
An Authentication Language for
Blockchain Based on

Σ-Protocols Enhanced by
Boolean Predicates

Alexander Chepurnoy

Ergo Platform and IOHK Research

Cash money: no protection!

Cryptocurrencies: Protection!

pubkey_A

Bitcoin Transaction

Bitcoin Script
• Coin is an object created by an user

• Protected by a script

• Interpreter is to be run by anyone (against
non-interactive proof to be included into the
blockchain)

Authentication Language

coin

guard program

Context

Interpreter

Proof
+ Public inputs

True/False

Bitcoin Script
• A program is in stack-based language

• Proof is in the same language too

• Context is some meta-info on spending
transaction & blockchain

• Cryptographic statements:
OP_CHECKSIG, OP_CHECKMULTISIG,
OP_HASH256 (and few others)

Bitcoin Script

Output script (proposition):
OP_DUP
OP_HASH160 <pubKeyHash>
OP_EQUALVERIFY
OP_CHECKSIG

Input script (proof):
<sig>
<pubkey>

Output: true if no failure during execution and
top stack element is non-zero, false otherwise

Bitcoin Script Problems

• High-level cryptographic statements are fixed
(to add ring or threshold signatures, hard-fork is
needed)

• Limited support for cryptographic protocols

• The language was designed with no systematic
approach, very limited, but many instructions were
found problematic (DoS attacks / security issues) and
switched off

• No tooling

Motivation

• More powerful language than the Bitcoin Script

• Still simple

• Efficiency: only parts of the blockchain which can be
queried efficiently should be queried

• Safety guarantee: verification time for any script must
be no more than a predefined constant C

• Tooling-friendly

Related Work

• Smart signatures languages
(Simplicity, DEX, Σ-State)

• Safer “Turing-complete” languages
(Plutus, Michelson, IELE etc)

Σ–State (Ergo Platform)
• Native cryptographic protocols

• Efficient execution (lean state, prover pays if
something above a trivial level is needed)

• Simple model

• Provably bounded

Schnorr Protocol (a Σ–Protocol)

• For publicly known value h (in group G with
known generator g), the prover is proving
that there exists w, such as gw = h (in ZK)

• Prover commits to random r by sending a=gr

• Verifier samples a random challenge e={0,1}t

• Prover computes z = r+ew

• Verifier accepts iff gz = a*he

Generalized Schnorr Proofs
• subclass of Σ-protocols(ZKPoK protocols) for dlog

statements

• composable (OR, AND, k-out-of-n)

• possible to turn into signatures by using Fiat-
Shamir transformation

• efficient (Schnorr signature scheme in a simplest
case)

Example 1:

• height > 100 \/ dlog_g x

“if height of a block to which a spending transaction is
included > 100, output is spendable by anyone, before
that output is spendable to a party presenting (zero-
knowledge) proof a knowledge such w that gw=x”

• (height > 100 /\ dlog_g x1) \/ (dlog_g x1 /\ dlog x2)

“output could be spent anytime by proof of knowledge of
both x1 and x2, after block#100 it could be also spent by
proof of x1 knowledge”

∧ ∧

∨

h < 5 dlog
g
 x

1
h ≥ 5 dlog

g
 x

2

h=4

dlog
g
 x

1

Example 2:

(h < 5 /\ dlog_g x1) \/ (h >= 5 /\ dlog x2)

Σ–State

• combines cryptographic statements with predicates
over context with /\ , \/ , k-out-of-n connectives

• 2-phase interpretation on both prover/verifies sides:
first the composite logic formula to be reduced to one
contains only connectives and cryptographic
statements by evaluating state predicates, then prover
generates a proof for the cryptographic formula,
verifier checks it

• In non-interactive setting (e.g. blockchain) the proof is
to be turned into a signature by using Fiat-Shamir

Generating a signature

coin
Context Secrets

(Priv. Key)

guard condition

Prover

Proof (Signature)

Verifying:

coin

guard condition

Context

Interpreter

Proof
(Signature)

True/False

Bitcoin on Steroids: An Easy Way

Bitcoin: state is just about spending transaction bytes,
block height & timestamp (for CLTV) + prover arguments

Enhancing the context: height, coins the spending
transaction spends and creates, UTXO snapshot root
hash, prover arguments

An output has additional data registers.

Crowdfunding Example

• outputs

• (height >= 100 /\ dlog x1) \/
(height < 100 /\ exists(outputs,
 amount >= 100000 /\ proposition = dlog x2)

“coin could be spent by a crowdfunding transaction if it pays at
least 100000 tokens to x2 public key holder raising funds
before block #100, or getting back to x1 after that”

And More Applications:
• Demurrage currency

• Oracles

• Better mixers

• Turing-complete systems (Rule 110)

And More:
• Our expressions are typeable, so not well-formed

expressions (like “h>”) are rejected early

• As context is fully deterministic, it is possible to get
upper-bound for verification cost, and reject too
heavy expressions early

Cryptography
• Ring and threshold signatures for free, but may be not

efficient(verification time and signature size are linear
to size of the ring)

• We can include special efficient Σ-protocols (e.g.
Groth-Kohlweiss ring signatures from EuroCrypt’2015)

• To have ability to update cryptographical statements
set, languages like ZKPDL (Meiklejohn et al.
USENIX’2010) could be used

Open Questions
• No any standards for generalized
Schnorr proofs

• Could the authentication language be
useful outside the blockchain?

Links
• A paper is coming

• Interpreter is online

https://github.com/ScorexFoundation/sigmastate-int
erpreter

https://github.com/ScorexFoundation/sigmastate-interpreter
https://github.com/ScorexFoundation/sigmastate-interpreter

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

