

Matrix-graph approach for studying nonlinearity of transformations on vector spaces Scien

Vladimir M. Fomichev, Professor, Dr. Sci. (Phys.-Math.), Scientific Advisor at "Security Code" LLC

Let $G=\{0,1,2\}$ be a commutative semigroup, where $\tau 0=0$ for any $\tau \in G$, $\tau \sigma = \max\{\tau, \sigma\}$ for any $\tau, \sigma \neq 0$.

- An *n*×*n* matrix over *G* is called a **ternary matrix**.
- Denote by $(2)_n$ the $n \times n$ matrix, each element of which equals 2.
- Define the **multiplication** of $n \times n$ ternary matrices $A = (a_{i,i})$ and $B = (b_{i,i})$:

$$AB=C=(c_{i,j})$$
, where $c_{i,j}=\max\{a_{i,1}b_{1,j},...,a_{i,n}b_{n,j}\}$.

Let $f: P^n \rightarrow P^n$ be a transformation represented by the coordinate polynomials $f=\{f_0(x_0,...,x_{n-1}),...,f_{n-1}(x_0,...,x_{n-1})\}$, where n>1 and P is a finite field.

- We consider the $n \times n$ ternary **matrix of nonlinearity** (denoted by $M_{\Theta}(f)$). For $0 \le i, j < n$, the element $m_{i,j}$ in $M_{\Theta}(f)$ is equal to **0**, **1 or 2**, if the function $f_j(x_0, ..., x_{n-1})$ fictitiously, linearly or nonlinearly depends on the variable x_j , respectively. If $M_{\Theta}(f)=(2)_n$, then the transformation f is called **quite nonlinear**.
- Also, we consider the **digraph of nonlinearity** (denoted by $\Gamma_{\Theta}(f)$). For $0 \le i, j < n$, $\Gamma_{\Theta}(f)$ is defined as the labelled *n*-vertex directed graph, whose arc (i, j) is labelled with $m_{i, j}$.

<u>Theorem 1.</u> For any transformations $f^{(1)},...,f^{(t)}$ on P^n , $t \ge 1$, the following inequality is true:

$$M_{\Theta}(f^{(1)}...f^{(t)}) \leq M_{\Theta}(f^{(1)})...M_{\Theta}(f^{(t)})).$$

By Theorem 1 we can evaluate the elements of the matrix $M_{\Theta}(f^{(1)}...f^{(t)}).$

- The matrix *M* (ternary matrix *M*) is called *primitive* (⟨2⟩-*primitive*), if ∃ t∈ N : M^t>0 (M^t= (2)_n). The smallest t with this property we call *exponent* (⟨2⟩-*exponent*) of *M*, denoted by exp*M* (⟨2⟩exp*M*)).
- For the matrices A,B it follows from A≤B that A^t≤B^t, t∈N.
 So, if A is (2)-primitive, than B is (2)-primitive too, and (2)expA≥(2)expB.

Example 1. Let us calculate $\langle 2 \rangle$ -exponent for the ternary matrix *M*:

Hence, $\langle 2 \rangle expM=13$.

- The labelled digraph Γ is called *complete* (2)-*digraph* (denoted by Γ_n⁽²⁾), if the matrix of labels M(Γ)=(2)_n. The label of the path in Γ is the largest of the labels of arcs that form this path.
- The labelled digraph Γ is called $\langle 2 \rangle$ -primitive, if $\exists t \in \mathbb{N}$: $\Gamma^t = \Gamma_n^{\langle 2 \rangle}$. The smallest t we call $\langle 2 \rangle$ -exponent of Γ (denoted by $\langle 2 \rangle$ exp Γ). The value of $\langle 2 \rangle$ exp Γ equals the smallest $t \in \mathbb{N}$, such that for any pair (i,j) of vertices in Γ there is the path with the label "2" from i to j of length t.

The digraph Γ is $\langle 2 \rangle$ -primitive \Leftrightarrow the matrix $M(\Gamma)$ is $\langle 2 \rangle$ -primitive, so $\langle 2 \rangle \exp\Gamma = \langle 2 \rangle \exp M$.

Let Γ contains the arc labelled with "2".

For $0 \le i < n$, we use the following notation:

l_i^[2] is the length of the shortest path from the vertex *i* to the nearest vertex, which is the start point of the arc with the label "2";
d^[2]=max{l₀^[2],...,l_{n=1}^[2]}.

<u>Theorem 2</u>. The labelled digraph Γ is $\langle 2 \rangle$ -primitive $\Leftrightarrow \Gamma$ is primitive and contains the arc with the label "2". In this case we have

$$\exp\Gamma \leq \langle 2 \rangle \exp\Gamma \leq 1 + d^{[2]} + \exp\Gamma.$$

1. The universal bound.

If the labelled digraph Γ is $\langle 2 \rangle$ -primitive, then $\langle 2 \rangle \exp\Gamma \le n^2 - n + 1$.

2. If the $\langle 2 \rangle$ -primitive digraph Γ contains the circuit of length l>1, then $\langle 2 \rangle \exp\Gamma \leq d^{[2]}+1+n+l(n-2)$.

3. If the circuit C of length I passes through the arc with label "2", then $\langle 2 \rangle \exp\Gamma \leq n+l(n-1)$.

1. If $\langle 2 \rangle$ -primitive digraph Γ has p > 0 loops, then $\langle 2 \rangle \exp\Gamma \leq d^{[2]} + 2n-p$.

2. If $\langle 2 \rangle$ -primitive digraph Γ has *m* loops with the label "2", $0 < m \le p$, then

 $\langle 2 \rangle \exp{\Gamma} \leq 2n-m.$

Applications

Let *g* be a round transformation of block encryption algorithm.

<u>Synthesis</u>. The $\langle 2 \rangle$ -exponent of ternary matrix of g may be considered as the lower bound for the number of encryption rounds. This value is a more accurate than the exponent of mixing matrix of g.

We apply this approach for evaluating the $\langle 2 \rangle$ -exponents of ternary matrices, which correspond to the round transformations g and h of block ciphers DES and Magma, respectively (M.D. Sapegina, Diploma thesis at MEPhI, 2019).

The following values are obtained:

 $\langle 2 \rangle \exp M(g) = \exp M(g) = 5;$ $\langle 2 \rangle \exp M(h) = \exp M(h) = 6.$

Thank you for your attention Questions?