Fast correlation attack for GRAIN-128AEAD with fault

Katyshev S.U., Malov M.U.

CTCrypt, 2023.06.09

Content

(1) Preliminaries
(2) Side-channel attack
(3) Fast correlation attack
4) Our contributions

Grain family

Grain-128AEAD

Relation for LFSR:

$$
u_{127}^{(t+1)}=u_{0}^{(t)} \oplus u_{7}^{(t)} \oplus u_{38}^{(t)} \oplus u_{70}^{(t)} \oplus u_{81}^{(t)} \oplus u_{96}^{(t)}=\Sigma_{u}\left(U^{(t)}\right)
$$

Relation for NFSR:

$$
\begin{aligned}
w_{127}^{(t+1)}= & u_{0}^{(t)} \oplus w_{0}^{(t)} \oplus w_{26}^{(t)} \oplus w_{56}^{(t)} \oplus w_{91}^{(t)} \oplus w_{96}^{(t)} \oplus w_{3}^{(t)} w_{67}^{(t)} \oplus \\
\oplus & w_{11}^{(t)} w_{13}^{(t)} \oplus w_{17}^{(t)} w_{18}^{(t)} \oplus w_{27}^{(t)} w_{59}^{(t)} \oplus w_{40}^{(t)} w_{48}^{(t)} \oplus w_{61}^{(t)} w_{65}^{(t)} \oplus w_{68}^{(t)} w_{84}^{(t)} \\
& \oplus w_{22}^{(t)} w_{24}^{(t)} w_{25}^{(t)} \oplus w_{70}^{(t)} w_{78}^{(t)} w_{82}^{(t)} \oplus w_{88}^{(t)} w_{92}^{(t)} w_{93}^{(t)} w_{95}^{(t)}=u_{0}^{(t)} \oplus \Sigma_{w}\left(W^{(t)}\right)
\end{aligned}
$$

Output function:

$$
y^{(t)}=h\left(w_{12}^{(t)}, u_{8}^{(t)}, u_{13}^{(t)}, u_{20}^{(t)}, w_{95}^{(t)}, u_{42}^{(t)}, u_{60}^{(t)}, u_{79}^{(t)}, u_{94}^{(t)}\right) \oplus u_{93}^{(t)} \oplus \sum_{j \in A} w_{j}^{(t)}
$$

$$
A=\{2,15,36,45,64,73,89\}
$$

Grain family

Cipher	Attack	Complexity
Grain-V0, 2004	correlation	$T=2^{84}, D=2^{64}$
Grain-V1, 2006	fast correlation, 2018	$T=2^{75}, D=2^{77}$
Grain-128, 2006	dynamic cube, 2011	$T=2^{84}, D=2^{62}$
Grain-128a, 2011	fast correlation, 2018	$T=2^{115}, D=2^{144}$

Our results

Grain-128AEAD - fast correlation attack with fault $T=2^{113}, D=2^{113}$

Content

(1) Preliminaries
(2) Side-channel attack
(3) Fast correlation attack
4) Our contributions

Some types of side-channel attacks

- Passive side-channel attacks
- Active side-channel attacks
- Invasive attacks
- Noninvasive attacks
- Data remanence attacks
- Fault attacks
- Differential fault attacks

Fault attacks

Basic consumptions in fault analysis

- The attacker is able to reset the system with the original Key-IV
- The attacker can inject a fault at any one random bit location
- The attacker has full control over the timing of fault injection

Main objectives:

- Finding location of fault
- Recovering key

Fault attacks on Grain family

Main results

- A Differential Fault Attack on Grain-128a using MACs, 2012
- Differential Fault Attack against Grain family with very few faults and minimal assumptions, 2013
- Fault Analysis of Grain Family of Stream Ciphers, 2014
- Multi-Bit Differential Fault Analysis of Grain-128 with Very Weak Assumptions, 2014
- Combined Side-Channel and Fault Analysis Attack on Protected Grain Family of Stream Ciphers, 2015
- Phase-shift Fault Analysis of Grain-128, 2022

Content

(1) Preliminaries
(2) Side-channel attack
(3) Fast correlation attack
4) Our contributions

Correlation analysis [Siegenthaler, 1985]

$$
\begin{aligned}
& \vec{u}^{(0)}=\left(u_{0}^{(0)}, \ldots, u_{n-1}^{(0)}\right), \\
& \left.\vec{y}^{(0)}=\left(y^{(0)}, \ldots, y^{(k)}\right)\right),
\end{aligned}
$$

$$
L_{u}, L_{y} \text { - linear masks. : }
$$

$$
P\left\{\left\langle\vec{u}^{(0)}, L_{u}\right\rangle=\left\langle\vec{y}^{(0)}, L_{y}\right\rangle\right\}=q \neq \frac{1}{2}
$$

Also we can use:

$$
\vec{y}^{(t)}=\left(y^{(t)}, \ldots, y^{(t+k)}\right)
$$

$$
P\left\{\left\langle\vec{u}^{(0)} \cdot S^{t}(f), L_{u}\right\rangle=\left\langle\vec{y}^{(t)}, L_{y}\right\rangle\right\}=q \neq \frac{1}{2}
$$

$S(f)$ - the matrix for f.

Correlation analysis [Siegenthaler, 1985]

$$
\begin{aligned}
& \vec{u}^{(0)}=\left(u_{0}^{(0)}, \ldots, u_{n-1}^{(0)}\right), \\
& \left.\vec{y}^{(0)}=\left(y^{(0)}, \ldots, y^{(k)}\right)\right),
\end{aligned}
$$

$$
L_{u}, L_{y}-\text { linear masks. : }
$$

$$
P\left\{\left\langle\vec{u}^{(0)}, L_{u}\right\rangle=\left\langle\vec{y}^{(0)}, L_{y}\right\rangle\right\}=q \neq \frac{1}{2}
$$

Also we can use:

$$
\vec{y}^{(t)}=\left(y^{(t)}, \ldots, y^{(t+k)}\right)
$$

$$
P\left\{\left\langle\vec{u}^{(0)} \cdot S^{t}(f), L_{u}\right\rangle=\left\langle\vec{y}^{(t)}, L_{y}\right\rangle\right\}=q \neq \frac{1}{2}
$$

$S(f)$ - the matrix for f.

Fast correlation attack [Meier, Staffelbach, 1989]

Instead statistic

$$
T\left(\vec{u}^{(0)}\right)=\sum_{t=0}^{N-1} \operatorname{Ind}\left\{\left\langle\vec{u}^{(0)}, L_{u} \cdot\left(S^{t}(f)\right)^{T}\right\rangle=\left\langle\vec{y}^{(t)}, L_{y}\right\rangle\right\}
$$

Fast correlation attack [Meier, Staffelbach, 1989]

Instead statistic

$$
T\left(\vec{u}^{(0)}\right)=\sum_{t=0}^{N-1} \operatorname{Ind}\left\{\left\langle\vec{u}^{(0)}, L_{u} \cdot\left(S^{t}(f)\right)^{T}\right\rangle=\left\langle\vec{y}^{(t)}, L_{y}\right\rangle\right\}
$$

We can use statistic

$$
\begin{aligned}
& \nu\left(\vec{u}^{(0)}\right)=\sum_{t=0}^{N-1}(-1)^{\left\langle\vec{u}^{(0)}, L_{u} \cdot\left(S^{t}(f)\right)^{T}\right\rangle \oplus\left\langle\vec{y}^{(t)}, L_{y}\right\rangle}= \\
&=\sum_{\vec{x} \in\{0,1\}^{n}}\left(\begin{array}{l}
\left.\sum_{t \in\left\{0, \ldots, N-1 \mid L_{u} \cdot\left(S^{t}(f)\right)^{T}=\vec{x}\right\}}(-1)^{\left\langle\vec{y}^{(t)}, L_{y}\right\rangle}\right)(-1)^{\left\langle\vec{u}^{(0)}, \vec{x}\right\rangle}
\end{array}\right.
\end{aligned}
$$

Fast correlation attack [Meier, Staffelbach, 1989]

Instead statistic

$$
T\left(\vec{u}^{(0)}\right)=\sum_{t=0}^{N-1} \operatorname{Ind}\left\{\left\langle\vec{u}^{(0)}, L_{u} \cdot\left(S^{t}(f)\right)^{T}\right\rangle=\left\langle\vec{y}^{(t)}, L_{y}\right\rangle\right\}
$$

We can use statistic

$$
\begin{aligned}
& \nu\left(\vec{u}^{(0)}\right)=\sum_{t=0}^{N-1}(-1)^{\left\langle\vec{u}^{(0)}, L_{u} \cdot\left(S^{t}(f)\right)^{T}\right\rangle \oplus\left\langle\vec{y}^{(t)}, L_{y}\right\rangle}= \\
&=\sum_{\vec{x} \in\{0,1\}^{n}}\left(\begin{array}{l}
\left.\sum_{t \in\left\{0, \ldots, N-1 \mid L_{u} \cdot\left(S^{t}(f)\right)^{T}=\vec{x}\right\}}(-1)^{\left\langle\vec{y}^{(t)}, L_{y}\right\rangle}\right)(-1)^{\left\langle\vec{u}^{(0)}, \vec{x}\right\rangle}
\end{array}\right.
\end{aligned}
$$

Walsh-Hadamard coefficient for $\nu\left(\vec{u}^{(0)}\right)$:

$$
\omega(\vec{x})=\sum_{t \in\left\{0, \ldots, N-1 \mid L_{u} \cdot\left(S^{t}(f)\right)^{T}=\vec{x}\right\}}(-1)^{<\vec{y}^{(t)}, L_{y}>}
$$

Fast correlation attack [Meier, Staffelbach, 1989]

Main steps:
(1) Calculating the values of the Walsh-Hadamard coefficients

$$
\omega(\vec{x})=\sum_{t \in\left\{0, \ldots, N-1 \mid L_{u} \cdot\left(S^{t}(f)\right)^{T}=\vec{x}\right\}}(-1)^{<\vec{y}^{(t)}, L_{y}>}
$$

(2) Using the fast Walsh-Hadamard algorithm (FWH) we find the values of statistics

$$
\nu\left(\vec{u}^{(0)}\right)=\sum_{t=0}^{N-1}(-1)^{\left\langle\vec{u}^{(0)}, L_{u} \cdot\left(S^{t}(f)\right)^{T}\right\rangle \oplus\left\langle\left\langle^{(t)}, L_{y}\right\rangle\right.}
$$

(3) Finding statistics $\nu\left(\vec{u}^{(0)}\right)$ with high bias

Fast correlation attack [Meier, Staffelbach, 1989]

Main steps:
(1) Calculating the values of the Walsh-Hadamard coefficients

$$
\omega(\vec{x})=\sum_{t \in\left\{0, \ldots, N-1 \mid L_{u} \cdot\left(S^{t}(f)\right)^{T}=\vec{x}\right\}}(-1)^{<\vec{y}^{(t)}, L_{y}>}
$$

(2) Using the fast Walsh-Hadamard algorithm (FWH) we find the values of statistics

$$
\nu\left(\vec{u}^{(0)}\right)=\sum_{t=0}^{N-1}(-1)^{\left\langle\vec{u}^{(0)}, L_{u} \cdot\left(S^{t}(f)\right)^{T}\right\rangle \oplus\left\langle\vec{y}^{(t)}, L_{y}\right\rangle}
$$

(3) Finding statistics $\nu\left(\vec{u}^{(0)}\right)$ with high bias

Fast correlation attack. Reduced complexity

Reduce involved secret-key bits and calculate the values of the WalshHadamard coefficients for subfunction
(1) Use some linear masks L_{u}

For example, $L_{u} \cdot\left(S^{t}(f)\right)^{T}=(0, \ldots, 0, *, \ldots *)$
(2) Use some pair linear masks L_{u}, L_{u}^{\prime} (partial birthday problem) For example, $L_{u} \cdot\left(S^{t}(f)\right)^{T} \oplus L_{u}^{\prime} \cdot\left(S^{t^{\prime}}(f)\right)^{T}=(0, \ldots, 0, *, \ldots *)$
(3) Use party check equation [Todo,... 2018] For example, $\left\langle\vec{u}^{(0)}, L_{u} \cdot\left(S^{t}(f)\right)^{T}\right\rangle \rightarrow\left\langle\vec{u}^{\prime}, \vec{G}\right\rangle$

Fast correlation attack. Reduced complexity

Reduce involved secret-key bits and calculate the values of the WalshHadamard coefficients for subfunction
(1) Use some linear masks L_{u}

For example, $L_{u} \cdot\left(S^{t}(f)\right)^{T}=(0, \ldots, 0, *, \ldots *)$
(2) Use some pair linear masks L_{u}, L_{u}^{\prime} (partial birthday problem)

For example, $L_{u} \cdot\left(S^{t}(f)\right)^{T} \oplus L_{u}^{\prime} \cdot\left(S^{t^{\prime}}(f)\right)^{T}=(0, \ldots, 0, *, \ldots *)$
(3) Use party check equation [Todo,... 2018]

For example, $\left\langle\vec{u}^{(0)}, L_{u} \cdot\left(S^{t}(f)\right)^{T}\right\rangle \rightarrow\left\langle\vec{u}^{\prime}, \vec{G}\right\rangle$
Complexity: $O\left(N+(n-\beta) 2^{n-\beta}\right)$

Fast correlation attack. Reduced complexity

Reduce involved secret-key bits and calculate the values of the WalshHadamard coefficients for subfunction
(1) Use some linear masks L_{u}

For example, $L_{u} \cdot\left(S^{t}(f)\right)^{T}=(0, \ldots, 0, *, \ldots *)$
(2) Use some pair linear masks L_{u}, L_{u}^{\prime} (partial birthday problem)

For example, $L_{u} \cdot\left(S^{t}(f)\right)^{T} \oplus L_{u}^{\prime} \cdot\left(S^{t^{\prime}}(f)\right)^{T}=(0, \ldots, 0, *, \ldots *)$
(3) Use party check equation [Todo,... 2018]

For example, $\left\langle\vec{u}^{(0)}, L_{u} \cdot\left(S^{t}(f)\right)^{T}\right\rangle \rightarrow\left\langle\vec{u}^{\prime}, \vec{G}\right\rangle$
Complexity: $O\left(N+(n-\beta) 2^{n-\beta}\right)$

Complexity finding secret key for Grain-v1: 2^{75}

Content

(1) Preliminaries
(2) Side-channel attack
(3) Fast correlation attack
(4) Our contributions

Application for Grain128-AEAD

$$
P\left\{\left\langle\vec{u}, L_{u}\right\rangle=y\right\} \neq \frac{1}{2},
$$

How apply to Grain Family?
Construct linear relation from LFSR bits only.

Application for Grain128-AEAD

Only odd bits are using for encryption!

$y^{(t)}$	$=u_{93}^{(t)}$	$\oplus w_{2}^{(t)}$	$\oplus w_{15}^{(t)}$	$\oplus w_{36}^{(t)}$	$\oplus w_{45}^{(t)}$	$\oplus \ldots$	$\oplus h(\ldots)$
$y^{(t+26)}$	$=u_{93}^{(t+26)}$	$\oplus w_{2}^{(t+26)}$	$\oplus w_{15}^{(t+26)}$	$\oplus w_{36}^{(t+26)}$	$\oplus w_{45}^{(t+26)}$	$\oplus \ldots$	$\oplus h(\ldots)$
$y^{(t+56)}$	$=u_{93}^{(t+56)}$	$\oplus w_{2}^{(t+56)}$	$\oplus w_{15}^{(t+56)}$	$\oplus w_{36}^{(t+56)}$	$\oplus w_{45}^{(t+56)}$	$\oplus \ldots$	$\oplus h(\ldots)$
$y^{(t+91)}$	$=u_{93}^{(t+91)}$	$\oplus w_{2}^{(t+91)}$	$\oplus w_{15}^{(t+91)}$	$\oplus w_{36}^{(t+91)}$	$\oplus w_{45}^{(t+91)}$	$\oplus \ldots$	$\oplus h(\ldots)$
$y^{(t+96)}$	$=u_{93}^{(t+96)}$	$\oplus w_{2}^{(t+96)}$	$\oplus w_{15}^{(t+96)}$	$\oplus w_{36}^{(t+96)}$	$\oplus w_{45}^{(t+96)}$	$\oplus \ldots$	$\oplus h(\ldots)$
$y^{(t+128)}$	$=u_{93}^{(t+128)}$	$\oplus w_{2}^{(t+128)}$	$\oplus w_{15}^{(t+128)}$	$\oplus w_{36}^{(t+128)}$	$\oplus w_{45}^{(t+128)}$	$\oplus \ldots$	$\oplus h(\ldots)$

Relation for NFSR:

$$
w_{127}^{(t+1)}=u_{0}^{(t)} \oplus w_{0}^{(t)} \oplus w_{26}^{(t)} \oplus w_{56}^{(t)} \oplus w_{91}^{(t)} \oplus w_{96}^{(t)} \oplus\left[\text { Nonlinear part } W^{(t)}\right]
$$

Application for Grain128-AEAD

Only odd bits are using for encryption!

$y^{(t)}$	$=u_{93}^{(t)}$	$\oplus w_{2}^{(t)}$	$\oplus w_{15}^{(t)}$	$\oplus w_{36}^{(t)}$	$\oplus w_{45}^{(t)}$	$\oplus \ldots$	$\oplus h(\ldots)$
$y^{(t+26)}$	$=u_{93}^{(t+26)}$	$\oplus w_{2}^{(t+26)}$	$\oplus w_{15}^{(t+26)}$	$\oplus w_{36}^{(t+26)}$	$\oplus w_{45}^{(t+26)}$	$\oplus \ldots$	$\oplus h(\ldots)$
$y^{(t+56)}$	$=u_{93}^{(t+56)}$	$\oplus w_{2}^{(t+56)}$	$\oplus w_{15}^{(t+56)}$	$\oplus w_{36}^{(t+56)}$	$\oplus w_{45}^{(t+56)}$	$\oplus \ldots$	$\oplus h(\ldots)$
$y^{(t+91)}$	$=u_{93}^{(t+91)}$	$\oplus w_{2}^{(t+91)}$	$\oplus w_{15}^{(t+91)}$	$\oplus w_{36}^{(t+91)}$	$\oplus w_{45}^{(t+91)}$	$\oplus \ldots$	$\oplus h(\ldots)$
$y^{(t+96)}$	$=u_{93}^{(t+96)}$	$\oplus w_{2}^{(t+96)}$	$\oplus w_{15}^{(t+96)}$	$\oplus w_{36}^{(t+96)}$	$\oplus w_{45}^{(t+96)}$	$\oplus \ldots$	$\oplus h(\ldots)$
$y^{(t+128)}$	$=u_{93}^{(t+128)}$	$\oplus w_{2}^{(t+128)}$	$\oplus w_{15}^{(t+128)}$	$\oplus w_{36}^{(t+128)}$	$\oplus w_{45}^{(t+128)}$	$\oplus \ldots$	$\oplus h(\ldots)$

Relation for NFSR:
$w_{2}^{(t+128)}=u_{0}^{(t+2)} \oplus w_{2}^{(t)} \oplus w_{2}^{(t+26)} \oplus w_{2}^{(t+56)} \oplus w_{2}^{(t+91)} \oplus w_{2}^{(t+96)} \oplus\left[\right.$ Nonlinear part $\left.W^{(t+2)}\right]$.

Application for Grain128-AEAD

By summing we delete all linear variables from NFSR.

$$
\sum_{j \in Z} y^{(t+j)}=\sum_{j \in Z} u_{93}^{(t+j)} \oplus \sum_{j \in Z} h(\ldots) \oplus \sum_{i \in A}\left[\text { Nonlinear part } W^{\left(t_{i}\right)}\right]
$$

with $Z=\{0,26,56,96,128\}, A=\{2,15,36,45,64,73,89\}$
Linear approximations

- The correlation between $h(\ldots)$ and its linear approximation $\delta \in$ $\left\{0,2^{-4},-2^{-4}\right\}$.
- Find linear approximation for [Nonlinear part $W^{\left(t_{i}\right)}$.
- Finally we find more 2^{24} Linear approximations with correlation not less 2^{-54}

Conclusion

Our attack result

The fast correlation attack will restore the true initial state

- with a probability equal to 0.9 with $\beta=20$ fixed bits while the total complexity is $O\left(2^{113}\right)$,
- with $\beta=21$ the probability of successful completion of the attack is approximately 0.8 , the total complexity is $O\left(2^{113}\right)$.

