
(Most) Post-Quantum Bugs(Most) Post-Quantum Bugs
are just Plain Old Bugsare just Plain Old Bugs

Markku-Juhani O. SaarinenMarkku-Juhani O. Saarinen
<mjos@mjos.fi><mjos@mjos.fi>

Lab 1339 / teserakt.ioLab 1339 / teserakt.io

P.O. Box 1339, CB1 0BZ, Cambridge, UKP.O. Box 1339, CB1 0BZ, Cambridge, UK

CTCrypt 2018 Rump SessionCTCrypt 2018 Rump Session
Suzdal, Russia – May 28, 2018Suzdal, Russia – May 28, 2018

1 / 8



NIST Post-Quantum Cryptography Project

An attempt to identify new Public Key Encryption
and Digital Signature algorithms that are resistant
to attacks with quantum computers of the future.
I 20.12.2016: Call for proposals released.
I 30.11.2017: Candidate submission deadline.
I 21.12.2017: 82 69 submissions accepted.
I 11-13.04.2018: Standardization conference.

– – We are here. Candidates are out. – –
I 2018 / 2019: Round 2 begins.
I 2020 / 2021: Round 3 begins.
I 2022 / 2024: Draft standards available.

2 / 8



First Round PQC Candidates: Analysis is ongoing..
BIG QUAKE, BIKE, CFPKM, Classic McEliece,
Compact LWE, CRYSTALS-DILITHIUM, CRYSTALS-
KYBER,DAGS, Ding KEX,DME, DRS, DualModeMS,
Edon-K, EMBLEM, FALCON, FrodoKEM, GeMSS,
Giophantus, Gravity-SPHINCS, Guess Again,
Gui, HILA5, HiMQ-3, HK17, HQC, KINDI, LAC,
LAKE, LEDAkem, LEDApkc, Lepton, LIMA, Lizard,
LOCKER, LOTUS, LUOV,McNie, Mersenne-756839,
MQDSS, NewHope, NTRUEncrypt, NTRU-HRSS-
KEMf, NTRU Prime, NTS-KEM, Odd Manhattan,
OKCN/AKCN/CNKE, Ouroboros-R, Picnic, pqN-
TRUSign, pqRSA encryption, pqRSA signature,
pqsigRM, QC-MDPC KEM, qTESLA, RaCoSS, Rain-
bow, Ramstake, RankSign, RLCE-KEM, Round2,
RQC, RVB, SABER, SIKE, SPHINCS+, SRTPI, Three
Bears, Titanium,WalnutDSA

14 broken or withdrawn. 7 amended with tweaks.

Ugh, that’s 3165 pages of specs.
Also, 100+ C implementations!

3 / 8



Useful checks #1: If I decrypt that, do I get the same message back ?

NTRU KEM 1024, a rather prominent candidate, can’t decrypt what it encrypts.

NTRUEncrypt/Reference_Implementation/ntru-kem-1024/NTRUEncrypt.c:� �
274 /* extract the last bit of rh */
275 for (i=0;i<LENGTH_OF_HASH *2;i++)
276 {
277 seed[i] = (rh[i*8] & 1);
278 for (j=1;j<8;j++);
279 {
280 seed[i] <<= 1;
281 seed[i] += (rh[i*8+j] & 1);
282 }
283 }� �
Can you spot the bug ? This one created a compiler warning. There probably others,
as we still don’t have a patch for this. The KAT test vectors are of course useless too.

4 / 8



Useful checks #2: How many bits does my secret key actually have ?
If you claim “n-bit security”, then your secret key should have at least n bits, right ?

.. so I implemented a simple bit-bias entropy tester for KEM shared secrets ..

.. and some candidates failed it. For example AKCN-MLWE has only 248 bits of
classical security because ..

$ grep "ss = " OKCN_AKCN_CNKE/KAT/kem/AKCN-MLWE/PQCkemKAT_288.rsp
ss = 6FD6A1CB8BB6C649ED78B252158C08E9FBB26BE98866B59C18A6746DF3C85700
ss = 2E7C87B16678DA8E9218D17EF717D8ABC5271F610B63A3A34A3F50A814646300
ss = 996C9EF62A0D10C288364B649A2725D5EA752AAA8EB1A2E60FB5AC06B6BFAB00

.. the last byte is always zero ^^

OKCN_AKCN_CNKE/Reference_Implementation/kem/AKCN-MLWE/ref/parameter.h:� �
31 #define Z_SEED_BYTES 32
32 #define MATRIX_SEED_BYTES 32
33 #define NOISE_SEED_BYTES 31 // Why ?! (Works if I set fhis to 32)� �

5 / 8



Useful checks #3: Try Flipping a Random Bit!
Alice Bob

(PK, SK)← KeyGen() PK−−−→
CT←−−− (CT,K)← Encaps(PK)

K← Decaps(SK,CT)

We tested flipping a single bit in PK or CT and observing the difference in K .

Alice Mallory Bob

PK−−−→ PK⊕ 2i−−−−−−−→
CT⊕ 2j←−−−−−−− CT←−−−

KA ≈ KB

In AKCN and OKCN candidates the Hamming distance (KA,KB) was often one bit..

6 / 8



Useful checks #4: Where does my algorithm spend all of its time ?
This happened to me. In NIST benchmarking, HILA5 spends 90 % of its time in the
only part of the code that is not mine, the stupid random number generator.

FinalAPIdocs09252017/rng.c from NIST:� �
125 if(!(ctx = EVP_CIPHER_CTX_new ())) handleErrors (); // allocate memory
126
127 if(1 != EVP_EncryptInit_ex(ctx , EVP_aes_256_ecb (), NULL , key , NULL))
128 handleErrors (); // (full key schedule - 95% of time here)
129
130 if(1 != EVP_EncryptUpdate(ctx , buffer , &len , ctr , 16))
131 handleErrors (); // (single block operation , 16 bytes)
132
133 ciphertext_len = len; // (both are unused , but hey I’m NIST)
134
135 EVP_CIPHER_CTX_free(ctx); // (destroy expanded key for no reason)� �
HILA5 was 7.0× faster after I replaced this with a version that does NOT re-do full
key schedule for each output block. Significant speedups also for other candidates.

7 / 8



So how about those timing attacks and other side-channel features ?

Only a minority of designers have considered side-channel attacks at all.

Implementation attacks will remain the easiest way to break PQC algorithms too.

8 / 8


