On the Bit-Slice representations of some nonlinear bijective transformations

Oliver Coy Puente, Rene Fernández Leal and Reynier Antonio de la Cruz Jiménez

Institute of Cryptography, Havana University, Cuba.

Summary

ntroduction

Some nonlinear bijective transformations

An instance of the permutation $\pi'_{h_1,h_2,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cipher

The S-Box of the block ciphe Kuznyechik

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{h,\mathcal{X}}$ Bit-Slice representation of $\hat{\pi}_{\psi,\mathcal{X}}$ A more compact Bit-Slice

representation of the Kuznyechik S-Box

Comparing robustness and implementation cost of some S-Boxes

1 Introduction

2 Some nonlinear bijective transformations

- An instance of the permutation $\pi'_{h_1,h_2,\mathcal{P}_d}$
- An instance of the permutation $\hat{\pi}_{\psi,h}$
- The S-Box of the block cipher Kuznyechik

3 Bit-Slice representation of studied S-Boxes

- Bit-Slice representation of $\pi'_{h,\mathcal{I}}$
- Bit-Slice representation of $\hat{\pi}_{\psi,\mathcal{I}}$
- A more compact Bit-Slice representation of the Kuznyechik S-Box

4 Comparing robustness and implementation cost of some S-Boxes

Motivation

Introduction

Some nonlinear bijective transformations

An instance of the permutation $\pi'_{h_1,h_2,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cipher Kuznvechik

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{h,\mathcal{I}}$ Bit-Slice representation of $\hat{\pi}_{\psi,\mathcal{I}}$ A more compact Bit-Slice representation of the Kuznyechik

Comparing robustness and implementation cost of some S-Boxes

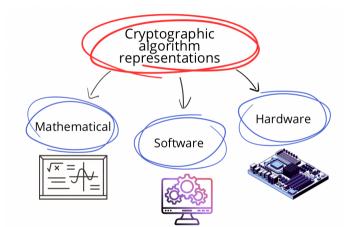
Cryptography is the field of theoretical and applied research and practical activities related to the development and application of cryptographic information protection methods.

Cryptographic algorithm representations

Introduction

Some nonlinear bijective transformations

An instance of the permutation $\pi'_{b_l,b_l,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cipher Kuznvechik


Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{h,\mathcal{X}}$ Bit-Slice representation of $\hat{\pi}_{\psi,\mathcal{X}}$ A more compact Bit-Slice

representation of the Kuznyechil S-Box

Comparing robustness and implementation cost of some S-Boxes

Motivation: S-Boxes – a main cryptographic primitive

Introduction

Some nonlinear bijective transformations

An instance of the permutation $\pi'_{h_l,h_2,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cipher Kuznvechik

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi_{h,\mathcal{I}}'$ Bit-Slice representation of $\hat{\pi}_{\psi,\mathcal{I}}$

A more compact Bit-Slice representation of the Kuznyechik S-Box

Comparing robustness and implementation cost of some S-Boxes

(S)ubstitution-Boxes

In wild of the symmetric Cryptography, S-Boxes are one of the main crypto primitives for building suitable strong cryptographic products.

Motivation: BitSlicing – a simulation of hardware in software

Introduction

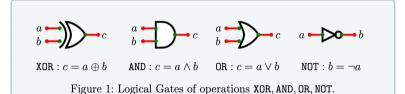
Some nonlinear bijective transformations

An instance of the permutation $\pi'_{b_1,b_2,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cipher

Kuznyechik

Bit-Slice representation of studied S-Boxes

 $\begin{array}{l} \mbox{Bit-Slice representation of $\pi'_{h,\mathcal{I}}$}\\ \mbox{Bit-Slice representation of $\hat{\pi}_{\psi,\mathcal{I}}$}\\ \mbox{A more compact Bit-Slice} \end{array}$


representation of the Kuznyechil S-Box

Comparing robustness and implementation cost of some S-Boxes

The basic concept of Bitslicing¹ is to simulate a hardware implementation in software.

In the Bit-Slice implementation context, S-Boxes are computed by using binary logical operations

¹Eli Biham. "A fast new DES implementation in software". In: *Fast Software Encryption:* 4th International Workshop, FSE'97 Haifa, Israel, January 20–22 1997 Proceedings 4. Springer. 1997, pp. 260–272.

Almost Optimal Permutations???

Introduction

Some nonlinear bijective transformations

An instance of the permutation $\pi'_{h_1,h_2,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cipher Kuznvechik

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{h,\mathcal{I}}$ Bit-Slice representation of $\hat{\pi}_{\psi,\mathcal{I}}$ A more compact Bit-Slice

representation of the Kuznyechil S-Box

Comparing robustness and implementation cost of some S-Boxes

An 8-bit nonlinear bijective transformation without fixed points is called *almost optimal permutation* if it has:

- (algebraic) minimum degree equal to 7;
- (graph) algebraic immunity 3 and 441 equations;
- differential uniformity under 8;
- nonlinearity over 100.

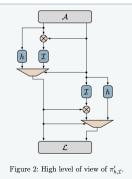
Mission

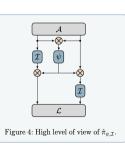
Introduction

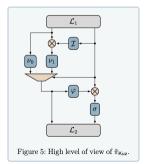
Some nonlinear bijective transformations

An instance of the permutation $\pi'_{h_1,h_2,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cipher Kuznvechik

Bit-Slice representation of studied S-Boxes


Bit-Slice representation of $\pi'_{h,\mathcal{I}}$ Bit-Slice representation of $\hat{\pi}_{\psi,\mathcal{I}}$ A more compact Bit-Slice representation of the Kuznyechik S-Brox


Comparing robustness and implementation cost of some S-Boxes



Our Target

To obtain the Bit-Slice representation of some specific almost optimal permutations

Preliminaries

Introduction

Some nonlinear bijective transformations

An instance of the permutation $\pi'_{h_1,h_2,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cipher

```
Kuznyechik
```

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{b,x}$ Bit-Slice representation of $\hat{\pi}_{\psi,x}$ A more compact Bit-Slice representation of the Kuznyechik

Comparing robustness and implementation cost of some S-Boxes

We use the notions of Bit-Slice and Gate Equivalent Complexities as implementation criteria.

Definition (Bit-Slice Gate Complexity - BGC²)

The smallest number of operations in XOR, AND, OR, NOT required to implement an S-Box.

 $^{^2\}mathsf{Bao}$ et al., "PEIGEN–a Platform for Evaluation, Implementation, and Generation of S-boxes".

Preliminaries

Introduction

Some nonlinear bijective transformations

An instance of the permutation $\pi'_{b_1,b_2,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,b}$ The S-Box of the block cipher

Kuznyechik

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{h,\mathcal{I}}$ Bit-Slice representation of $\hat{\pi}_{\psi,\mathcal{I}}$

A more compact Bit-Slice representation of the Kuznyechik S-Box

Comparing robustness and implementation cost of some S-Boxes

Definition (Gate Equivalent complexity - GEC³)

The smallest number of Gate Equivalents (GEs) required to implement an S-Box, given the cost of atomic operations. (see, Table 1)

Techniques	NAND	XNOR	XOR	AND OR	NOT
UMC 180nm	1.00	3.00	3.00	1.33	0.67
UMC 180nm TSMC 65nm	1.00	3.00	3.00	1.50	0.50
Software	-	-	1.00	1.00	1.00

Table 1: Cost of atomic operations under various techniques

 ^3Bao et al., "PEIGEN–a Platform for Evaluation, Implementation, and Generation of S-boxes".

Some nonlinear bijective transformations

Introduction

Some nonlinear bijective transformations

An instance of the permutation $\pi'_{h_1,h_2,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cipher Kuznyechik

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{h,x}$ Bit-Slice representation of $\hat{\pi}_{\psi,x}$ A more compact Bit-Slice representation of the Kuznyechik

Comparing robustness and implementation cost of some S-Boxes

Let see some 8-bit instances belonging to two classes of nonlinear bijective transformations⁴⁵ and we revisit the TU-decomposition of the S-Box used in the Russian cryptographic standard GOST R 34.12-2015 "Kuznyechik"⁶.

Progress in Cryptology–LATINCRYPT 2017: 5th International Conference on Cryptology and Information Security in Latin America, Havana, Cuba, September 20–22, 2017, Revised Selected Papers 5. Springer. 2019, pp. 191–206.

⁵Reynier Antonio De La Cruz Jiménez. "Constructing 8-bit permutations, 8-bit involutions and 8-bit orthomorphisms with almost optimal cryptographic parameters". In: *Mathematical Aspects of Cryptography* 12.3 (2021), pp. 89–124.

⁶Alex Biryukov, Léo Perrin, and Aleksei Udovenko. "Reverse-engineering the S-box of Streebog, Kuznyechik and STRIBOBr1". In: *Advances in Cryptology–EUROCRYPT 2016:* 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I 35. Springer. 2016, pp. 372–402.

⁴Reynier Antonio de la Cruz Jiménez. "Generation of 8-bit s-boxes having almost optimal cryptographic properties using smaller 4-bit s-boxes and finite field multiplication". In:

An instance of the permutation $\pi'_{h_1,h_2,\mathcal{P}_d}$

Introduction

Some nonlinear bijective transformations

An instance of the permutation $\pi'_{b_1,b_2,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cinher

Kuznyechik

Bit-Slice representation of studied S-Boxes

 $\begin{array}{l} \mbox{Bit-Slice representation of $\pi_{h,\mathcal{I}}'$}\\ \mbox{Bit-Slice representation of $\pi_{\psi,\mathcal{I}}$}\\ \mbox{A more compact Bit-Slice} \end{array}$

representation of the Kuznyech S-Box

Comparing robustness and implementation cost of some S-Boxes

Let $\mathbb{F}_{2^4} = \mathbb{F}_2[\xi]/\xi^4 \oplus \xi \oplus 1$ and $\pi'_{h,\mathcal{I}}$ be an instance of the class of nonlinear bijective transformation $\pi'_{h_1,h_2,\mathcal{P}_d}$ ⁷ by choosing:

- $\mathcal{A} \in \mathsf{GA}_8(\mathbb{F}_2)$ and $\mathcal{L} \in \mathsf{GL}_8(\mathbb{F}_2);$
- The inversion function \mathcal{I} over \mathbb{F}_{2^4} defined by

$$I(X) = \mathcal{P}_{14}(X) = X^{14};$$
 (1)

A random permutation
$$h=h_1=h_2\in S(\mathbb{F}_{2^4}).$$

⁷Cruz Jiménez, "Generation of 8-bit s-boxes having almost optimal cryptographic properties using smaller 4-bit s-boxes and finite field multiplication".

An instance of the permutation $\pi'_{h_1,h_2,\mathcal{P}_d}$

Introduction

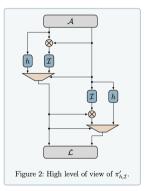
Some nonlinear bijective transformations

An instance of the permutation $\pi'_{h_1,h_2,\mathcal{P}_d}^{\prime}$ An instance of the permutation $\hat{\pi}_{\psi,h}$

The S-Box of the block cipher Kuznyechik

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{h,\mathcal{I}}$ Bit-Slice representation of $\hat{\pi}_{\psi,\mathcal{I}}$


A more compact Bit-Slice representation of the Kuznyechik S-Box

Comparing robustness and implementation cost of some S-Boxes

Cryptographic properties of $\pi_{h,\mathcal{I}}'$

- Nonlinearity 108
- Algebraic Degree 7
- Differential Uniformity 6
- Graph Algebraic Immunity 3(441)

A variant of $\pi'_{h,\mathcal{I}}$

Introduction

Some nonlinear bijective transformations

An instance of the permutation $\pi'_{h_1,h_2,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cipher Kuznyechik

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{h,\mathcal{X}}$ Bit-Slice representation of $\hat{\pi}_{\psi,\mathcal{X}}$ A more compact Bit-Slice representation of the Kuznyechik S-Box

Comparing robustness and implementation cost of some S-Boxes

The following instance was obtained as a result of a oriented search on the structural elements used in one of the possible modification of $\pi'_{h_1,h_2,\mathcal{P}_d}$ that offer the best implementation cost (achieved in this paper) of the resulting almost optimal permutation.

The nonlinear bijective transformation $\dot{\pi}_{\lambda,\tau}$ employ the following components:

•
$$\mathcal{A}\in\mathsf{GA}_8(\mathbb{F}_2)$$
, $\mathcal{L}\in\mathsf{GL}_8(\mathbb{F}_2)$ and $\lambda\in\mathsf{GL}_4(\mathbb{F}_2)$;

• The 4-bit nonlinear bijective transformation τ defined over \mathbb{F}_{2^4} .

A variant of $\pi'_{h,\mathcal{I}}$

Introduction

Some nonlinear bijective transformations

An instance of the permutation $\pi'_{b_1,b_2,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cipher Kurnwachik

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{h, \mathcal{X}}$ Bit-Slice representation of $\hat{\pi}_{\psi, \mathcal{X}}$ A more compact Bit-Slice representation of the Kuznyechik

representation of the Kuznyechi S-Box

Comparing robustness and implementation cost of some S-Boxes

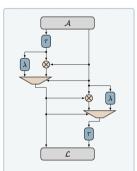


Figure 3: High level of view of $\dot{\pi}_{\lambda,\tau}$.

Cryptographic properties of $\dot{\pi}_{\lambda, au}$

- Nonlinearity -108
- Algebraic Degree 7
- Differential Uniformity 6
- Graph Algebraic Immunity 3(441)

An instance of the permutation $\hat{\pi}_{\psi,h}$

ntroduction

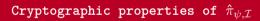
Some nonlinear bijective transformations

An instance of the permutation $\pi'_{b_1, b_2, \mathcal{P}_d}$ associated as a substance of the permutation $\hat{\pi}_{\psi, b}$ The S-Box of the block cinher.

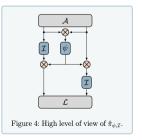
Bit-Slice representation of

studied S-Boxes Bit-Slice representation of $\pi'_{h,x}$

Bit-Slice representation of $\hat{\pi}_{\psi, \mathcal{I}}$


A more compact Bit-Slice representation of the Kuznyechi S-Box

Comparing robustness and implementation cost of some S-Boxes


Let $\mathbb{F}_{2^4} = \mathbb{F}_2[\xi]/\xi^4 \oplus \xi \oplus 1$ and $\hat{\pi}_{\psi,\mathcal{I}}$ be an instance of the class of nonlinear bijective transformation $\hat{\pi}_{\psi,h}$ by choosing:

- $\mathcal{A} \in \mathsf{GA}_8(\mathbb{F}_2)$ and $\mathcal{L} \in \mathsf{GL}_8(\mathbb{F}_2)$;
- The inversion function \mathcal{I} over \mathbb{F}_{2^4} defined by (1);
- A non-bijective 4-bit function ψ , which have not preimage for 0.


```
    Nonlinearity - 104
```

- Algebraic Degree 7
- Differential Uniformity 6
- Graph Algebraic Immunity 3(441)

The S-Box of the block cipher Kuznyechik

Introduction

Some nonlinear bijective transformations

An instance of the permutation $\pi'_{h_1,h_2,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,\hbar}$

The S-Box of the block cipher Kuznyechik

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{h,\mathcal{X}}$ Bit-Slice representation of $\hat{\pi}_{\psi,\mathcal{X}}$ A more compact Bit-Slice representation of the Kuznyechik S-Box

Comparing robustness and implementation cost of some S-Boxes

For the Kuznyechik S-Box is suggested⁸ it TU-decomposition. All 4-bit operations/transformations are described over $\mathbb{F}_{2^4} = \mathbb{F}_2[\xi]/\xi^4 \oplus \xi^3 \oplus 1$. The S-Box $\tilde{\pi}_{Kuz}$ employ:

• $\mathcal{L}_i \in \mathrm{GL}_8(\mathbb{F}_2), i = 1, 2;$

• The inversion function \mathcal{I} defined by (1);

• The 4-bit nonlinear transformations ν_0, ν_1, φ and σ .

⁸Alex Biryukov, Léo Perrin, and Aleksei Udovenko. "Reverse-engineering the S-box of Streebog, Kuznyechik and STRIBOBr1". In: Advances in Cryptology–EUROCRYPT 2016: 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I 35. Springer. 2016, pp. 372–402.

The S-Box of the block cipher Kuznyechik

Introduction

Some nonlinear bijective transformations

An instance of the permutation $\begin{aligned} &\pi'_{h_1,h_2,\mathcal{D}_d} \\ &\text{An instance of the permutation} \\ &\hat{\pi}_{\psi,h} \end{aligned}$

The S-Box of the block cipher Kuznyechik

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{h,\mathcal{I}}$ Bit-Slice representation of $\hat{\pi}_{\psi,\mathcal{I}}$ A more compact Bit-Slice representation of the Kuznyechik

Comparing robustness and implementation cost of some S-Boxes

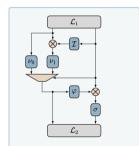
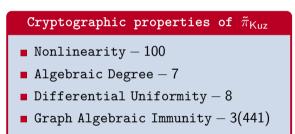



Figure 5: High level of view of $\tilde{\pi}_{Kuz}$.

Bit-Slice representations of $\pi'_{h,\mathcal{I}}$, $\dot{\pi}_{\lambda,\tau}$, $\hat{\pi}_{\psi,\mathcal{I}}$ and $\tilde{\pi}_{Kuz}$

Introduction

Some nonlinear bijective transformations

An instance of the permutation $\pi'_{h_1,h_2,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cipher Kuznvechik

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{h,x}$ Bit-Slice representation of $\hat{\pi}_{\psi,x}$ A more compact Bit-Slice representation of the Kuznyechik

Comparing robustness and implementation cost of some S-Boxes

The current section is devoted to the problem of finding low gate count logic circuit representations for the studied S-Boxes, combining analytical methods with the open source tool sboxgates⁹.

⁹Marcus Dansarie. "sboxgates: A program for finding low gate count implementations of S-boxes". In: *Journal of Open Source Software* 6.62 (2021), p. 2946

Bit-Slice representations of $\pi'_{h,\mathcal{I}}$

Introduction

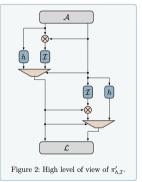
Some nonlinear bijective transformations

An instance of the permutation $\pi'_{b_1,b_2,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cipher Kuznvechik

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{h,\mathcal{I}}$ Bit-Slice representation of $\hat{\pi}_{\psi,\mathcal{I}}$ A more compact Bit-Slice representation of the Kuznyechik S-Box

Comparing robustness and implementation cost of some S-Boxes



From the definition of $\pi'_{h,\mathcal{I}}$ is evident that

$$\begin{split} & \operatorname{BGC}\left(\pi_{h,\mathcal{I}}'\right) = \operatorname{BGC}\left(\mathcal{A}\right) + 2 \cdot \operatorname{BGC}\left(\otimes\right) + \operatorname{BGC}\left(\mathcal{F}_{1}\right) + \\ & + \operatorname{BGC}\left(\mathcal{F}_{2}\right) + 2 \cdot \operatorname{BGC}\left(\mathcal{I}\right) + 2 \cdot \operatorname{BGC}\left(h\right) + \operatorname{BGC}\left(\mathcal{L}\right), \\ & (2) \end{split}$$

where by $\mathcal{F}_i, i \in \{1, 2\}$, are denoted the left and right branches containing the conditionals *if*. Using analytical methods was obtained that

 $\operatorname{BGC}(\mathcal{A}) = 1$, $\operatorname{BGC}(\mathcal{L}) = 0$, $\operatorname{BGC}(\otimes) = 31$ and $\operatorname{BGC}(\mathcal{F}_1) = \operatorname{BGC}(\mathcal{F}_2) = 12$.

With the help of the open source tool sboxgates was calculated that BGC(h) = 19 and $BGC(\mathcal{I}) = 17$.

Finally, from (2) was obtained that BGC $\left(\pi'_{h,\mathcal{I}}\right) = 159.$

Combinatorial circuit of $\pi'_{h,\mathcal{I}}$

Introduction

Some nonlinear bijective transformations

An instance of the permutation $\pi'_{b_i,b_j,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cipher Kuznyechik

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{h, \mathcal{I}}$

Bit-Slice representation of $\hat{\pi}_{\psi,\mathcal{I}}$

A more compact Bit-Slice representation of the Kuznyechil S-Box

Comparing robustness and implementation cost of some S-Boxes

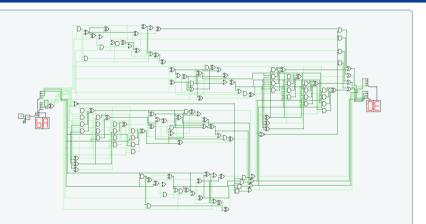


Figure 9: Combinatorial circuit of the S-Box $\pi'_{h,\mathcal{I}}$, where for the input value BA, the corresponding output value is 0E.

Bit-Slice representations of $\dot{\pi}_{\lambda,\tau}$

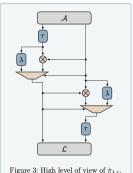
Introduction

Some nonlinear bijective transformations

An instance of the permutation $\pi'_{h_1,h_2,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cipher Kuznyechik

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{h,\mathbf{Z}}$ Bit-Slice representation of $\hat{\pi}_{\psi,\mathcal{I}}$ A more compact Bit-Slice representation of the Kuznyechik S-Box


Comparing robustness and implementation cost of some S-Boxes

From the definition of $\dot{\pi}_{\lambda,\tau}$ is evident that

$$\begin{split} & \operatorname{BGC}\left(\dot{\pi}_{\lambda,\tau}\right) = \operatorname{BGC}\left(\mathcal{A}\right) + 2 \cdot \operatorname{BGC}\left(\otimes\right) + \operatorname{BGC}\left(\mathcal{F}_{1}\right) + \\ & + \operatorname{BGC}\left(\mathcal{F}_{2}\right) + 2 \cdot \operatorname{BGC}\left(\tau\right) + 2 \cdot \operatorname{BGC}\left(\lambda\right) + \operatorname{BGC}\left(\mathcal{L}\right). \end{split}$$

Using analytical methods was obtained that $BGC(\mathcal{A}) = 1$, $BGC(\mathcal{L}) = BGC(\lambda) = 0$, $BGC(\otimes) = 31$ and $BGC(\mathcal{F}_1) = BGC(\mathcal{F}_2) = 12$.

With the help of the open source tool sboxgates was calculated that

BGC $(\tau) = 16$. Finally, from (3) was obtained that BGC $(\dot{\pi}_{\lambda,\tau}) = 119$.

Combinatorial circuit of $\dot{\pi}_{\lambda,\tau}$

Introduction

Some nonlinear bijective transformations

An instance of the permutation $\pi'_{b_1,b_2,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cipher Kuzŋwachik

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{h,\tau}$

Bit-Slice representation of $\hat{\pi}_{\psi, x}$

A more compact Bit-Slice representation of the Kuznyechil S-Box

Comparing robustness and implementation cost of some S-Boxes

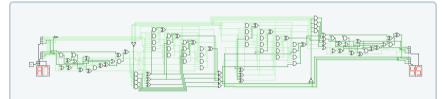


Figure 10: Combinatorial circuit of the S-Box $\dot{\pi}_{\lambda,\tau}$, where for the input value A7, the corresponding output value is 45.

Bit-Slice representations of $\hat{\pi}_{\psi,\mathcal{I}}$

Introduction

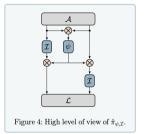
Some nonlinear bijective transformations

An instance of the permutation $\pi'_{h_i, h_j, \mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cipher Kuznyechik

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{h, \mathcal{I}}$

Bit-Slice representation of $\hat{\pi}_{\psi,\mathcal{I}}$


A more compact Bit-Slice representation of the Kuznyechik S-Box

Comparing robustness and implementation cost of some S-Boxes

From the definition of $\hat{\pi}_{\psi,\mathcal{I}}$ is evident that

Using analytical methods was obtained that $BGC(\mathcal{A}) = 1$, $BGC(\mathcal{L}) = 0$ and $BGC(\otimes) = 31$.

With the help of the open source tool sboxgates was calculated that BGC $(\psi) = 21$ and BGC $(\mathcal{I}) = 17$. Finally, from (4) was obtained that BGC $(\hat{\pi}_{\psi,\mathcal{I}}) = 149$.

Combinatorial circuit of $\hat{\pi}_{\psi,\mathcal{I}}$

Introduction

Some nonlinear bijective transformations

An instance of the permutation $\pi'_{h_1,h_2,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cipher Kuznvechik

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{h,T}$

Bit-Slice representation of $\hat{\pi}_{\psi, \mathcal{I}}$

A more compact Bit-Slice representation of the Kuznyechi S-Box

Comparing robustness and implementation cost of some S-Boxes

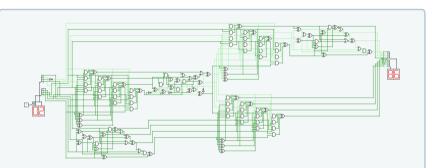


Figure 12: Combinatorial circuit of the S-Box $\hat{\pi}_{\psi,\mathcal{I}}$, where for the input value 02, the corresponding output value is 86.

A more compact Bit-Slice representation of the Kuznyechik S-Box

Introduction

Some nonlinear bijective transformations

An instance of the permutation $\pi'_{h_1,h_2,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cipher

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{h,\mathcal{I}}$ Bit-Slice representation of $\hat{\pi}_{\psi,\mathcal{I}}$

A more compact Bit-Slice representation of the Kuznyechik S-Box

Comparing robustness and implementation cost of some S-Boxes

Motivation

- In 2016 was proposed a method¹⁰, requiring 681 Boolean operations to find a Bit-Slice representation of the Kuznyechik S-Box,
- 2 Considering the TU-decomposition previously described in the Figure 5, in 2021 was proposed a new method¹¹, which requires 226 Boolean (logical) operations; i.e., 455 logical operations less than the previously known method.

¹⁰Borisenko N.P., "Method of forming S-blocks with minimum number of logic elements" ¹¹Avraamova et al., "A compact bit-sliced representation of Kuznyechik S-box"

A more compact Bit-Slice representation of the Kuznyechik S-Box

Introduction

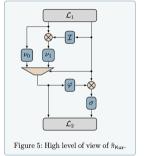
Some nonlinear bijective transformations

An instance of the permutation $\pi'_{h_i, h_j, \mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cipher Kuznyechik

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{h,\mathcal{I}}$ Bit-Slice representation of $\hat{\pi}_{\psi,\mathcal{I}}$

A more compact Bit-Slice representation of the Kuznyechik S-Box


Comparing robustness and implementation cost of some S-Boxes

From the definition of $\tilde{\pi}_{\mathrm{Kuz}}$ is evident that

$$\begin{split} & \operatorname{BGC}\left(\tilde{\pi}_{\mathsf{Kuz}}\right) = \operatorname{BGC}\left(\mathcal{L}_{1}\right) + 2 \cdot \operatorname{BGC}\left(\otimes\right) + \\ & \operatorname{-BGC}\left(\mathcal{I}\right) + \operatorname{BGC}\left(\nu_{0}\right) + \operatorname{BGC}\left(\nu_{1}\right) + \operatorname{BGC}\left(\mathcal{F}\right) + \\ & + \operatorname{BGC}\left(\varphi\right) + \operatorname{BGC}\left(\sigma\right) + \operatorname{BGC}\left(\mathcal{L}_{2}\right). \end{split}$$

$$(5)$$

Using analytical methods was obtained that $BGC(\mathcal{L}_1) = 9$, $BGC(\mathcal{L}_2) = 5$, $BGC(\otimes) = 31$ and $BGC(\mathcal{F}) = 15$.

With the help of the open source tool sboxgates was calculated that BGC (\mathcal{I}) = 20, BGC (ν_0) = 19, BGC (ν_1) = 12, BGC (φ) = 18 and BGC (σ) = 19. Finally, from (5) was obtained that BGC ($\tilde{\pi}_{Kuz}$) = 179.

Combinatorial circuit of the Kuznyechik S-Box

Introduction

Some nonlinear bijective transformations

An instance of the permutation $\pi'_{b_1,b_2,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cipher Kuznvechik

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{h,\mathcal{I}}$ Bit-Slice representation of $\hat{\pi}_{\psi,\mathcal{I}}$

A more compact Bit-Slice representation of the Kuznyechik S-Box

Comparing robustness and implementation cost of some S-Boxes

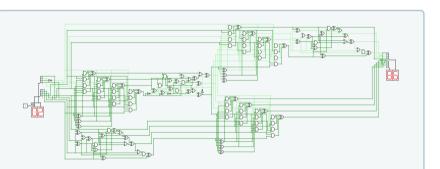


Figure 12: Combinatorial circuit of the S-Box $\hat{\pi}_{\psi,\mathcal{I}}$, where for the input value 02, the corresponding output value is 86.

Comparing robustness and implementation cost of some S-Boxes

Introduction

Some nonlinear bijective transformations

An instance of the permutation $\pi'_{h_1,h_2,\mathcal{P}_d}$ An instance of the permutation $\hat{\pi}_{\psi,h}$ The S-Box of the block cipher Kuznyechik

Bit-Slice representation of studied S-Boxes

Bit-Slice representation of $\pi'_{h,\mathcal{I}}$ Bit-Slice representation of $\hat{\pi}_{\psi,\mathcal{I}}$ A more compact Bit-Slice representation of the Kuznyechik S-Box

Comparing robustness and implementation cost of some S-Boxes

S-Boxes	Logical Operations				BGC (·)	$GEC(\cdot)$		Basic Cryptographic Parameters			
	XOR	AND	OR	NOT	BGC (·)	UMC/180nm	TSMC/65nm	NL	AD	DU	AI
π_{Whp}	58	15	21	7	101	226.57	231.50	100	6	8	3(441)
π_{AES}	83	32	0	0	115	291.56	297.00	112	7	4	2(39)
$\dot{\pi}_{\lambda,\tau}$	49	48	20	2	119	238.78	250.00	108	7	6	3(441)
$\hat{\pi}_{\psi,\mathcal{I}}$	73	58	15	3	149	318.10	330.00	104	7	6	3(441)
$\pi'_{h,\mathcal{I}}$	69	54	34	2	159	325.38	340.00	108	7	6	3(441)
$\tilde{\pi}_{Kuz}$	94	54	26	5	179	391.75	404.50	100	7	8	3(441)
π_{Kal}	NR 361		361	NR		104	7	8	3(441)		

Table 10: A comparison between Bit-Slice Gate/Gate Equivalent Complexities and the cryptographic parameters of some 8-bit S-Boxes (NR means "not reported"). The basic cryptographic parameters: nonlinearity, (algebraic) minimum degree, differential uniformity and (graph) algebraic immunity are denoted by NL, AD, DU and AI.

On the Bit-Slice representations of some nonlinear bijective transformations

Oliver Coy Puente, Rene Fernández Leal and Reynier Antonio de la Cruz Jiménez

Institute of Cryptography, Havana University, Cuba.

