Modified Gaudry-Schost Algorithm for the Two-dimensional Discrete Logarithm Problem

Maksim Nikolaev

Cryptography Academy of Russian Federation

June 07th, 2019

- Introduction to DLP and 2-D DLP
- Gaudry-Schost Algorithm
- Modification of algorithm
- Experimental Results

• Definition 1. Discrete logarithm problem. Given: group $G = \langle P \rangle$, $\operatorname{ord}(P) = r$, $Q \in G$. To find: $n \in \{0, ..., r - 1\}$ such, that Q = nP.

- Definition 1. Discrete logarithm problem. Given: group $G = \langle P \rangle$, $\operatorname{ord}(P) = r$, $Q \in G$. To find: $n \in \{0, ..., r - 1\}$ such, that Q = nP.
- Applications
 - Diffie-Hellman Key Exchange;
 - ElGamal Cryptosystem

• Currently, the best known algorithm — *parallelized version of the Pollard rho.*

Expected running time: $\sqrt{\frac{\pi|G|}{2}}$ group operations in *G* [Wiener, van Oorschot, 1996].

- Efficient automorphism orbit of any point under an efficient automorphism can be computed much faster, than group operation
- Parallel Pollard rho method for groups with efficient automorphisms Expected running time: $\sqrt{\frac{\pi|G|}{2r}}$ group operations in *G*, where *r* order of group of efficient automorphisms [Wiener, Zuccherato, 1999; Duursma, Gaudry, Morain, 1999].

• Definition 2. Two-dimensional discrete logarithm problem. Given: group G; $P_1, P_2, Q \in G, N_1, N_2 \in \mathbb{N}, Q = n_1P_1 + n_2P_2$ or some (unknown) $n_1 \in \{-N_1, \ldots, N_1\}, n_2 \in \{-N_2, \ldots, N_2\}$. To find: n_1, n_2 such that $Q = n_1P_1 + n_2P_2$.

- Definition 2. Two-dimensional discrete logarithm problem. Given: group G; $P_1, P_2, Q \in G, N_1, N_2 \in \mathbb{N}, Q = n_1P_1 + n_2P_2$ or some (unknown) $n_1 \in \{-N_1, \ldots, N_1\}, n_2 \in \{-N_2, \ldots, N_2\}$. To find: n_1, n_2 such that $Q = n_1P_1 + n_2P_2$.
- Applications

— computing the number of points on genus 2 curves over finite fields;

- DLP for exponents of bounded height.

Introduction. Applications of 2-D Discrete Logarithm Problem

• efficient automorphisms

$$\varphi: \varphi(g) = \lambda g, \ \forall g \in G$$

Group G decomposes into disjoint equivalence classes

$$\{g, \varphi(g), ..., \varphi^k(g)\}$$

Introduction. Applications of 2-D Discrete Logarithm Problem

• Recomposition

Choose $k_1, k_2 \in_R [0, \sqrt{|G|}) \bigcap \mathbb{Z}$, then compute scalar multiplication $kP = k_1P + k_2\varphi(P)$, where $k \equiv k_1 + \lambda k_2 \mod |G|$.

Decomposition

First, choose k at random, then find k_1, k_2 to compute scalar multiplication.

$$kP = k_1P + k_2\varphi(P)$$

$$k_1, k_2 \leq C_{GLV} \sqrt{|G|}$$

• select so-called "tame" and "wild" sets

$$T = \{-N_1, \dots, N_1\} \times \{-N_2, \dots, N_2\},$$
$$W = \{-N_1 + n_1, \dots, N_1 + n_1\} \times \{-N_2 + n_2, \dots, N_2 + n_2\}.$$

select so-called "tame" and "wild" sets

$$T = \{-N_1, \dots, N_1\} \times \{-N_2, \dots, N_2\},$$
$$N = \{-N_1 + n_1, \dots, N_1 + n_1\} \times \{-N_2 + n_2, \dots, N_2 + n_2\}.$$

• calculate in parallel two pseudorandom sequences

$$x_i P_1 + y_i P_2, (x_i, y_i) \in T, i = 1, 2, \dots,$$
 (1)

$$Q + z_j P_1 + w_j P_2, (z_j, w_j) \in T, j = 1, 2, \dots$$
(2)

select so-called "tame" and "wild" sets

$$T = \{-N_1, \dots, N_1\} \times \{-N_2, \dots, N_2\},$$
$$W = \{-N_1 + n_1, \dots, N_1 + n_1\} \times \{-N_2 + n_2, \dots, N_2 + n_2\}.$$

• calculate in parallel two pseudorandom sequences

$$x_i P_1 + y_i P_2, (x_i, y_i) \in T, i = 1, 2, \dots,$$
 (1)

$$Q + z_j P_1 + w_j P_2, (z_j, w_j) \in T, j = 1, 2, ...$$
 (2)

obtain sloution

$$x_k P_1 + y_k P_2 = Q + z_l P_1 + w_l P_2, \tag{3}$$

select so-called "tame" and "wild" sets

$$T = \{-N_1, \dots, N_1\} \times \{-N_2, \dots, N_2\},$$
$$W = \{-N_1 + n_1, \dots, N_1 + n_1\} \times \{-N_2 + n_2, \dots, N_2 + n_2\}.$$

• calculate in parallel two pseudorandom sequences

$$x_i P_1 + y_i P_2, (x_i, y_i) \in T, i = 1, 2, \dots,$$
 (1)

$$Q + z_j P_1 + w_j P_2, (z_j, w_j) \in T, j = 1, 2, ...$$
 (2)

obtain sloution

$$x_k P_1 + y_k P_2 = Q + z_l P_1 + w_l P_2, (3)$$

• average complexity of the Gaudry-Schost algorithm $\Omega = 2.36\sqrt{N}$, $N = (2N_1 + 1)(2N_2 + 1)$ [Galbraith, Ruprai, 2009]

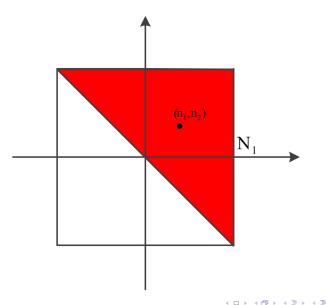
Elliptic curve given by equation y² = x³ + Ax + B over finite field of p > 3 elements has efficient automorphism of order 2:

$$\varphi(x,y) = -(x,y) = (x,-y)$$

۰

$$\varphi(aP_1 + bP_2) = -aP_1 - bP_2,$$

 $C(a, b) = \{(a, b), (-a, -b)\}.$

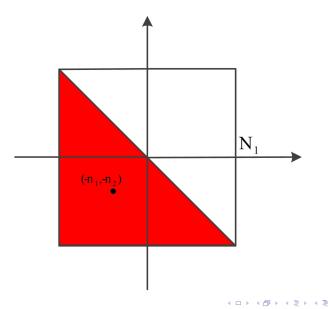


Modified Gaudry-Schost algorithm

CTCrypt' 2019 10 / 27

э

Sac



Modified Gaudry-Schost algorithm

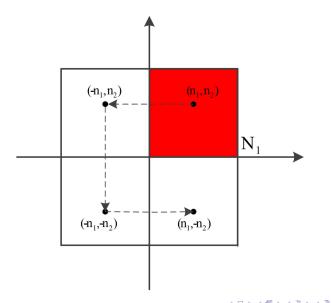
CTCrypt' 2019 11 / 27

Sac

- Prime-order-*q* subgroup *G* of elliptic curve given by equation $y^2 = x^3 + Ax$ with $p \equiv 1 \mod 4$ and $q^2 \nmid \#E$ has efficient automorphism of order 4:
- $\varphi(x, y) = (-x, \alpha y)$, where α element of order 4 modulo p, λ root of equation $\lambda^2 \equiv -1 \pmod{q}$

$$arphi(aP_1+bP_2) = a(\lambda P_1) + b(\lambda^2)P_1 = -bP_1 + aP_2,$$

 $C(a,b) = \{(a,b), (-a,b), (-a,-b), (a,-b)\}.$

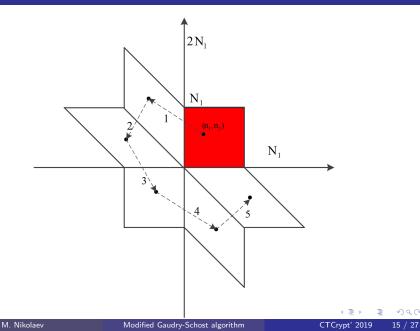


CTCrypt' 2019 13 / 27

DQC

- Prime-order-*q* subgroup *G* of elliptic curve given by equation $y^2 = x^3 + B$ with $p \equiv 1 \mod 3$ and $q^2 \nmid \#E$ has efficient automorphism of order 6:
- $\varphi(x, y) = (\beta x, -y)$, where $\beta \neq 1$ cube root from 1 modulo p, λ — root of equation $\lambda^2 - \lambda + 1 \equiv 0 \pmod{q}$

$$\varphi(aP_1 + bP_2) = a(\lambda P_1) + b(\lambda - 1)P_1 = -bP_1 + (a + b)P_2,$$
$$C(a, b) = \{(a, b), (-b, a + b), (-(a + b), a), (-a, -b), (b, -(a + b)), (a + b, -a)\}.$$



SAC

Theorem (Galbraith, Holmes, 2010)

In a random sequence of balls of C > 1 different colors k-th ball with probability $r_{k,c}$ is of the color c (independently of previously selected balls) (c=1,2). There exist $N' \in \mathbb{N}$ different boxes. If k-th ball has a color c, then it falls into the i-th box with probability $q_{c,i}(N')$ independently of previous balls. Then the number $Z_{N'}$ of balls allocated before the first occurrence of two balls of different colors in the same urn has the mean

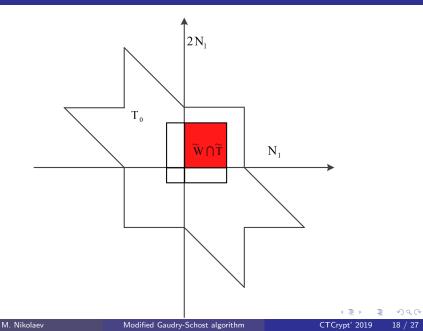
$$\mathbf{M}(Z_{N'}) = \sqrt{\frac{\pi}{2A_{N'}}} + O({N'}^{1/4}),$$

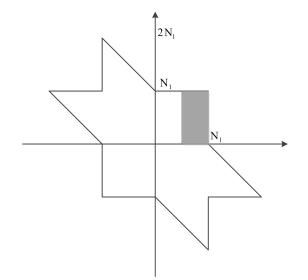
where

$$A_{N'} = \sum_{c=1}^{C} p_c \left(\sum_{c'=1, c \neq c'}^{C} p_{c'} \left(\sum_{i=1}^{N'} q_{c,i} q_{c',i} \right) \right)$$

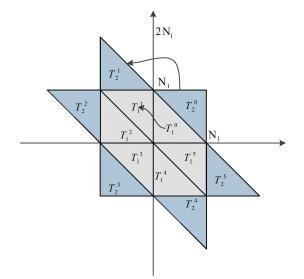
• • • • • • • •

- case $\#\langle \varphi \rangle = 2$: $(1 + \varepsilon)\sqrt{\frac{\pi N}{2}} + O_{\varepsilon}(N^{\frac{1}{4}})$ group operations in G speedup: $\sqrt{2}$
- case $\#\langle \varphi \rangle = 4$: $(1 + \varepsilon)\sqrt{\frac{\pi N}{4}} + O_{\varepsilon}(N^{\frac{1}{4}})$ group operations in G speedup: $\sqrt{4}$
- case $\#\langle \varphi \rangle = 6$: $(1 + \varepsilon)\sqrt{\frac{\pi N}{4}} + O_{\varepsilon}(N^{\frac{1}{4}})$ group operations in G speedup: $\sqrt{4}$





DQC



э

SAC

Pseudorandom walks

A distinguished point is an element of the group G which has a particular feature that is easily checked and confirmed. Let S_{dp} – number of distinguished points and

$$\frac{S_{dp}}{|G|} = \theta$$

 $m_s \in \mathbf{N}, m_s > 1$, hash-function $\psi : G \to \{1, ..., m_s\}$, functions $F, F_1, ..., F_{m_s} : G \to G$ such that

$$F(u) = \begin{cases} F_1(u), \text{ if } \psi(u) = 1 \\ F_2(u), \text{ if } \psi(u) = 2 \\ \vdots \\ F_{m_s}(u), \text{ if } \psi(u) = m_s \end{cases}$$

For start point $u_0 \in_R G$ sequence $u_0, u_1 = F(u_0), ..., u_{i+1} = F(u_i), ...$ is called *pseudorandom walk*.

M. Nikolaev

Theorem (Cofman, Flajolet, Flatto and Hofri)

Let y_0, y_1, \ldots, y_k be a symmetric random walk that starts at the origin $(y_0 = 0)$ and takes steps uniformly distributed in [-1, +1] then the expected maximum excursion is

$$\mathbb{E}(max\{|y_i|: 0 \leq i \leq k\}) \leq \sqrt{rac{2k}{3\pi}} + O(1)$$

$$F_{i}(u) = u + \gamma_{i}, where$$

 $\gamma_{i} = \zeta_{i}' P_{1} + \zeta_{i}'' P_{2}, \ i = 1, ..., n_{s},$
 $\zeta_{i}', \zeta_{i}'' \in_{R} \{-2M, ..., 2M\}, M \in \mathbb{Z}.$

Results of the paper

$$T_1^0 = \{(a; b) : 0 \le a \le N_1, \ 1 \le b \le N_1 - a\},$$

$$T_2^0 = \{(a; b) : 0 \le a \le N_1, \ N_1 - a + 1 \le b \le N_1\},$$

$$\widetilde{W}_k = \{-\frac{kN_1}{2} + n_1, \dots, \frac{kN_1}{2} + n_1\} \times \{-\frac{kN_1}{2} + n_2, \dots, \frac{kN_1}{2} + n_2\}.$$

$$x_i P_1 + y_i P_2, \begin{cases} (x_i, y_i) \in T_1^0, & \text{with probability } p_3 \\ (x_i, y_i) \in T_2^0, & \text{with probability } p_4 = 1 - p_3 \end{cases}, \ i = 1, 2, \dots,$$

Image: A matrix and a matrix

æ

SAC

•
$$\mathbf{M}(Z_{N'}) \leq (1 + \varepsilon(k)) \frac{1}{8} \sqrt{\frac{\pi}{2}} \left(\frac{3}{\sqrt{P_3}} + \frac{1}{\sqrt{P_4}} \right) \sqrt{N}$$

• To find: $x_0 = \arg\min f(x)$

• To find: $x_0 = \underset{x \in (0;1)}{\operatorname{arg min}} f(x)$

$$= \underset{x \in (0;1)}{\arg \min} \left(\frac{3}{\sqrt{x}} + \frac{1}{\sqrt{1-x}} \right) = \frac{9}{10} - \frac{3\sqrt[3]{3}}{10} + \frac{3^{2/3}}{10} \approx 0.67533$$

• Then for $p_3 = 0.67533$, $p_4 = 0.32467$

$$\mathsf{M}(Z_{\mathsf{N}'}) \leq (1+arepsilon) 0.847 \sqrt{\mathsf{N}} + O_{arepsilon}(\mathsf{N}^{rac{1}{4}})$$

< A > < 3

3

Theorem

Let G be a prime-order-q subgroup of an elliptic curve E defined over a finite prime field GF(p) by the equation $y^2 = x^3 + B$ with $p \equiv 1 \pmod{3}$, $q^2 \nmid \#E$; φ is an automorphism of the group G, $\varphi(x, y) = (\beta x, -y)$, where $\beta \neq 1$ is the cube root of 1 modulo p; λ is the root of the equation $\lambda^2 - \lambda + 1 \equiv 0 \pmod{q}$ such that $\varphi(x, y) = \lambda(x, y)$. Then for any $\varepsilon > 0$ there exists an algorithm for solving the two-dimensional discrete logarithm problem in G with average complexity $(1 + \varepsilon)0.847\sqrt{N} + O_{\varepsilon}(N^{\frac{1}{4}})$ group operations (with $N_1 = N_2$, $P_2 = \varphi(P_1)$ and (n_1, n_2) , chosen uniformly at random), where $N = 4N_1N_2$, $N \to \infty$.

・ロト ・同ト ・ヨト ・ヨト

Table: experemental results for ellitic curve secp256r1

"wild" set	N=36000000,	error, %
parametrization, k	number of experi-	
	ments=3000	
0.1	0.85554	0.18
0.2	0.88164	1.69
0.3	0.86710	1.11
0.4	0.89328	0.76
0.5	0.88997	0.68
0.6	0.91167	0.67
0.7	0.91322	0.18
0.8	0.92575	0.19
0.9	0.93778	0.54
1.0	0.93880	0.27

CTCrypt' 2019 26

3

-

• • • • • • • •

э.

୬ < ୍ର 26 / 27 Thanks for attention!

æ

SAC

イロト イヨト イヨト イヨト