL}_{8}\left(\mathbb{F}_{2}\right)$;
- The inversion function \mathcal{I} over $\mathbb{F}_{2^{4}}$ defined by (1);
- A non-bijective 4-bit function ψ, which have not preimage for 0 .

Cryptographic properties of $\hat{\pi}_{\psi, \mathcal{I}}$

- Nonlinearity - 104
- Algebraic Degree - 7
- Differential Uniformity - 6
- Graph Algebraic Immunity - 3(441)

Figure 4: High level of view of $\hat{\pi}_{\psi, \mathcal{I}}$.

The S-Box of the block cipher Kuznyechik

For the Kuznyechik S-Box is suggested ${ }^{8}$ it TU-decomposition. All 4-bit operations/transformations are described over $\mathbb{F}_{2^{4}}=\mathbb{F}_{2}[\xi] / \xi^{4} \oplus \xi^{3} \oplus 1$. The S-Box $\tilde{\pi}_{\text {Kuz }}$ employ:

- $\mathcal{L}_{i} \in \mathrm{GL}_{8}\left(\mathbb{F}_{2}\right), i=1,2$;
- The inversion function \mathcal{I} defined by (1);
- The 4 -bit nonlinear transformations $\nu_{0}, \nu_{1}, \varphi$ and σ.

[^5]
The S-Box of the block cipher Kuznyechik

Introduction

Cryptographic properties of $\tilde{\pi}_{\text {Kuz }}$

- Nonlinearity - 100

■ Algebraic Degree - 7

- Differential Uniformity - 8
- Graph Algebraic Immunity - 3(441)

Bit-Slice representations of $\pi_{h, \mathcal{I}}^{\prime}, \dot{\pi}_{\lambda, \tau}, \hat{\pi}_{\psi, \mathcal{I}}$ and $\tilde{\pi}_{\mathrm{Kuz}}$

Introduction

Some nonlinear bijective
transformations
An instance of the permutation
$\pi_{h_{1}, b_{2}, \mathcal{P}_{z}}$
An instance of the permutation

```
\(\hat{\pi}_{\psi, h}\)
```

The S-Box of the block cipher Kuznyechik

Bit-Slice representation of studied S-Boxes Bit-Slice representation of π^{\prime} Bit-Slice representation of $\hat{\pi}_{\psi, I}$ A more compact Bit-Slice representation of the Kuznyechik s-Box

Comparing robustness and implementation cost of some S-Boxes

The current section is devoted to the problem of finding low gate count logic circuit representations for the studied S-Boxes, combining analytical methods with the open source tool sboxgates ${ }^{9}$.

[^6]
Bit-Slice representations of $\pi_{h, \mathcal{I}}^{\prime}$

Introduction

Some nonlinear
From the definition of $\pi_{h, \mathcal{I}}^{\prime}$ is evident that

$$
\begin{align*}
& \operatorname{BGC}\left(\pi_{h, \mathcal{I}}^{\prime}\right)=\operatorname{BGC}(\mathcal{A})+2 \cdot \operatorname{BGC}(\otimes)+\operatorname{BGC}\left(\mathcal{F}_{1}\right)+ \\
& +\operatorname{BGC}\left(\mathcal{F}_{2}\right)+2 \cdot \operatorname{BGC}(\mathcal{I})+2 \cdot \operatorname{BGC}(h)+\operatorname{BGC}(\mathcal{L}), \tag{2}
\end{align*}
$$

where by $\mathcal{F}_{i}, i \in\{1,2\}$, are denoted the left and right branches containing the conditionals if. Using analytical methods was obtained that $\operatorname{BGC}(\mathcal{A})=1, \operatorname{BGC}(\mathcal{L})=0, \operatorname{BGC}(\otimes)=31$ and $\operatorname{BGC}\left(\mathcal{F}_{1}\right)=\operatorname{BGC}\left(\mathcal{F}_{2}\right)=12$.

Figure 2: High level of view of $\pi_{h, \mathcal{T}}^{\prime}$.

With the help of the open source tool sboxgates was calculated that $\operatorname{BGC}(h)=19$ and $\operatorname{BGC}(\mathcal{I})=17$.
Finally, from (2) was obtained that $\operatorname{BGC}\left(\pi_{h, \mathcal{I}}^{\prime}\right)=159$.

Combinatorial circuit of $\pi_{h, \mathcal{I}}^{\prime}$

Introduction

Some nonlinear bijective
transformations
An instance of the permutation $\pi_{h_{1}, b_{2}, \mathcal{P}_{d}}$
An instance of the permutation $\hat{\pi}_{\psi, h}$
The S-Box of the block cipher Kuznyechik

Bit-Slice representation of studied S-Boxes Bit-Slice representation of $\pi_{h, I}^{\prime}$ Bit-Slice representation of $\hat{\pi}_{\psi, I}$ A more compact Bit-Slice representation of the Kuznyechik s-Box

Comparing robustness and implementation cost of some S-Boxes

Figure 9: Combinatorial circuit of the S-Box $\pi_{h, \mathcal{I}}^{\prime}$, where for the input value BA, the corresponding output value is OE .

Bit-Slice representations of $\dot{\pi}_{\lambda, \tau}$

Introduction

From the definition of $\dot{\pi}_{\lambda, \tau}$ is evident that

$$
\begin{align*}
& \operatorname{BGC}\left(\dot{\pi}_{\lambda, \tau}\right)=\operatorname{BGC}(\mathcal{A})+2 \cdot \operatorname{BGC}(\otimes)+\operatorname{BGC}\left(\mathcal{F}_{1}\right)+ \\
& +\operatorname{BGC}\left(\mathcal{F}_{2}\right)+2 \cdot \operatorname{BGC}(\tau)+2 \cdot \operatorname{BGC}(\lambda)+\operatorname{BGC}(\mathcal{L}) . \tag{3}
\end{align*}
$$

Using analytical methods was obtained that $\operatorname{BGC}(\mathcal{A})=1, \operatorname{BGC}(\mathcal{L})=\operatorname{BGC}(\lambda)=0$, $\operatorname{BGC}(\otimes)=31$ and $\operatorname{BGC}\left(\mathcal{F}_{1}\right)=\operatorname{BGC}\left(\mathcal{F}_{2}\right)=12$.

Figure 3: High level of view of $\dot{\pi}_{\lambda, \tau}$.

With the help of the open source tool sboxgates was calculated that $\operatorname{BGC}(\tau)=16$.
Finally, from (3) was obtained that BGC $\left(\dot{\pi}_{\lambda, \tau}\right)=119$.

Combinatorial circuit of $\dot{\pi}_{\lambda, \tau}$

Introduction

Some nonlinear bijective transformations
$\pi_{b_{1}, b_{2}, \mathcal{P}_{d}}$
An instance of the permutation
$\hat{\pi}_{\psi, h}$
The S-Box of the block cipher
Kuznyechik

Bit-Slice representation of studied S-Boxes Bit-Slice representation of $\pi_{h, I}^{\prime}$ Bit-Slice representation of $\hat{\pi}_{\psi . I T}$ A more compact Bit-Slice representation of the Kuznyechik S-Box

Comparing robustness and implementation cost of some S-Boxes

Figure 10: Combinatorial circuit of the S-Box $\dot{\pi}_{\lambda, \tau}$, where for the input value A7, the corresponding output value is 45 .

Bit-Slice representations of $\hat{\pi}_{\psi, \mathcal{I}}$

Introduction

From the definition of $\hat{\pi}_{\psi, \mathcal{I}}$ is evident that

$$
\begin{align*}
& \operatorname{BGC}\left(\hat{\pi}_{\psi, \mathcal{I}}\right)=\operatorname{BGC}(\mathcal{A})+3 \cdot \operatorname{BGC}(\otimes)+ \tag{4}\\
& +2 \cdot \operatorname{BGC}(\mathcal{I})+\operatorname{BGC}(\psi)+\operatorname{BGC}(\mathcal{L}) .
\end{align*}
$$

Using analytical methods was obtained that $\operatorname{BGC}(\mathcal{A})=1, \operatorname{BGC}(\mathcal{L})=0$ and $\operatorname{BGC}(\otimes)=31$.

Figure 4: High level of view of $\hat{\pi}_{\psi, \mathcal{I}}$.

With the help of the open source tool sboxgates was calculated that $\operatorname{BGC}(\psi)=21$ and $\operatorname{BGC}(\mathcal{I})=17$.
Finally, from (4) was obtained that $\operatorname{BGC}\left(\hat{\pi}_{\psi, \mathcal{I}}\right)=149$.

Combinatorial circuit of $\hat{\pi}_{\psi, \mathcal{I}}$

Introduction

Some nonlinear bijective
transformations
An instance of the permutation
$\pi_{h_{1}, h_{2}, \mathcal{P}_{d}}^{\prime}$
An instance of the permutation $\hat{\pi}_{\psi, h}$
The S-Box of the block cipher Kuznyechik

Bit-Slice representation of studied S-Boxes Bit-Slice representation of π^{\prime} Bit-Slice representation of $\hat{\pi}_{\psi, I}$ A more compact Bit-Slice A more compact Bit-Slice
representation of the Kuznyechik represen
S-Box

Comparing robustness and implementation cost of some S-Boxes

Figure 12: Combinatorial circuit of the S -Box $\hat{\pi}_{\psi, \mathcal{I}}$, where for the input value 02, the corresponding output value is 86 .

A more compact Bit-Slice representation of the Kuznyechik S-Box

Introduction

Motivation

1 In 2016 was proposed a method ${ }^{10}$, requiring 681 Boolean operations to find a Bit-Slice representation of the Kuznyechik S-Box,

2 Considering the TU-decomposition previously described in the Figure 5, in 2021 was proposed a new method ${ }^{11}$, which requires 226 Boolean (logical) operations; i.e., 455 logical operations less than the previously known method.

[^7]
A more compact Bit-Slice representation of the Kuznyechik S-Box

Introduction

Some nonlinear bijective
transformations
An instance of the permutation
$\pi_{b_{1}, b_{2}, P_{d}}^{\prime}$
An instance of the permutation $\hat{A}_{\psi, h}$
The S-Box of the block cipher Kuznyechik

Bit-Slice

representation of studied S-Boxes
Bit-Slice representation of π^{\prime} Bit-Slice representation of $\hat{\pi}_{\psi, I}$
A more compact Bit-Slice representation of the Kuznyechik representation of the Kuznyechik
S-Box

Comparing robustness

 and implementation cost of some S-BoxesFrom the definition of $\tilde{\pi}_{\text {Kuz }}$ is evident that

$$
\begin{gather*}
\operatorname{BGC}\left(\tilde{\pi}_{\text {Kuz }}\right)=\operatorname{BGC}\left(\mathcal{L}_{1}\right)+2 \cdot \operatorname{BGC}(\otimes)+ \\
+\operatorname{BGC}(\mathcal{I})+\operatorname{BGC}\left(\nu_{0}\right)+\operatorname{BGC}\left(\nu_{1}\right)+\operatorname{BGC}(\mathcal{F})+ \\
+\operatorname{BGC}(\varphi)+\operatorname{BGC}(\sigma)+\operatorname{BGC}\left(\mathcal{L}_{2}\right) . \tag{5}
\end{gather*}
$$

Using analytical methods was obtained that $\operatorname{BGC}\left(\mathcal{L}_{1}\right)=9, \operatorname{BGC}\left(\mathcal{L}_{2}\right)=5, \operatorname{BGC}(\otimes)=31$ and $\operatorname{BGC}(\mathcal{F})=15$.

Figure 5: High level of view of $\tilde{\pi}_{\text {Kuz }}$.

With the help of the open source tool sboxgates was calculated that $\operatorname{BGC}(\mathcal{I})=20, \operatorname{BGC}\left(\nu_{0}\right)=19, \operatorname{BGC}\left(\nu_{1}\right)=12, \operatorname{BGC}(\varphi)=18$ and $\operatorname{BGC}(\sigma)=19$.
Finally, from (5) was obtained that BGC $\left(\tilde{\pi}_{K u z}\right)=179$.

Combinatorial circuit of the Kuznyechik S-Box

Introduction

Some nonlinear bijective
transformations
An instance of the permutation $\pi_{h_{1}, h_{2}, \mathcal{P}_{d}}^{\prime}$
An instance of the permutation $\hat{\pi}_{\psi, h}$
The S-Box of the block cipher Kuznyechik

Bit-Slice representation of studied S-Boxes Bit-Slice representation of π^{\prime} I Bit-Slice representation of $\hat{\pi}_{\psi, I}$
A more compact Bit-Slice representation of the Kuznyechik S-Box

Comparing robustness and implementation cost of some S-Boxes

Figure 12: Combinatorial circuit of the S -Box $\hat{\pi}_{\psi, \mathcal{I}}$, where for the input value 02, the corresponding output value is 86 .

Comparing robustness and implementation cost of some S-Boxes

Introduction

Some nonlinear bijective
transformations
A_{n} instance of the permutation
$\pi_{b_{1}, b_{2}, \mathcal{P}_{d}}$
An instance of the permutation $\hat{\pi}_{\psi, h}$
The S-Box of the block cipher Kuznyechik

Bit-Slice
representation of studied S-Boxes
Bit-Slice representation of $\pi_{h, I}^{\prime}$ Bit-Slice representation of $\hat{\pi}_{\psi, I}$ A more compact Bit-Slice representation of the Kuznyechik S-Box

Comparing robustness and implementation cost of some S-Boxes

S-Boxes	Logical Operations				BGC (.)	GEC (\cdot)		Basic Cryptographic Parameters			
	XOR	AND	OR	NOT		UMC/180nm	TSMC/65nm	NL	AD	DU	AI
π Whp	58	15	21	7	101	226.57	231.50	100	6	8	3(441)
$\pi_{\text {AES }}$	83	32	0	0	115	291.56	297.00	112	7	4	$2(39)$
$\dot{\pi}_{\lambda, \tau}$	49	48	20	2	119	238.78	250.00	108	7	6	3(441)
$\hat{\pi}_{\psi, \mathcal{I}}$	73	58	15	3	149	318.10	330.00	104	7	6	3(441)
$\pi_{h, \mathcal{I}}^{\prime}$	69	54	34	2	159	325.38	340.00	108	7	6	$3(441)$
$\tilde{\pi}_{\text {Kuz }}$	94	54	26	5	179	391.75	404.50	100	7	8	3(441)
$\pi_{\text {Kal }}$	NR				361	NR		104	7	8	3(441)

Table 10: A comparison between Bit-Slice Gate/Gate Equivalent Complexities and the cryptographic parameters of some 8-bit S-Boxes (NR means "not reported"). The basic cryptographic parameters: nonlinearity, (algebraic) minimum degree, differential uniformity and (graph) algebraic immunity are denoted by NL, AD, DU and AI.

On the Bit-Slice representations of some nonlinear bijective transformations

Oliver Coy Puente, Rene Fernández Leal and
Reynier Antonio de la Cruz Jiménez

Institute of Cryptography, Havana University, Cuba.

[^0]: ${ }^{1}$ Eli Biham. "A fast new DES implementation in software". In: Fast Software Encryption: 4th International Workshop, FSE'97 Haifa, Israel, January 20-22 1997 Proceedings 4. Springer. 1997, pp. 260-272.

[^1]: ${ }^{2}$ Bao et al., "PEIGEN-a Platform for Evaluation, Implementation, and Generation of S-boxes".

[^2]: ${ }^{3}$ Bao et al., "PEIGEN-a Platform for Evaluation, Implementation, and Generation of S-boxes".

[^3]: ${ }^{4}$ Reynier Antonio de la Cruz Jiménez. "Generation of 8-bit s-boxes having almost optimal cryptographic properties using smaller 4-bit s-boxes and finite field multiplication". In: Progress in Cryptology-LATINCRYPT 2017: 5th International Conference on Cryptology and Information Security in Latin America, Havana, Cuba, September 20-22, 2017, Revised Selected Papers 5. Springer. 2019, pp. 191-206.
 ${ }^{5}$ Reynier Antonio De La Cruz Jiménez. "Constructing 8-bit permutations, 8-bit involutions and 8 -bit orthomorphisms with almost optimal cryptographic parameters". In: Mathematical Aspects of Cryptography 12.3 (2021), pp. 89-124.
 ${ }^{6}$ Alex Biryukov, Léo Perrin, and Aleksei Udovenko. "Reverse-engineering the S-box of Streebog, Kuznyechik and STRIBOBr1". In: Advances in Cryptology-EUROCRYPT 2016: 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I 35. Springer. 2016, pp. 372-402.

[^4]: ${ }^{7}$ Cruz Jiménez, "Generation of 8-bit s-boxes having almost optimal cryptographic properties using smaller 4-bit s-boxes and finite field multiplication".

[^5]: ${ }^{8}$ Alex Biryukov, Léo Perrin, and Aleksei Udovenko. "Reverse-engineering the S-box of Streebog, Kuznyechik and STRIBOBr1". In: Advances in Cryptology-EUROCRYPT 2016: 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I 35. Springer. 2016, pp. 372-402.

[^6]: ${ }^{9}$ Marcus Dansarie. "sboxgates: A program for finding low gate count implementations of S-boxes". In: Journal of Open Source Software 6.62 (2021), p. 2946

[^7]: ${ }^{10}$ Borisenko N.P., "Method of forming S-blocks with minimum number of logic elements"
 ${ }^{11}$ Avraamova et al., "A compact bit-sliced representation of Kuznyechik S-box"

