

Some remarks on the security of isogeny-based cryptosystems

Sergey Grebnev

QApp

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ◆○◆

Outline of the talk

<ロ> < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- An intro to isogenies and supersingular curves.
- A brief description of SIDH.
- Forsythia an instance of SIDH.
- A review of cryptanalytical attacks.
- Security estimates with respect to success probability for SIKE and Forsythia.

Isogenies

Isogeny — a rational homomorphism between two elliptic curves.

Theorem 1.

(Serre-Tate) Two curves are isogenous over K iff they have the same number of points.

The complexity of computation of an isogeny of degree I (that is, with the kernel's size of I) is O(I) operations in K (**Vélu's formulae**).

An isogeny of a smooth degree decomposes into a composition of isogenies of small degrees.

Supersingular curves

An elliptic curve defined over K with the characteristic p is supersingular, if $\#E \equiv 1 \pmod{p}$.

Theorem 2.

(Deuring) If E is supersingular, then

- 1 E is isomorphic to a curve defined over $GF(p^2)$
- 2 every endomorphism of E is defined over $GF(p^2)$

This means that we may only consider supersingular curves over $GF(p^2)$. There are about p/12 such curves.

Supersingular curves

Isogeny graph: a graph, vertices of which are the classes of isomorphism of elliptic curves, and they are connected by an edge iff the corresponding representatives are isogenous. Consider only isogenies of degree I to obtain the I**-isogeny graph**.

For a prime I \neq p and supersingular elliptic curves the I-isogeny graph is:

- (I + 1)-regular
- contains an unique connected component (all the supersingular curves)
- an expander

An example

 $\begin{array}{l} \mathsf{p}=2^5\cdot 3^3-1=863\text{; }73 \text{ supersingular j-invariants.}\\ \textbf{2-isogenies, }3\text{-isogenies, }\mathsf{E}_0:\mathsf{y}^2=\mathsf{x}^3+\mathsf{x}. \end{array}$

(c) https://isogenies.enricflorit.com/visualizations/graph.html

SIDH in a slide

Public parameters:

- a large prime $p = I_A^{e_A} I_B^{e_B} \cdot f 1,$ and a supersingular $E_0(\text{GF}(p^2))$
- bases $\{\mathsf{P}_A,\mathsf{Q}_A\}$ and $\{\mathsf{P}_B,\mathsf{Q}_B\}$ of $\mathsf{E}_0[l_A^{e_A}]$ and $\mathsf{E}_0[l_B^{e_B}]$

$$\begin{array}{c} \mathsf{B} \\ \mathsf{n}_{\mathsf{B}} \in_{\mathsf{R}} \mathbb{Z}/\mathsf{I}_{\mathsf{B}}^{\mathsf{e}_{\mathsf{B}}}\mathbb{Z}, \\ \mathsf{K}_{\mathsf{B}} := \langle \mathsf{P}_{\mathsf{B}} + [\mathsf{n}_{\mathsf{B}}]\mathsf{Q}_{\mathsf{B}} \rangle \\ \text{compute} \\ \varphi_{\mathsf{B}} : \mathsf{E}_{0} \to \mathsf{E}_{0}/\mathsf{K}_{\mathsf{B}} = \mathsf{E}_{\mathsf{B}} \\ \overbrace{\mathsf{Compute}}^{\mathsf{E}_{\mathsf{B}}, \varphi_{\mathsf{B}}(\mathsf{P}_{\mathsf{A}}), \varphi_{\mathsf{B}}(\mathsf{Q}_{\mathsf{A}}) \\ \text{compute} \\ \mathsf{K}_{\mathsf{B}}' = \langle \varphi_{\mathsf{A}}(\mathsf{P}_{\mathsf{B}}) + [\mathsf{n}_{\mathsf{B}}]\varphi_{\mathsf{A}}(\mathsf{Q}_{\mathsf{B}}) \rangle \\ \mathsf{s} = j((\mathsf{E}/\langle\mathsf{K}_{\mathsf{A}}\rangle))/\langle\mathsf{K}_{\mathsf{B}}'\rangle) \end{array}$$

Forsythia: a brief description

- based upon the original SIDH protocol;
- supports ephemeral-only key exchange;
- session-key secure;
- has its own starting curve $\begin{array}{l} \mathsf{E}_{19}(\mathsf{GF}(\mathsf{p})):\mathsf{y}^2=\\ \mathsf{x}^3-2^3\cdot 19\mathsf{x}+2\cdot 19^2\text{;} \end{array}$
- three security levels;
- Montgomery representation.

Форзиция (Forsythia) is a genus of flowering plants in the olive family (Oleaceae). https://github.com/s-v-grebnev/Forsythia

Problem 3.

Computational Supersingular Isogeny – CSSI: let $\phi_1 : E_0 \rightarrow E_1$ – an isogeny with the kernel $R_1 + [n_1]S_1$, where n_1 is chosen uniformly at random from the interval $[1, I_1^{e_1}]$. Given E_1 and images $\phi_1(R_2), \phi_1(S_2)$ of the points, find the generator of $\langle R_1 + [n_1]S_1 \rangle$.

Our case

A simplified case of the CSSI problem may be stated as follows. Let us have a (secret) I^e-isogeny $\phi : E \to E/G$ for a subgroup G \subset E of the order I^e $\approx p^{1/2}$. The problem is to find the generator of G (or, equivalently, the isogeny ϕ).

Brute-force: every supersingular elliptic curve $E(GF(p^2))$ has $(I + 1)I^{e-1}$ cyclic subgroups of order I^e; thus, brute-force requires $O(I^e)$ or $O(p^{1/2})$ samplings. Meet-in-the-middle: We construct a pair of trees such that the leaves of the first define classes of isomorphisms of the curves, l^{e/2}-isogenous to E; leaves of the second – classes of isomorphisms of the curves, $I^{e/2}$ -isogenous to E/G. Each set contains no more that $(I + 1)I^{e/2-1}$ classes. By brute force testing we detect $I^{e/2}$ -isogenies $\phi_1 : E \to E'$ and $\phi_2 : E/G \to E''$ such that there exists an isomorphism $\psi: \mathsf{E}' \to \mathsf{E}''$. At last, we have I^{e} -isogeny $\phi = \widehat{\phi_2} \circ \psi \circ \phi_1$. memory – $O(p^{1/4})$, time – $O(p^{1/4})$. (Adj et al., eprint 2018/313)

U QApp

Analysis: classical computer

Analysis: classical computer

Let $S = \{0, 1\} \times \{0, \dots, (I + 1)|^{e/2-1} - 1\}$, $E_0 = E$, $E_1 = E/G$. Each pair $(i, y) \in S$ defines a subgroup of elliptic curve E_i .

Example 4.

For I = 2 the correspondence between the pairs $(i,y)=(i,(b,k))\in\{0,1\}\times\{0,1,2\}\times\{0,\ldots,l^{e/2-1}-1\}$ and cyclic subgroups $\langle \mathsf{R}_i\rangle\subset\mathsf{E}_i$ is given by

$$\mathsf{R}_{i} = \begin{cases} \mathsf{P}_{i} + [b2^{e/2-1} + k]\mathsf{Q}_{i}, & \text{if } b = 0, 1\\ [2k]\mathsf{P}_{i} + \mathsf{Q}_{i}, & \text{if } b = 2, \end{cases}$$

where $\langle \mathsf{P}_i, \mathsf{Q}_i \rangle = \mathsf{E}_i[2^{\mathsf{e}/2}].$

Let $h:S\to E_0(GF(p^2))\cup E_1(GF(p^2)), h:(i,y)\mapsto R_i$, and let the iteration function $f:S\to S$ be a function that on an input pair (i,y) computes an $I^{e/2}$ -isogeny with the kernel $\langle R_i\rangle$, computes the j-invariant $j(E_i/\langle R_i\rangle)$ and maps it to S by some pseudorandom function $g:GF(p^2)\to S.$ Average time:

$$O\left(rac{\mathsf{p}^{3/8}}{\mathsf{m}\;\mathsf{w}^{1/2}}\mathsf{t}
ight)$$

うつん 川 エキャイドャイビッ

(m – the number of processors, w – memory, t – the complexity of iteration function) (Costello et al., eprint 2019/298) Claw-finding algorithm (Tani): let $g_1 : X_1 \rightarrow Y$, $g_2 : X_2 \rightarrow Y$, find x_1, x_2 : $g_1(x_1) = g_2(x_2)$. Let $\#X_1 \approx \#X_2 \approx N$, $\#Y \gg N$, time is – $O(N^{2/3})$. We have time – $O(p^{1/6})$ (and memory $O(p^{1/6})$). Grover's method: time – $O(p^{1/4})$, memory – O(1). (Jacques et Schanck, eprint 2019/103) Quantum golden collision search: $O(p^{3/14})$ gates and $O(p^{1/14})$ memory (Jacques et Schrottenloher, SAC 2020)

Other attacks

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Static-key attacks (Galbraith et al., eprint 2016/859)
- Unbalanced primes (de Quehen et al., eprint 2020/633)
- Torsion points attacks (de Quehen et al., eprint 2020/633)

Cannot be applied:

- Ephemeral-only key exchange
- Primes are well balanced, no "backdoor" staring curves are known.

Choice of parameters

- p balanced;
- $\left(\frac{-19}{p}\right) = -1$ (for the starting curve E_{19} to be supersingular).

р	Formula	Classical	Quantum security	
			Grover	Golden coll.
p ₂₇₁	$2^{132} \cdot 3^{85} \cdot 11 - 1$	82	130	119
p ₄₁₅	$2^{208} \cdot 3^{129} \cdot 5 - 1$	135	202	180
p ₇₅₄	$2^{372} \cdot 3^{239} \cdot 7 - 1$	262	371	326

うつん 川 エキャイドャイビッ

Definition 5.

Let X be a computational problem, with instances x produced by an algorithm Gen (1^{λ}) . Let ε_0 be some fixed upper bound on success probabilities of interest (possibly a function of λ). Then X has λ -bit security level if, for every adversary A, if A(x) runs in time t and succeeds with probability $\varepsilon < \varepsilon_0$ we have $t/\varepsilon \ge 2^{\lambda}$.

S. Galbraith, Security levels in cryptography, ACISP 2020.

🛡 QApp

Success probability

The probability P(t) of success over a search space S with #S = n after t iterations with z memory cells:

$$\mathsf{P}(t) = \begin{cases} 1 - \exp(-t^2/(2n)), \text{ if } t < z, \\ 1 - (1 - \frac{z}{n})^{t-z} \exp(-z^2/(2n)), \text{ otherwise.} \end{cases} \tag{1}$$

The setting

- A computer with 2^{64} memory cells
- Capable of executing T $=2^{80}$ operations (p_{\rm 415}, p_{\rm 754}) or T $=2^{64}$ operations for p_{\rm 271}
- Running parallel collision search
- Upper bound on success probability ε_0 now are 2^{-48} , 2^{-176} and 2^{-16}

🛡 QApp

Calculation

1 Substitute $n = p^{1/4}$ into equation (1) and rewrite it for a new variable $\theta = t/\sqrt{n}$:

$$\mathsf{P}(\theta) = \begin{cases} 1 - \exp(-\theta^2/(2)), \text{ if } \theta < \mathsf{z}/\sqrt{\mathsf{n}}, \\ 1 - (1 - \frac{\mathsf{z}}{\mathsf{n}})^{\theta\sqrt{\mathsf{n}}-\mathsf{z}} \exp(-\mathsf{z}^2/(2\mathsf{n})), \text{ otherwise.} \end{cases}$$
(2)

- 2 Solve (2) for θ with $P = \varepsilon_0$.
- 3 Compute the bit-size of the p required to obtain the claimed security level as $I = 4(\log_2 T \log_2(\theta))$.

Forsythia

Claimed	Forsythia prime	Calculated
security level	(bit-size)	prime (bit-size)
80 bits	271	286
128 bits	415	414
256 bits	754	670

(cf. Grebnev, CTCrypt'2019: Limonnitsa, 963 bits)

Claimed NIST	SIKE prime (bit-	Calculated
security level	size)	prime (bit-size)
I	434	414
	610	541
V	751	670

Thanks for attention. sg@qapp.tech

