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Exhaustive search

I Cryptanalytic attacks based on exhaustive search need a
lot of computing power or a lot of time to complete.

I When the same attack has to be carried out multiple
times, it may be possible to execute the exhaustive search
in advance and store all results in memory.

I Once this precomputation is done, the attack may be
carried out almost instantly. Unfortunately, this method
cannot be realizable practically because of the large
amount of memory needed.
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Time-memory trade-off

I In 1980 Martin Hellman described a cryptanalytic
time-memory trade-off which reduces the time of
cryptanalysis by using precalculated data stored in memory.

I For a cryptosystem having N keys this method recovers a
key in N2/3 operations using N2/3 words of memory.

I The typical application of this method is the recovery of a
key in cases when the password hash or the
plaintext-ciphertext pair are known.

I The time-memory trade-off is a probabilistic method.
Success is not guaranteed and the success probability
depends on the amount of time and memory available.
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Hellman method

P0 — given fixed plaintext,
C0 — corresponding ciphertext,
X — key space, |X | = N , K ∈ X ,
R — reduction function which creates
a new key from a cipher text.

f(K) = R(SK(P0))

Construction of the function f

The method tries to find the key K which was used to encipher the
plaintext using the cipher S:

C0 = SK(P0),

and tries to generate all possible ciphertexts in advance by enciphering
the plaintext with all N possible keys.
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Time-memory tradeoff table

The ciphertexts are organised in chains:

SPi = Xi,0
f−→ Xi,1

f−→ . . .
f−→ Xi,t = EPi, 1 ≤ i ≤ m,

Xi,j+1 = f(Xi,j) = R(SXi,j
(P0)).

m chains of length t are created and their first and last elements
(SPi,EPi), 1 ≤ i ≤ m, are stored in the table.

The starting points SP1, . . . ,SPm are randomly chosen from X .
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The probability of success

M.E. Hellman had shown that the chance of finding a key by using a
table of m rows and t keys in the row is the following:
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Coverage rate

Let F : XN → XN be a random function

Fu = F (. . . F (F (·))) be the u-times iteration of F

D0, Ds, Dt ⊂ XN , Dk = F k(D0), k = 1, 2, . . .,

D̄0 ⊂ D0, D̄s ⊂ Ds

15

Lemma 9 Let t � s� u� v be a sum of non-negative integers and choose a set of
random points D0 � � of size m0. For each z � Dt � Ft�D0�, randomly choose
a w � D0 such that Ft�w� � z. The collection of the chosen pre-images w will be
called D̄0. Then, the number of points that are Fu-equivalent to points of D̄s �Fs�D̄0�
is expected to be
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Proof The diagram below may be of help in following through this proof.

w x y zFs Fu FvD̄0 D̄s D̄t

D0 Ds
�Dt

Consider the intermediate image set Ds � Fs�D0� and let ms be its size. Since we
are taking F to be a random function, Ds is a set of random points from � . So, by
Lemma 7, the expected number of �Fu�v
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and our discussion so far shows that this may be computed through
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This is equal to the following sequence of equations.

N ∑
i

1
i

�
1�

�
1�

ms
N

�i�
∑
k

��
x� �

u�x�
�
�
�

k�1 ∑
j
�� �

v�x�� j�1 �
�
�u�x� j�1�

i�k

� N ∑
i

1
i

�
1�

�
1�

ms
N

�i�
∑
k

��
x� �

u�x�
�
�
�

k�1 �
�
�

�

v��u�x��
�

i�k

x = F s(w), y = Fu(x), z = F ν(y)
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Distinguished points

The Martin Hellman technique was improved by Rivest before 1982 with
the introduction of distinguished points which drastically reduces the
number of memory lookups during cryptanalysis.

Denning D. E., Cryptography and Data Security, Addison-Wesley, 1982,
419 pp.:

This suggestion greatly reduces the number of memory lookups!

This improved technique has been studied extensively but no new
optimisations have been published until 2003.
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Rainbow tables

The main limitation of the original Hellman scheme is the fact that when
two chains collide in a single table they merge.
In 2003 Philippe Oechslin has proposed a new way of precalculating the
data which reduces by two the number of calculations needed during
cryptanalysis.

f(K) = R(SK(P0)),
R1, R2, . . . , Rt : XN → XN — reduction functions

Rt(f)

length t

m

Start Points End Points

R1(f)

R1(f)

R1(f)

R2(f)

R2(f)

R2(f)

Rt(f)

Rt(f)

Fig. 6. Oechslin’s Rainbow Matrix

Oechslin [12] recently suggested an improved time/memory tradeoff scheme. Oechslin’s idea is to use
Hellman’s original suggestion with the same fi functions, but during the computation of a chain,
every value is calculated using a different fi, as is depicted in Figure 6. The resulting matrix is
called a Rainbow matrix. A Rainbow matrix induces a more efficient coverage of the search space
by reducing the effect of collisions among the chains of the matrix. While in Hellman’s method if
the same value appears in two different chains of the same matrix, the chains merge, and one chain
does not contribute to the coverage from merger point and on. However, in a Rainbow matrix, the
same value must appear in two chains in the same column for a similar effect. Analysis shows that
a collision in the same column of the matrix is not likely to occur as long as mt ≈ N , therefore, a
single Rainbow matrix has a coverage comparable to t Hellman matrices of the same length.

However, searching a Rainbow matrix takes about t/2 longer than searching in a single Hellman
matrix. As only one Rainbow matrix is needed compared to t Hellman matrices, the result is that
a Rainbow scheme save a factor 1/2 of the time complexity in the worst case. In the average case
(and assuming f(x) is always covered by the tables), searching a single Rainbow matrix is four times
faster than searching t Hellman matrices.

While in Hellman’s scheme the effort of searching another column of the matrix is a single
application of f , in the Rainbow scheme this is not the case. In the Rainbow scheme, for column
i, f(x) is transformed to fi(x) (by application of Ri on f(x)), and the chain is continued until the
end point, i.e., ft(ft−1(· · · (fi+1(fi(x))) · · · )) is computed. Therefore, f is evaluated for t − i times
for column i. The worst-case time complexity is T =

�t
i=1(t − i) ≈ t2/2.

B A Time/Memory Tradeoff with Hidden State that Depends Only on
the Previous Values in the Chain

The time/memory tradeoff scheme: We choose xi = yi−1+si−1 (mod N). We choose si = si−1+yi−1

(mod S), where S is the number of hidden states. The hidden state S is chosen to be equal to the
chain length. The rest of the details are similar to Hellman’s scheme.

Analysis similar to the other tradeoffs results in a TM 2 = N2 tradeoff curve. We have sim-
ulated this tradeoff and verified that it gives similar performance compared to Hellman’s original
time/memory tradeoff.

We can convert the time/memory tradeoff to a time/memory/data tradeoff by reducing the
hidden state from the chain length to the chain length divided by D, as well as reducing the number
of memory rows by a factor of D. The resulting tradeoff is TM 2D2 = N2.

C Stretching Distinguished Points — An Algorithm for Time/Memory
Tradeoff with Deeper Preprocessing

The main observation behind this algorithm is that most of the time complexity of the algorithm
is spent on wrong guesses of the hidden state. Therefore, there are two effective ways to reduce the
time complexity: reduce the number of hidden states, and reduce the time that is spent on wrong
guesses of the hidden state.
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Moreover, since the method does not make use of distinguished points, it
reduces the overhead due to the variable chain length, which again
significantly reduces the number of calculations.
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Mathematical model and heuristic estimate

F1, F2, . . . be a sequence of random independent equiprobable mappings
XN → XN , XN = {X1, . . . , XN}, |XN | = N.

S0 ⊂ XN , |S0| = m,

S1 = F1(S0), S2 = F2(F1(S0)), . . . , St = Ft(Ft−1(. . . (F1(S0)) . . .)),

Ψt = S1 ∪ S2 ∪ . . . ∪ St .

Heuristic estimate for the success probability of the Rainbow table
method: for any x ∈ XN , S0 ⊂ XN

P {x ∈ S0 ∪Ψt} ≈ 1−
t+1∏

i=1

(
1− mi

N

)
,

where m1 = |S0| = m, mi+1 = N
(

1− e−mi
N

)
for i > 1.
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Markov chains {ϕk}k>0 and {ζk}k>0

S0 ⊂ XN , |S0| = m, Sk = Fk(Sk−1), Ψk = ∪kj=1Sj , k > 1. (1)

ϕ0 = |S0|, ζ0 = 0, ϕk = |Sk|, ζk = |Ψk|, k > 1.

The transition probability matrix of the Markov chain {ϕk}k>0 has the
form

P = ‖pi,j‖Ni,j=1,

pi,j =





(
N
j

) (
j
N

)i j∑
u=0

(−1)u
(
j
u

) (
1− u

j

)i
, 1 6 j 6 i 6 N,

0, j > i.

The transition probability matrix of the Markov chain {(ϕk, ζk)}k>0 has
the form

Q = ‖q(i,r),(j,s)‖Ni,j,r,s=1,

q(i,r),(j,s) =




pi,j

(N−r
s−r )( r

j−s+r)
(N

j )
, 16j6i6N,

16r6s6min{N,r+j},

0 otherwise.
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Theorem 1 (A.M. Zubkov, A.A. Serov)

Let F1, F2, . . . be the random independent equiprobable mappings of the
set XN to itself, S0 ⊆ XN , |S0| = m, Sk = Fk(. . . (F1(S0)) . . .), k > 1.
For any element x ∈ XN , which does not depend on F1, F2, . . ., for all
1 6 k, m 6 N we have

m
N − C2

m
k
N2 6 P{x ∈ Sk |ϕ0 = m} < m

N − C2
m

k
N2 + m3k2

4N3 ,

mt
N − C2

t+1
3m2

2N2 < P {x ∈ Ψt | ϕ0 = m} < mt
N − C2

mC
2
t+1

1
N2 + m3(t+1)3

12N3 .

The following inequalities are valid also:

m− C2
m
k
N 6 M{ϕk |ϕ0 = m} < m− C2

m
k
N + m3k2

4N2 ,

mt− C2
t+1

3m2

2N <M {ζt | ϕ0 = m} < mt− C2
mC

2
t+1

1
N + m3(t+1)3

12N2 .
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Assertions

Assertion 1

If the images of the initial subset S0 ⊂ XN , |S0| = m, are calculated according
to the formulas (1), then the following identities are true:

P
{
|St| = m

∣∣ |S0| = m
}
=

(
m−1∏
q=1

(
1− q

N

))t

,

P
{
|St| = m− 1
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}
=

m

2

(
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(
1− m− 1

N

)t
)(

m−2∏
q=1

(
1− q

N

))t

.

Let p0(m) = P
{
|S1| = m

∣∣ |S0| = m
}
, p1(m) = P

{
|S1| = m− 1

∣∣ |S0| = m
}
.

From the Assertion 1 and
(
1−

∑k
i=1 xi

)
6
∏k

i=1(1− xi), xi ∈ [0, 1),
it follows, that

p0(m) ≥ 1− m(m− 1)

2N
, p1(m) ≥ m(m− 1)

2N
− m(m− 1)2(m− 2)

4N2
. (2)
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Consider the event

Am,t =

{
|S0| = m,

t−1⋂

k=0

{|Sk+1| ≥ |Sk| − 1}
}
.

From (2) for tm4 ≤ 4N2 it follows that

P{Am,t} > (p0(m) + p1(m))
t

≥
(

1− m(m− 1)2(m− 2)

4N2

)t
> 1− tm4

4N2
.

Thus, if m, t,N →∞, m < CN1/4, t = o(N), then P{Am,t} → 1.

Consider the auxiliary Markov chain {S∗k}∞k=0 with S∗0 = |S0| = m and
transition probabilities

P{S∗k+1 = j |S∗k = j} = p0(j),

P{S∗k+1 = j − 1 |S∗k = j} = 1− p0(j) = P{|Sk+1| ≤ j − 1 | |Sk| = j} ≥
≥ P{|Sk+1| = j − 1 | |Sk| = j}, j = 2, . . . ,m.
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So, for any nonincreasing sequence m0 = m ≥ m1 ≥ . . . ≥ mt ≥ 1 such
that max0≤k<t(mk −mk+1) ≤ 1 we have

P{S∗k = mk (1 ≤ k ≤ t) |S∗0 = m} ≥ P{|Sk| = mk (1 ≤ k ≤ t) | |S0| = m},
and P{S∗k = mk (1 ≤ k ≤ t) |S∗0 = m} = 0 otherwise. Thus

∑

m0=m≥m1≥...≥mt≥1
|P{S∗k = mk (1 ≤ k ≤ t) |S∗0 = m}

−P{|Sk| = mk (1 ≤ k ≤ t) | |S0| = m}|

= 2P

{
max
0≤k<t

(|Sk| − |Sk+1|) > 1

}
= 2(1−P{Am,t}),

that is if m, t and N tend to ∞ in such a way that P{Am,t} → 1, then
the total variation distance between the distributions of trajectories of
Markov chains {|Sk|}tk=0 and {S∗k}tk=0 tends to 0. Consequently, the
total variation distance between the distributions of any functions of
these trajectories tends to 0.
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Consider the random variables

Tn = min{k > 1: S∗k = n}, n = 1, . . . ,m.

If m,n,N →∞ in such a way that m is of the order N1/4 and
n = o(m), then

ETn =

m∑

j=n+1

1

1− λj
= 2N

(
1

n
− 1

m

)(
1 +O

(
n2

N

))
,

DTn =

m∑

j=n+1

λj
(1− λj)2

=
4N2

3

(
1

n3
− 1

m3

)
(1 + o(1)) ,

C3(n,m) =

m∑

j=n+1

E|δj −Eδj |3 < 10N3

(
1

n5
− 1

m5

)
.

If 0 < ε < n
m < 1− ε, then the Lyapunov ratio

C3(n,m)

(DTn)3/2
= O(n3·3/2−5) = O(n−1/2)

tends to 0 as N,m, n→∞, n = o(m).
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According to the Lyapunov theorem the distribution of Tn is
asymptotically normal with parameters (ETn,DTn).

The equalities {S∗t ≤ n} = {Tn ≤ t} allow to find the asymptotic
behavior of distribution of S∗t for N,m→∞, n = o(m), since

P

{
Tn −ETn√

DTn
≤ x

}
= P

{
Tn ≤ ETn + x

√
DTn

}

= P{S∗
ETn+x

√
DTn
≤ n} → Φ(x),

where Φ(x) is the standard normal distribution function.

Theorem 2

If m, n, t, N →∞ in such a way that m has the order N1/4 and
n = o(m), then for any fixed x ∈ R and

t = 2N

(
1

n
− 1

m

)
+ (1 + o(1))x

2N√
3

√(
1

n3
− 1

m3

)
,

the following relation is true:

P

{
|St| ≤

N

N/m+ t/2

}
→ Φ(x) .
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Avoine G., Junod P., Oechslin P. result

Hong J., “The cost of false alarms in Hellman and rainbow tradeoffs”, Designs,
Codes and Cryptography, 57:3 (2010), 293–327:

«We will use the closed form approximation

mk

N
≈ 1

N/m0 + k/2

which can be found1 in»

Avoine G., Junod P., Oechslin P., “Time-memory trade-offs: false alarm
detection using checkpoints”, Lect. Notes Comput. Sci., 3797 (2005), 183-196.

1The statement in the referenced paper is somewhat different, but this it due to multiple typographic
errors. The version presented here can easily be obtained by following their proofs.
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Thank you for attention!
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