NN AN TN AN S e S se
Y e Y SRS
R Mo Pt uanm 51 RSN
N ware just Plain Old Bugs s —
S
- Markku-Juhani O. Saarinen NON
& _ S\ <mjosemjos. fi> < \ﬁ% >

g

N £ D Uob 1339 7 teseraktio 2 D ‘*, .
y " N R S . T T . ’ ”

8 _, N ~ P.O. Box 1339,‘(‘281 Q\B\Z, Camridge,‘U &)
< B\ Y e e

.) o - o - o N~
= % CTCrypt 2018 Rump Session g .
B it T e T o i >

=\ Suzdal, Russia - Ma.y 28,2018 X
- . V \ -

NIST Post-Quantum Cryptography Project

THE PROJECT EXISTS

An attempt to identify new Public Key Encryption IN A STMULTANEOUS

.. . : g STATE OF BEING BOTH
and Digital Signature algorithms that are resistant TOTALLY SUCCESSFUL
to attacks with quantum computers of the future. A STARTED.

» 20.12.2016: Call for proposals released.

» 30.11.2017: Candidate submission deadline.
» 21.12.2017: 82 69 submissions accepted.
| 2

11-13.04.2018: Standardization conference. CANT THATS
. OBSERVE A TRICKY
- - We are here. Candidates are out. - - IT? QUESTION.

v

2018 / 2019: Round 2 begins.
2020 / 2021: Round 3 begins.
» 2022 / 2024: Draft standards available.

v

BIG QUAKE, BIKE, CFPKM, Classic McEliece,
Compact LWE, CRYSTALS-DILITHIUM, CRYSTALS-
KYBER, DAGS, Ding KEX, DME, DRS, DualModeMS,
Edon-K, EMBLEM, FALCON, FrodoKEM, GeMSS,
Giophantus, Gravity-SPHINCS, Guess Again,
Gui, HILA5, HIMQ-3, HK17, HQC, KINDI, LAC,
LAKE, LEDAkem, LEDApkc, Lepton, LIMA, Lizard,
LOCKER, LOTUS, LUOV, McNie, Mersenne-756839,
MQDSS, NewHope, NTRUEncrypt, NTRU-HRSS-
KEMf, NTRU Prime, NTS-KEM, Odd Manhattan,
OKCN/AKCN/CNKE, Quroboros-R, Picnic, pgN-
TRUSIign, pgRSA encryption, pqRSA signature,
pgsigRM, QC-MDPC KEM, gTESLA, RaCoSS, Rain-
bow, Ramstake, RankSign, RLCE-KEM, Round?2,
RQC, RVB, SABER, SIKE, SPHINCS+, SRTPI, Three
Bears, Titanium, WalnutDSA

14 broken or withdrawn. 7 amended with tweaks.

First Round PQC Candidates: Analysis is ongoing..

Ugh, that's 3165 pages of specs.
Also, 100+ C implementations!

Foor 'Shooﬁng

Prevention Agreem ent

1, , promise that once
Your Name
T see how simple really is, T will
not implement it in production code
even though it would be really fun.

This agreement shall be in effecr
until the underaigncd creates a
mcaningﬁd interpretive dance that
compares and contrasts cache-based,
timing, and other side channel arracks
and rheir countermeasures.

4

Signature Dare

3/8

Useful checks #1: If | decrypt that, do | get the same message back ?

NTRU KEM 1024, a rather prominent candidate, can’t decrypt what it encrypts.

NTRUEncrypt/Reference_Implementation/ntru-kem-1024/NTRUEncrypt.c:

r

274 /* extract the last bit of rh */
275 for (i=0;i<LENGTH_OF_HASH*2;i++)
276 {

277 seed[i] = (rh[ix*8] & 1);

278 for (j=1;3j<8;j++);

279 {

280 seed[i] <<= 1;

281 seed[i] += (rh[i*8+j] & 1);
282 ¥

283 }

Can you spot the bug ? This one created a compiler warning. There probably others,
as we still don’t have a patch for this. The KAT test vectors are of course useless too.

Useful checks #2: How many bits does my secret key actually have ?

If you claim “n-bit security”, then your secret key should have at least n bits, right ?
.. so | implemented a simple bit-bias entropy tester for KEM shared secrets ..

.. and some candidates failed it. For example AKCN-MLWE has only 248 bits of
classical security because ..

$ grep "ss = " OKCN_AKCN_CNKE/KAT/kem/AKCN-MLWE/PQCkemKAT_288.rsp
ss = 6FD6A1CB8BB6C649ED78B252158C0O8E9FBB26BE98866B59C18A6746DF3C85700
2E7C87B16678DA8BE9218D17EF717D8ABC5271F610B63A3A34A3F50A814646300

996C9EF62A0D10C288364B649A2725D5EA7T52AAABEB1A2E60FBSACO6B6BFABOO
. the last byte is always zero =~

SS

SS

OKCN_AKCN_CNKE/Reference_Implementation/kem/AKCN-MLWE/ref/parameter.h:

31 | #define Z_SEED_BYTES 32
32 | #define MATRIX_SEED_BYTES 32
33 | #define NOISE_SEED_BYTES 31 // Why ?! (Works if I set fhis to 32)

5/8

Useful checks #3: Try Flipping a Random Bit!

Alice Bob
(PK, SK) <+ KeyGen() PK
CT (CT, K) < Encaps(PK)
K < Decaps(SK, CT)

We tested flipping a single bit in PK or CT and observing the difference in K.

Alice Mallory Bob
| i
PK ' PK® 2 (s IO
‘ P J
CTe2 CT [ﬁ
KA ~ KB

In AKCN and OKCN candidates the Hamming distance (Ka, Kg) was often one bit..

6/8

Useful checks #4: Where does my algorithm spend all of its time ?

This happened to me. In NIST benchmarking, HILA5 spends 90 % of its time in the
only part of the code that is not mine, the stupid random number generator.

FinalAPIdocs09252017/rng.c from NIST:

125 if (! (ctx = EVP_CIPHER_CTX_new())) handleErrors(); // allocate memory

126

127 if (1 != EVP_EncryptInit_ex(ctx, EVP_aes_256_ecb (), NULL, key, NULL))

128 handleErrors () ; // (full key schedule - 95% of time here)

129

130 if (1 !'= EVP_EncryptUpdate(ctx, buffer, &len, ctr, 16))

131 handleErrors () ; // (single block operation, 16 bytes)

132

133 ciphertext_len = len; // (both are unused, but hey I’m NIST)

134

135 EVP_CIPHER_CTX_free (ctx); // (destroy expanded key for no reason)
\

HILAS was 7.0x faster after | replaced this with a version that does NOT re-do full
key schedule for each output block. Significant speedups also for other candidates.

7/8

So how about those timing attacks and other side-channel features ?

Only a minority of designers have considered side-channel attacks at all.

Implementation attacks will remain the easiest way to break PQC algorithms too.

8/8

