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Introduction. Discrete Logarithm Problem

Definition 1. Discrete logarithm problem.
Given: group G = 〈P〉, ord(P) = r , Q ∈ G .
To find: n ∈ {0, ..., r − 1} such, that Q = nP.

Applications
— Diffie-Hellman Key Exchange;
— ElGamal Cryptosystem
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Introduction. Discrete Logarithm Problem

Currently, the best known algorithm — parallelized version of the
Pollard rho.

Expected running time:
√

π|G |
2 group operations in G [Wiener, van

Oorschot, 1996].

Efficient automorphism
orbit of any point under an efficient automorphism can be computed
much faster, than group operation

Parallel Pollard rho method for groups with efficient automorphisms

Expected running time:
√

π|G |
2r group operations in G , where r —

order of group of efficient automorphisms [Wiener, Zuccherato, 1999;
Duursma, Gaudry, Morain, 1999].
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Introduction. 2-D Discrete Logarithm Problem

Definition 2. Two-dimensional discrete logarithm problem.
Given: group G; P1,P2,Q ∈ G , N1,N2 ∈ N, Q = n1P1 + n2P2 or
some (unknown) n1 ∈ {−N1, . . . ,N1}, n2 ∈ {−N2, . . . ,N2}.
To find: n1, n2 such that Q = n1P1 + n2P2.

Applications
— computing the number of points on genus 2 curves over finite
fields;
— DLP for exponents of bounded height.
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Introduction. Applications of 2-D Discrete Logarithm
Problem

efficient automorphisms

ϕ : ϕ(g) = λg , ∀g ∈ G

Group G decomposes into disjoint equivalence classes

{g , ϕ(g), ..., ϕk(g)}
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Introduction. Applications of 2-D Discrete Logarithm
Problem

Recomposition
Choose k1, k2 ∈R [0,

√
|G |)

⋂
Z, then compute scalar multiplication

kP = k1P + k2ϕ(P), where k ≡ k1 + λk2 mod |G |.
Decomposition
First, choose k at random, then find k1, k2 to compute scalar
multiplication.

kP = k1P + k2ϕ(P)

k1, k2 ≤ CGLV

√
|G |
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Algorithm of Solving Two-dimensional Discrete Logarithm
Problem (Gaudry, Schost, 2004)

select so-called ”tame” and ”wild” sets

T = {−N1, . . . ,N1} × {−N2, . . . ,N2},

W = {−N1 + n1, . . . ,N1 + n1} × {−N2 + n2, . . . ,N2 + n2}.

calculate in parallel two pseudorandom sequences

xiP1 + yiP2, (xi , yi ) ∈ T , i = 1, 2, . . . , (1)

Q + zjP1 + wjP2, (zj ,wj) ∈ T , j = 1, 2, . . . (2)

obtain sloution

xkP1 + ykP2 = Q + zlP1 + wlP2, (3)

average complexity of the Gaudry-Schost algorithm
Ω = 2.36

√
N, N = (2N1 + 1)(2N2 + 1) [Galbraith, Ruprai, 2009]
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2-D Discrete Logarithm Problem: case #〈ϕ〉 = 2

Elliptic curve given by equation y 2 = x3 + Ax + B over finite field of
p > 3 elements has efficient automorphism of order 2:

ϕ(x , y) = −(x , y) = (x ,−y)

ϕ(aP1 + bP2) = −aP1 − bP2,

C (a, b) = {(a, b), (−a,−b)}.
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2-D Discrete Logarithm Problem: case #〈ϕ〉 = 2
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2-D Discrete Logarithm Problem: case #〈ϕ〉 = 2
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2-D Discrete Logarithm Problem: case #〈ϕ〉 = 4

Prime-order-q subgroup G of elliptic curve given by equation
y 2 = x3 + Ax with p ≡ 1 mod 4 and q2 - #E has efficient
automorphism of order 4:

ϕ(x , y) = (−x , αy), where α — element of order 4 modulo p, λ —
root of equation λ2 ≡ −1 (mod q)

ϕ(aP1 + bP2) = a(λP1) + b(λ2)P1 = −bP1 + aP2,

C (a, b) = {(a, b), (−a, b), (−a,−b), (a,−b)}.
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2-D Discrete Logarithm Problem: case #〈ϕ〉 = 4
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2-D Discrete Logarithm Problem: case #〈ϕ〉 = 6

Prime-order-q subgroup G of elliptic curve given by equation
y 2 = x3 + B with p ≡ 1 mod 3 and q2 - #E has efficient
automorphism of order 6:

ϕ(x , y) = (βx ,−y), where β 6= 1 — cube root from 1 modulo p, λ
— root of equation λ2 − λ+ 1 ≡ 0 (mod q)

ϕ(aP1 + bP2) = a(λP1) + b(λ− 1)P1 = −bP1 + (a + b)P2,

C (a, b) = {(a, b), (−b, a + b), (−(a + b), a),

(−a,−b), (b,−(a + b)), (a + b,−a)}.
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2-D Discrete Logarithm Problem: case #〈ϕ〉 = 6
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Average Complexity

Theorem (Galbraith, Holmes, 2010)

In a random sequence of balls of C > 1 different colors k-th ball with
probability rk,c is of the color c (independently of previously selected balls)
(c=1,2). There exist N ′ ∈ N different boxes. If k-th ball has a color c,
then it falls into the i-th box with probability qc,i (N ′) independently of
previous balls. Then the number ZN′ of balls allocated before the first
occurrence of two balls of different colors in the same urn has the mean

M(ZN′) =

√
π

2AN′
+ O(N ′1/4

),

where

AN′ =
C∑

c=1

pc

 C∑
c ′=1,c 6=c ′

pc ′

(
N′∑
i=1

qc,iqc ′ ,i

)
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Average Complexity

case #〈ϕ〉 = 2: (1 + ε)
√

πN
2 + Oε(N

1
4 ) group operations in G

speedup:
√

2

case #〈ϕ〉 = 4: (1 + ε)
√

πN
4 + Oε(N

1
4 ) group operations in G

speedup:
√

4

case #〈ϕ〉 = 6: (1 + ε)
√

πN
4 + Oε(N

1
4 ) group operations in G

speedup:
√

4
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2-D Discrete Logarithm Problem: case #〈ϕ〉 = 6
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2-D Discrete Logarithm Problem: case #〈ϕ〉 = 6
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Pseudorandom walks

A distinguished point is an element of the group G which has a particular
feature that is easily checked and confirmed. Let Sdp – number of
distinguished points and

Sdp

|G |
= θ

ms ∈ N,ms > 1, hash-function ψ : G → {1, ...,ms}, functions
F ,F1, ...,Fms : G → G such that

F (u) =


F1(u), if ψ(u) = 1

F2(u), if ψ(u) = 2
...

Fms (u), if ψ(u) = ms

For start point u0 ∈R G sequence u0, u1 = F (u0), ..., ui+1 = F (ui ), ... is
called pseudorandom walk.
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2-D Pseudorandom walks

Theorem (Cofman, Flajolet, Flatto and Hofri)

Let y0, y1, . . . , yk be a symmetric random walk that starts at the origin
(y0 = 0) and takes steps uniformly distributed in [−1,+1] then the
expected maximum excursion is

E(max{|yi | : 0 ≤ i ≤ k}) ≤
√

2k

3π
+ O(1)

Fi (u) = u + γi ,where

γi = ζ
′
i P1 + ζ

′′
i P2, i = 1, .., ns ,

ζ
′
i , ζ

′′
i ∈R {−2M, ..., 2M},M ∈ Z.
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Results of the paper

T 0
1 = {(a; b) : 0 ≤ a ≤ N1, 1 ≤ b ≤ N1 − a},

T 0
2 = {(a; b) : 0 ≤ a ≤ N1, N1 − a + 1 ≤ b ≤ N1},

W̃k = {−kN1

2
+ n1, . . . ,

kN1

2
+ n1} × {−

kN1

2
+ n2, . . . ,

kN1

2
+ n2}.

xiP1+yiP2,

{
(xi , yi ) ∈ T 0

1 , with probability p3

(xi , yi ) ∈ T 0
2 , with probability p4 = 1− p3

, i = 1, 2, . . . ,
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Results of the paper

M(ZN′) ≤ (1 + ε(k)) 1
8

√
π
2

(
3√
p3

+ 1√
p4

)√
N

To find: x0 = arg min
x∈(0;1)

f (x)

= arg min
x∈(0;1)

(
3√
x

+
1√

1− x

)
=

9

10
− 3 3
√

3

10
+

32/3

10
≈ 0.67533

Then for p3 = 0.67533, p4 = 0.32467

M(ZN′) ≤ (1 + ε)0.847
√

N + Oε(N
1
4 )
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Results of the paper

Theorem

Let G be a prime-order-q subgroup of an elliptic curve E defined over a
finite prime field GF (p) by the equation y 2 = x3 + B with p ≡ 1 (mod 3),
q2 - #E ; ϕ is an automorphism of the group G , ϕ(x , y) = (βx ,−y),
where β 6= 1 is the cube root of 1 modulo p; λ is the root of the equation
λ2 − λ+ 1 ≡ 0 (mod q) such that ϕ(x , y) = λ(x , y). Then for any ε > 0
there exists an algorithm for solving the two-dimensional discrete logarithm

problem in G with average complexity (1 + ε)0.847
√

N + Oε(N
1
4 ) group

operations (with N1 = N2, P2 = ϕ(P1) and (n1, n2), chosen uniformly at
random), where N = 4N1N2,N →∞.
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Experimental results

Table: experemental results for ellitic curve secp256r1

”wild” set
parametrization, k

N=36000000,
number of experi-
ments=3000

error, %

0.1 0.85554 0.18

0.2 0.88164 1.69

0.3 0.86710 1.11

0.4 0.89328 0.76

0.5 0.88997 0.68

0.6 0.91167 0.67

0.7 0.91322 0.18

0.8 0.92575 0.19

0.9 0.93778 0.54

1.0 0.93880 0.27
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Questions

Thanks for attention!
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