
An Authentication Language for 
Blockchain Based on 

Σ-Protocols Enhanced by 
Boolean Predicates

 

Alexander Chepurnoy

Ergo Platform and IOHK Research



Cash money: no protection!



Cryptocurrencies: Protection!

pubkey_A



Bitcoin Transaction



Bitcoin Script
• Coin is an object created by an user

• Protected by a script

• Interpreter is to be run by anyone (against 
non-interactive proof to be included into the 
blockchain)



Authentication Language
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Bitcoin Script
• A program is in stack-based language

• Proof is in the same language too

• Context is some meta-info on spending 
transaction & blockchain

• Cryptographic statements: 
OP_CHECKSIG, OP_CHECKMULTISIG, 
OP_HASH256 (and few others)



Bitcoin Script

Output script (proposition): 
OP_DUP 
OP_HASH160 <pubKeyHash> 
OP_EQUALVERIFY 
OP_CHECKSIG

Input script (proof): 
<sig> 
<pubkey>

Output: true if no failure during execution and 
top stack element is non-zero, false otherwise



Bitcoin Script Problems 

• High-level cryptographic statements are fixed
(to add ring or threshold signatures, hard-fork is 
needed)

• Limited support for cryptographic protocols

• The language was designed with no systematic 
approach, very limited, but many instructions were 
found problematic (DoS attacks / security issues) and 
switched off

• No tooling



Motivation

• More powerful language than the Bitcoin Script

• Still simple

• Efficiency: only parts of the blockchain which can be 
queried efficiently should be queried

• Safety guarantee: verification time for any script must 
be no more than a predefined constant C

• Tooling-friendly 



Related Work

• Smart signatures languages 
(Simplicity, DEX, Σ-State)

• Safer “Turing-complete” languages 
(Plutus, Michelson, IELE etc)



Σ–State (Ergo Platform)
• Native cryptographic protocols

• Efficient execution (lean state, prover pays if 
something above a trivial level is needed)

• Simple model

• Provably bounded



Schnorr Protocol (a Σ–Protocol)

• For publicly known value h (in group G with 
known generator g), the prover is proving 
that there exists w, such as gw = h (in ZK)

• Prover commits to random r by sending a=gr

• Verifier samples a random challenge e={0,1}t

• Prover computes z = r+ew

• Verifier accepts iff gz = a*he



Generalized Schnorr Proofs
• subclass of Σ-protocols(ZKPoK protocols) for dlog 

statements

• composable (OR, AND, k-out-of-n)

• possible to turn into signatures by using Fiat-
Shamir transformation

• efficient (Schnorr signature scheme in a simplest 
case) 



Example 1: 

• height > 100 \/ dlog_g x

“if height of a block to which a spending transaction is 
included > 100, output is spendable by anyone, before 
that output is spendable to a party presenting (zero-
knowledge) proof a knowledge such w that gw=x”

• (height > 100 /\ dlog_g x1) \/ (dlog_g x1 /\ dlog x2)

“output could be spent anytime by proof of knowledge of 
both x1 and x2, after block#100 it could be also spent by 
proof of x1 knowledge” 
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Example 2: 

(h < 5 /\ dlog_g x1) \/ (h >= 5 /\ dlog x2)



Σ–State

• combines cryptographic statements with predicates 
over context with /\ , \/ , k-out-of-n connectives

• 2-phase interpretation on both prover/verifies sides: 
first the composite logic formula to be reduced to one 
contains only connectives and cryptographic 
statements by evaluating state predicates, then prover 
generates a proof for the cryptographic formula, 
verifier checks it

• In non-interactive setting (e.g. blockchain) the proof is 
to be turned into a signature by using Fiat-Shamir



Generating a signature

coin
Context Secrets
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Proof (Signature)



Verifying:

coin

guard condition

Context
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Proof
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Bitcoin on Steroids: An Easy Way

Bitcoin: state is just about spending transaction bytes, 
block height & timestamp (for CLTV) + prover arguments

Enhancing the context: height, coins the spending 
transaction spends and creates, UTXO snapshot root 
hash, prover arguments

An output has additional data registers.  



Crowdfunding Example

• outputs

• (height >= 100 /\ dlog x1) \/ 
(height < 100 /\ exists(outputs, 
     amount >= 100000 /\ proposition = dlog x2)

“coin could be spent by a crowdfunding transaction if it pays at 
least 100000 tokens to x2 public key holder raising funds 
before block #100, or getting back to x1 after that”  



And More Applications:
• Demurrage currency

• Oracles

• Better mixers

• Turing-complete systems (Rule 110)



And More:
• Our expressions are typeable, so not well-formed 

expressions (like “h>”) are rejected early

• As context is fully deterministic, it is possible to get 
upper-bound for verification cost, and reject too 
heavy expressions early   



Cryptography
• Ring and threshold signatures for free, but may be not 

efficient(verification time and signature size are linear 
to size of the ring)

• We can include special efficient Σ-protocols (e.g. 
Groth-Kohlweiss ring signatures from EuroCrypt’2015)

• To have ability to update cryptographical statements 
set, languages like ZKPDL (Meiklejohn et al. 
USENIX’2010) could be used  



Open Questions
• No any standards for generalized 
Schnorr proofs

• Could the authentication language be 
useful outside the blockchain?   



Links
• A paper is coming

• Interpreter is online 

https://github.com/ScorexFoundation/sigmastate-int
erpreter
 

https://github.com/ScorexFoundation/sigmastate-interpreter
https://github.com/ScorexFoundation/sigmastate-interpreter


Questions?
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