
1/33

On the Way of Constructing 2n-Bit Permutations
from n-Bit Ones

Denis Fomin

National Research University Higher School of Economics, Russia
dfomin@hse.ru

June 4, 2019



2/33

What’s a permutation?

Permutation (or S-Box) is one of the basic components of modern symmetric key
cryptography
Permutation is a bijective (generally nonlinear) function over F2n

Using S-Boxes is one of the well studied ways to hide the connection between the key
and plain text (or provide Shannon’s confusion)
S-Boxes are utilized to provide the only nonlinear part of the symmetric key
cryptography



3/33

How to choose permutations? Part I. Requirements for Security

The security of the symmetric key cryptography functions strongly depends on the
properties of the used permutations
Permutations should be carefully chosen to resist linear, differential and algebraic
cryptanalysis
Cryptographic properties of permutations affects their resistance
towards known methods of cryptanalysis



4/33

Cryptographic properties of permutations

Definition
The Walsh-Hadamard Transform (WHT) WS

a,b of a function S for fixed values a ∈ F2n ,
b ∈ F2m is defined as follows: WS

a,b =
∑

x∈F2n

(−1)〈a,x〉⊕〈b,S(x)〉.

Definition
The linearity LS of a S is defined as follows: LS =

1
2 max
a,b6=0
|WS(a, b)| .

The nonlinearity of a function S is denoted by NS and defined by: NS = 2n−1 − LS.

An S-Box with larger nonlinearity has better resistance against linear cryptanalysis.



5/33

Cryptographic properties of permutations

Definition
The algebraic degree deg(S) of a function S is the minimum among all maximum
numbers of variables of the terms in the algebraic normal form (ANF) of 〈a, S(x)〉 for all
possible values x and a 6= 0: deg(S) = min

a∈F2m\0
deg (〈a, S(x)〉) .

Definition
For a given a ∈ F2m/0, b ∈ F2m we consider

δS(a, b) = # {x ∈ F2n|S(x⊕ a)⊕ S(x) = b} .
The differential uniformity of an S-Box S is δS = max

a∈F2m\0,b
δS(a, b).

An S-Box with smaller differential uniformity has the better resistance against
differential cryptanalysis.



6/33

How to choose permutations? Part II. Implementation Requirements

Software Implementation

Precomputed tables (rather fast if they’re small enough)
Bit-sliced implementation (generally faster, secure against cache timing attacks)

Hardware Implementation

FPGA and ASIC implementation (the smaller nonlinear part the better)



7/33

Ways to construct a permutation

There are several well known ways of building S-Boxes S : F28 7→ F28:
Pseudorandom generation.
Differential uniformity and nonlinearity δS ≤ 8,NS ≤ 100. But complex interpolation
polynomial and a huge amount of such a permutation.

Heuristic methods.
Differential uniformity and nonlinearity are up to δS = 6, NS = 104.
Complex interpolation polynomial, huge amount of such a permutation but hard to
find.
Algebraic constructions.
The best and well-known example – monomial permutations. Finite field inversion
has best known differential uniformity and nonlinearity: δS = 4, NS ≤ 112. Simple
interpolation polynomial, not many permutations. But finite inversion has a weakens:
there exists systems of quadratic equations
(graph algebraic immunity is equal to 2).



7/33

Ways to construct a permutation

There are several well known ways of building S-Boxes S : F28 7→ F28:
Pseudorandom generation.
Differential uniformity and nonlinearity δS ≤ 8,NS ≤ 100. But complex interpolation
polynomial and a huge amount of such a permutation.
Heuristic methods.
Differential uniformity and nonlinearity are up to δS = 6, NS = 104.
Complex interpolation polynomial, huge amount of such a permutation but hard to
find.

Algebraic constructions.
The best and well-known example – monomial permutations. Finite field inversion
has best known differential uniformity and nonlinearity: δS = 4, NS ≤ 112. Simple
interpolation polynomial, not many permutations. But finite inversion has a weakens:
there exists systems of quadratic equations
(graph algebraic immunity is equal to 2).



7/33

Ways to construct a permutation

There are several well known ways of building S-Boxes S : F28 7→ F28:
Pseudorandom generation.
Differential uniformity and nonlinearity δS ≤ 8,NS ≤ 100. But complex interpolation
polynomial and a huge amount of such a permutation.
Heuristic methods.
Differential uniformity and nonlinearity are up to δS = 6, NS = 104.
Complex interpolation polynomial, huge amount of such a permutation but hard to
find.
Algebraic constructions.
The best and well-known example – monomial permutations. Finite field inversion
has best known differential uniformity and nonlinearity: δS = 4, NS ≤ 112. Simple
interpolation polynomial, not many permutations. But finite inversion has a weakens:
there exists systems of quadratic equations
(graph algebraic immunity is equal to 2).



8/33

What if we combine the ways?



9/33

Ways to construct a permutation using a special structure

There are a lot of well-studied ways to construct permutations using functions of smaller
dimensions:

Feistel network1 (CRYPTON v0.5, Zorro)
Misty network1 (Mysty, Kasumi, Fantomas)
Lai-Massey construction (Whirpool)
The ones where the XORs have been replaced by finite field multiplications2

SPN network (Iceberg, Khazard, Crypton v1.0)
Some other constructions3

1Construction of Lightweight S-Boxes using Feistel and MISTY structures (Full Version).
Anne Canteaut and Sébastien Duval and Gaëtan Leurent. eprint.iacr.org/2015/711

2On some methods for constructing almost optimal S-Boxes and their resilience against
side-channel attacks. Reynier Antonio de la Cruz Jiménez. eprint.iacr.org/2018/618

3Differentially 4-Uniform Permutations with the Best Known Nonlinearity from Butterflies.
Shihui Fu and Xiutao Feng and Baofeng Wu. eprint.iacr.org/2017/449

eprint.iacr.org/2015/711
eprint.iacr.org/2018/618
eprint.iacr.org/2017/449


10/33

Trade-off!

good software implementation with precomputed tables,
better bit-sliced implementation and secure against cache timing attacks than those
relying on general S-boxes, which require table lookups in memory
implementation for lightweight cryptography with smaller tables or lower gate count,
efficient masking in hardware,
generally has cryptographic properties like random permutation has or better



11/33

Two Base Constructions

x2

y
1

x1

y
2

F1

F2
-1

“F-constructions” (Feistel-like constructions).
Based on the so-called TU-decomposition.
Let F be a mapping F2m × F2m → F2m × F2m and
F1, F2 : F2m × F2m → F2m be the functions with
the property: for any fixed value v2 the function
Fi(v1, v2), i ∈ 1, 2 is a bijection.
Then the definition F−12 (x2, y2) = y1 is correct.

F(x1, x2) = (y1, y2), where

{
y2 = F1(x1, x2)
x2 = F2(y1, y2)



12/33

Two Base Constructions

Proposition

The amount of permutations that can be build by using the F-construction is equal
to (2m!)2

m+1
.



13/33

Two Base Constructions

x2

y
1

x1

y

G1

G2

2

“G-constructions” (Generalised constructions).
Any permutation G (x1, x2) = (y1, y2) can be
represented using mappings G1 and G2:{

y1 = G1(x1, x2)
y2 = G2(y1, y2)

Harder to build a permutation using this
construction in compare with “F-constructions”



14/33

How to choose Fi and Gi?

The core question is: “How to choose Fi and Gi?”.

In this work we will use Dobbertin-like functions:

s(x, y) =

{
s′(x, y), π(y) 6= 0;
π̂(x), π(y) = 0;

,

where π̂y(x) are permutations over F2m and s′ is a is a permutation of x ∈ F2m for every
fixed value y ∈ F2m\ẏ.

Value ẏ = π−1(0) we will call a punctured value of the function s′.



15/33

Nonlinearity

Proposition 1

Let s(x, y) =

{
s′(x, y), π(y) 6= 0;
π̂(x), π(y) = 0;

, where π, π̂ ∈ S (F2m), s′(x, y) : F22m → F2m is a

bijection for all y, π(y) 6= 0. Let ẏ = π−1(0) be the punctured value of the function s and
s′ (x, ẏ) = 0. Then the WHT of the function s(x, y) can be calculated as follows:

Ws
α‖β,γ =


Ws′
α‖β,γ + (−1)〈β,ẏ〉 ·W π̂

α,γ, α 6= 0;
0, α = 0, γ 6= 0;
Ws′

0‖β,0, α = 0, γ = 0.



16/33

Nonlinearity

Corollary 2

For chosen Dobbertin-like functions

Ls ≤ Ls′ + Lπ̂

The smaller linearity of function s′ and permutation π potentially lead to smaller
linearity of the function s.



17/33

Differential uniformity

We can choose both functions to be equal the following two functions
s1, s2 : F2m × F2m 7→ F2m and si has one punctured value that is defined by permutations
πi:

s1(x, y) =

{
s′1(x, y), π1(y) 6= 0;
π̂1(x), π1(y) = 0;

,

s2(x, y) =

{
s′2 (y, s1(x, y)) , π2 (s1(x, y)) 6= 0;
π̂2(y), π2(s1(x, y)) = 0;

,

where for all i ∈ 1, 2 πi, π̂i ∈ S (F2m), s′i(x, y) : F22m → F2m is a bijection for all
y 6= π−1i (0).



18/33

Differential uniformity

Proposition 3

Let a1, a2, b1, b2 ∈ F2m , then the number of solutions of the following system of equations
(number of pairs x, y ∈ F2m):{

s1(x, y)⊕ s1(x⊕ a1, y⊕ a2) = b1
s2(x, y)⊕ s2(x⊕ a1, y⊕ a2) = b2

greater or equal to the number of solutions of the following system:

π1(y) 6= 0
π1(y⊕ a2) 6= 0
π2(s′1(x, y)) 6= 0
π2(s′1(x⊕ a1, y⊕ a2)) 6= 0
s′1(x, y)⊕ s′1(x⊕ a1, y⊕ a2) = b1
s′2(y, s′1(x, y))⊕ s′2(y⊕ a2, s′1(x⊕ a1, y⊕ a2)) = b2



19/33

Algebraic degree

Let us consider the algebraic degree of the function (14).

〈a, s(x, y)〉 =
〈
a, s′(x, y) · I0(y) + π(x) · I0(y)

〉
,

where I0(y) is a function that is equal to 1 only when π(y) = 0, and equal to 0 otherwise,
and function I0(y) is equal to 0 only when π(y) = 0 and 1 otherwise.

It’s quite easy to show that deg (I0) = m because π(y) is a permutation. At the same time
1 ≤ deg (π) ≤ m− 1.

In fact that I0(y) depends only on y, and π(x) depends only on x and if deg (π) = m− 1
then deg (s) = 2m− 1. This property specifies the way of constructing functions with
high algebraic degree.



20/33

Examples

In this work we will focus on the constructions that are similar to the well known
Maiorana–McFarland construction: s′(x, y) = ψ(x) · φ(y), where ψ, φ are the
permutations over F2m and ‘’·” is a multiplicative operator of the finite field F2m .

It’s well known that if either ψ or φ is a linear permutation, then s′ is a bent-function.



21/33

Examples

Our plan:

study cryptographic properties but focus on the differential uniformity of the
constructions;
consider the monomial choice of some parameters to simplify the construction;
find some parameters that provide a way to build permutation with better
cryptographic properties in some special cases;
focus on the most interesting way m = 4.



22/33

Examples. Construction “0”

Let us consider the F-construction

y2 = F1 (x1, x2) =

{
π1 (x1) · x2, x2 6= 0;
π̂1 (x1) , x2 = 0.

;

x2 = F2 (y1, y2) =

{
π2 (y1) · y2, y2 6= 0;
π̂2 (y1) , y2 = 0.

.

Both F1 and F2 are bent functions and could have rather high nonlinearity (with the
proper choice of π̂i).

But: y1 = π−12

(
π1 (x1)−1

)
– depends only on x1.



23/33

Examples. Construction “A”

Let us consider the F-construction and x1, x2 ∈ F2m

then the permutation SA = (y1, y2), where

y1 =

{
π2

(
(x2)2 · π1 (x1)

)
, x1 6= 0;

π̂2 (x2) , x1 = 0.

y2 =

{
π1 (x1) · x2, x2 6= 0;
π̂1 (x1) , x2 = 0.

we will call “A”-type permutation.



24/33

Examples. Construction “A”

Proposition 4

Let the permutation π2 is a linear permutation. Then it has differential uniformity larger
than 2m − 2.

If we suppose that π1 and π2 are monomial permutations π1(x) = xα, π2(x) = xβ and
m = 4 then α ∈ {1, 2, 4, 7, 8, 11, 13, 14} and β ∈ {7, 11, 13, 14}.

SA with the right choice of π̂i:
LSA = 20,
δSA = 6,
deg (SA) = 7.



25/33

Examples. Construction “B”

Let us consider the F-construction and x1, x2 ∈ F2m

then the permutation SB = (y1, y2), where

y1 =

{
x2 · π2 (y2) , π2 (y2) 6= 0;
π̂2 (x2) , π2 (y2) = 0.

;

y2 =

{
x1 · π1 (x2) , π1 (x2) 6= 0;
π̂1 (x1) , π1 (x2) = 0.

.

we will call “B”-type permutation.



26/33

Examples. Construction “B”

Proposition 5

Let H < S (Vm)— be the group of linear permutations. Than if π2 ∈ H or π1 ∈ x−1H
then δSB ≥ 2m − 2.

If we suppose that π1 and π2 are monomial permutations π1(x) = xα, π2(x) = xβ and
m = 4.
Proposition 6

Let m = 4 and π1 = xα, π2 = xβ where α, β: GCD
(
α, 24 − 2

)
= 1,

GCD
(
β, 24 − 2

)
= 1. Than if αβ + 1 6= 14 then δSB ≥ 2m − 2.



27/33

Examples. Construction “B”

The proposition 6 gives us only 4 possible constructions:
1 π1(x) = x, π2(x) = x13,
2 π1(x) = x2, π2(x) = x14,
3 π1(x) = x4, π2(x) = x7,
4 π1(x) = x8, π2(x) = x11.

SB with the right choice of π̂i:
LSB = 20,
δSB = 6,
deg (SB) = 7.



28/33

Examples. Construction “G”

Let’s consider “G”-construction:

G1 (x1, x2) = y1 =

{
xα1 · x

β
2 , x2 6= 0;

π̂1 (x1) , x2 = 0.

G2 (x1, x2) = y2 =

{
xγ1 · xδ2, x1 6= 0;
π̂2 (x2) , x1 = 0.

The equation above defined a permutation iff{
G1 (x1, x2) = a1
G2 (x1, x2) = a2

has a solution for any a1, a2 ∈ F2m .



29/33

Examples. Construction “G”

Let’s consider the most interesting case m = 4. There are 84 sets of (α, β, γ, δ) but using
equation we can cut this list to 748 possible constructions.

It’s easy to show that set (α, β, γ, δ) is linear equivalent to the following sets:
(α · d (mod 2m − 1), β · d (mod 2m − 1), γ · d (mod 2m − 1), δ · d (mod 2m − 1))
for any d ∈ {1, 2, 4, 8};
(α, β, γ, δ), (γ, δ, α, β), (β, α, δ, γ), (δ, γ, β, α).

Such permutations with the right choice of π̂i:
LG = 20,
δG = 6,
deg (G) = 7.



30/33

Examples. Construction “G”

48 classes of permutations:

α β γ δ α β γ δ α β γ δ α β γ δ
1 1 7 11 1 4 7 11 1 11 7 13 1 14 7 7
1 1 7 14 1 4 7 14 1 11 11 14 1 14 11 11
1 1 11 13 1 4 11 7 1 11 13 7 1 14 13 13
1 1 13 14 1 4 13 11 1 11 14 11 1 14 14 14
1 2 7 7 1 7 7 2 1 13 7 8 7 7 7 11
1 2 7 13 1 7 7 11 1 13 7 14 7 7 7 14
1 2 11 11 1 7 11 1 1 13 11 4 7 7 11 13
1 2 11 14 1 7 11 13 1 13 11 7 7 7 13 14
1 2 13 7 1 7 13 8 1 13 13 2 7 11 7 13
1 2 13 13 1 7 13 14 1 13 13 11 7 11 11 14
1 2 14 11 1 7 14 4 1 13 14 1 7 11 13 7
1 2 14 14 1 7 14 7 1 13 14 13 7 11 14 11



31/33

Implementation Questions

To implement SA or SB permutation it is necessary to implement two finite field
multipliers (can be a linear function for FPGA) and up to 4 permutations (3minimum).
To implement some of G-type permutation it is necessary to implement two finite
field multipliers and up to 6 permutations (2 minimum).



32/33

Conclusion

We’ve shown some ways to construct permutations that could be a trade-off for security
and impelmetation rewirements.

But! It’s still too many questions that should be solved.



33/33

Thank you for your attention!

Questions?


