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Statement of the problem



What is FPE?

Definition (FPE)
An encryption algorithm with the following property: the resulting
ciphertext format must be the same as the format of plaintext.

Definition (FPE, more formally)
A pair of algorithms:

𝐸, 𝐷 ∶ Keys × Twk × Dom→ Dom,

such that
𝐷𝑡
𝑘(𝐸𝑡𝑘(𝑚)) = 𝑚,

where:

𝑡 ∈ Twk is a tweak (a block cipher parameter),
𝑘 ∈ Keys is a key,
𝑚 ∈ Dom is a message.

Tweak space might be empty: Twk = ∅ (more on that later).
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Why do we need FPE?

Two examples:

1. Database structure may be incompatible with encrypted
messages ⇒ restructure the database or use FPE;

2. Some applications may require the data to be in a pre-defined
format ⇒ rewrite an application from scratch or use FPE;

Block cipher is not enough: it acts as a permutation on the fixed
length binary strings (for instance, {0, 1}128 for «Kuznyechik»).
Even if Dom ⊆ {0, 1}𝑛, the result 𝑚 → 𝐸𝑘(𝑚) ∉ Dom with high
probability (due to its relatively small size in the real-world
situations and applications).
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Message space from the real world

Example (SNILS)
If we encrypt 9-digit individual insurance account number (SNILS),
the result must be 9-digit ciphertext, i.e.

Dom = {0, 1, … , 9}9

Example (CCN)
CCN consist of the following numbers:

6 digits — bank number,
6 digits — account number,
3 digits — checksum,

and all digits, except for account number (i.e., 9 out of 15), are
publicly available. In this case:

Dom = {0, … 9}6.
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Why do we use tweaks?

• Usual block cipher: big codebook (a set of pairs (𝑚, 𝐸𝑘(𝑚))),
hence hard to collect ⇒ ignore exhaustive attacks;

• Small domain size (and codebook) for FPE ⇒ severe practical
threat (dictionary attack);

Example (Dictionary attack)
CCNs from various banks can have the same account number ⇒
matching ciphertext blocks correspond to matching plaintext.

Bank number Account number Checksum
012345 𝐸𝑘(000111) 123

↕ same
987654 𝐸𝑘(000111) 456

The main goal of the (non-secret) tweak is to expand the set of
possible permutations;
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What is a good FPE algorithm?

• The cipher must look like a random permutation on the given
(usually small) domain Dom.

• An adversary can usually obtain all ciphertexts of all points in
the domain due to its small size (exhaustive search), hence the
tweak.

• The algorithm must be efficient.
• It is desirable to use existing well-studied primitives and
principles: block ciphers, Feistel networks.
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What is a good FPE algorithm formally?

• Lot of ways to formalize what we want from FPE algorithm;

• One of the possible formalizations: «weakly dependent»
permutations for different chosen 𝑡 ∈ Twk (tweakable
pseudorandom permutation);

Algorithm 1 Experiment Left
1: function INIT
2: for 𝑡 ∈ Twk do
3: 𝜋𝑡 ←𝑅 𝑃𝑒𝑟𝑚(Dom)
4: function 𝒪(𝑡,𝑚)
5: return 𝜋𝑡(𝑚)

Algorithm 2 Experiment Right
1: function INIT
2: 𝑘 ←$ Keys
3: function 𝒪(𝑡,𝑚)
4: return 𝐸𝑡𝑘(𝑚)
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Formalization

Let 𝐴𝑑𝑣𝑇𝑃𝑅𝑃𝐸 (𝒜) be the advantage of the adversary 𝒜 in the
distinguishing attack, i.e.:

𝐴𝑑𝑣𝑇𝑃𝑅𝑃𝐸 (𝒜) = ℙ[𝑅𝑖𝑔ℎ𝑡(𝒜) → 1] − ℙ[𝐿𝑒𝑓𝑡(𝒜) → 1].

The probability ℙ[⋅] ∶

1. is taken over random choise of permutations 𝜋𝑡 ←𝑅 𝑃𝑒𝑟𝑚(Dom)
for different 𝑡 and random coins of 𝒜 (if any) — in case of Left
experiment;

2. is taken over random choise of key 𝑘 ←$ Keys and random
coins of 𝒜 (if any) — in case of Right experiment;

The algorithm is «good» if the maximal advantage is «small».
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Proposed solutions



Overview of solutions

• NIST standardization: FF1-FF3, FEA-2;

• General techniques: cycle walking;
• Small domain solutions: prefix encryption, various shuffling
techniques;

• Primitive layer solutions (SPF);
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FF1, FF3

• Semi-balanced Feistel network over the group Dom = ℤ𝑀 × ℤ𝑁 ,
where 𝑀 ≈ 𝑁

• The algorithm takes the key 𝑘 ∈ Keys, the element to be
encrypted (𝐴, 𝐵) ∈ Dom, and the tweak 𝑡 ∈ Twk (usually tweak
space Twk is of the form {0, 1}𝑡𝑙𝑒𝑛).

• One round is of the form:

(𝐴, 𝐵) → (𝐵, 𝐴 ⊞ 𝑄),

where 𝑄 = 𝑃𝑅𝐹𝑘(𝐵, 𝑡, 𝑖, 𝑝𝑎𝑟𝑎𝑚𝑠), 𝑖 is the round number, 𝑝𝑎𝑟𝑎𝑚𝑠
is some (non-secret) information, PRF is a pseudorandom
function

• Suggestion: 10 rounds of Feistel network are enough for FF1
security and 8 rounds for FF3.
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FF1, FF3: PROs and CONs

1. Patarin articles on the (classical) Feistel networks;

2. Papers on the Feistel networks over groups ℤ𝑀 × ℤ𝑁 ;
3. But: no provable security;
4. But: bad tweak mixing in FF3 ⇒ some specific attacks on FF3;
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FF2

Given parameters: 𝑘 ∈ Keys, 𝑡 ∈ Twk, 𝑚 ∈ Dom.

Two-step procedure:

1. Derive the secret key for the given tweak:

𝑠𝑘 = 𝐸𝑘(𝑡) ∈ {0, 1}128;

2. Encrypt the message with obtained key

𝑐 = 𝐹𝑒𝑖𝑠𝑡𝑒𝑙𝑠𝑘(𝑚);

Main flaw: the key length |𝑠𝑘| = 128 is too short to guarantee the
strong security bound.
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FEA-2

One round of the proposed scheme:

𝑋𝑎 || 𝑋𝑏 — left and right blocks of the message;
𝑇𝑎 || 𝑇𝑏 — left and right blocks of the tweak;

𝑅𝐾𝑎 || 𝑅𝐾𝑏 — left and right blocks of the round key;

It is assumed that |𝑇𝑎| = |𝑋𝑏|, |𝑇𝑎| + |𝑇𝑏| = 128 = |𝑅𝐾𝑎| = |𝑅𝐾𝑏|).
13



FEA-2 features

Some remarkable features of the algorithm:

1. Tweak is embedded at the primitive layer, i.e., is used in each
encryption round.

2. FEA-2 is able to encrypt messages of various lenghts,
Dom = {0, 1}𝑛, where 𝑛 ∈ {8, 9, … 128}.

3. The number of rounds depends on the block size and starts
with 18.

4. The key lenght is not fixed: 𝑘𝑙𝑒𝑛 ∈ {128, 192, 256}.
5. Encryption on the domain Dom = {1, … , 𝑁} is done via
embedding Dom ⊆ {0, 1}𝑛 combined with the cycle walking idea
(more on that later).

6. Linear and differential analysis, related-key attacks and threats,
specific to Feistel networks over small domains, were
investigated. It was claimed that for the domains of size greater
than 28 the proposed attacks require at least 264 encryptions on
different parameters 𝑡 ∈ Twk.

14



FEA-2 features

Some remarkable features of the algorithm:

1. Tweak is embedded at the primitive layer, i.e., is used in each
encryption round.

2. FEA-2 is able to encrypt messages of various lenghts,
Dom = {0, 1}𝑛, where 𝑛 ∈ {8, 9, … 128}.

3. The number of rounds depends on the block size and starts
with 18.

4. The key lenght is not fixed: 𝑘𝑙𝑒𝑛 ∈ {128, 192, 256}.
5. Encryption on the domain Dom = {1, … , 𝑁} is done via
embedding Dom ⊆ {0, 1}𝑛 combined with the cycle walking idea
(more on that later).

6. Linear and differential analysis, related-key attacks and threats,
specific to Feistel networks over small domains, were
investigated. It was claimed that for the domains of size greater
than 28 the proposed attacks require at least 264 encryptions on
different parameters 𝑡 ∈ Twk.

14



FEA-2 features

Some remarkable features of the algorithm:

1. Tweak is embedded at the primitive layer, i.e., is used in each
encryption round.

2. FEA-2 is able to encrypt messages of various lenghts,
Dom = {0, 1}𝑛, where 𝑛 ∈ {8, 9, … 128}.

3. The number of rounds depends on the block size and starts
with 18.

4. The key lenght is not fixed: 𝑘𝑙𝑒𝑛 ∈ {128, 192, 256}.
5. Encryption on the domain Dom = {1, … , 𝑁} is done via
embedding Dom ⊆ {0, 1}𝑛 combined with the cycle walking idea
(more on that later).

6. Linear and differential analysis, related-key attacks and threats,
specific to Feistel networks over small domains, were
investigated. It was claimed that for the domains of size greater
than 28 the proposed attacks require at least 264 encryptions on
different parameters 𝑡 ∈ Twk.

14



FEA-2 features

Some remarkable features of the algorithm:

1. Tweak is embedded at the primitive layer, i.e., is used in each
encryption round.

2. FEA-2 is able to encrypt messages of various lenghts,
Dom = {0, 1}𝑛, where 𝑛 ∈ {8, 9, … 128}.

3. The number of rounds depends on the block size and starts
with 18.

4. The key lenght is not fixed: 𝑘𝑙𝑒𝑛 ∈ {128, 192, 256}.
5. Encryption on the domain Dom = {1, … , 𝑁} is done via
embedding Dom ⊆ {0, 1}𝑛 combined with the cycle walking idea
(more on that later).

6. Linear and differential analysis, related-key attacks and threats,
specific to Feistel networks over small domains, were
investigated. It was claimed that for the domains of size greater
than 28 the proposed attacks require at least 264 encryptions on
different parameters 𝑡 ∈ Twk.

14



FEA-2 features

Some remarkable features of the algorithm:

1. Tweak is embedded at the primitive layer, i.e., is used in each
encryption round.

2. FEA-2 is able to encrypt messages of various lenghts,
Dom = {0, 1}𝑛, where 𝑛 ∈ {8, 9, … 128}.

3. The number of rounds depends on the block size and starts
with 18.

4. The key lenght is not fixed: 𝑘𝑙𝑒𝑛 ∈ {128, 192, 256}.

5. Encryption on the domain Dom = {1, … , 𝑁} is done via
embedding Dom ⊆ {0, 1}𝑛 combined with the cycle walking idea
(more on that later).

6. Linear and differential analysis, related-key attacks and threats,
specific to Feistel networks over small domains, were
investigated. It was claimed that for the domains of size greater
than 28 the proposed attacks require at least 264 encryptions on
different parameters 𝑡 ∈ Twk.

14



FEA-2 features

Some remarkable features of the algorithm:

1. Tweak is embedded at the primitive layer, i.e., is used in each
encryption round.

2. FEA-2 is able to encrypt messages of various lenghts,
Dom = {0, 1}𝑛, where 𝑛 ∈ {8, 9, … 128}.

3. The number of rounds depends on the block size and starts
with 18.

4. The key lenght is not fixed: 𝑘𝑙𝑒𝑛 ∈ {128, 192, 256}.
5. Encryption on the domain Dom = {1, … , 𝑁} is done via
embedding Dom ⊆ {0, 1}𝑛 combined with the cycle walking idea
(more on that later).

6. Linear and differential analysis, related-key attacks and threats,
specific to Feistel networks over small domains, were
investigated. It was claimed that for the domains of size greater
than 28 the proposed attacks require at least 264 encryptions on
different parameters 𝑡 ∈ Twk.

14



FEA-2 features

Some remarkable features of the algorithm:

1. Tweak is embedded at the primitive layer, i.e., is used in each
encryption round.

2. FEA-2 is able to encrypt messages of various lenghts,
Dom = {0, 1}𝑛, where 𝑛 ∈ {8, 9, … 128}.

3. The number of rounds depends on the block size and starts
with 18.

4. The key lenght is not fixed: 𝑘𝑙𝑒𝑛 ∈ {128, 192, 256}.
5. Encryption on the domain Dom = {1, … , 𝑁} is done via
embedding Dom ⊆ {0, 1}𝑛 combined with the cycle walking idea
(more on that later).

6. Linear and differential analysis, related-key attacks and threats,
specific to Feistel networks over small domains, were
investigated. It was claimed that for the domains of size greater
than 28 the proposed attacks require at least 264 encryptions on
different parameters 𝑡 ∈ Twk. 14



Cycle walking

If Dom is «close» to {0, 1}𝑛 (i.e. |Dom|
2𝑛

≈ 1) for some standard block size
𝑛, then the following approach works:

1. For 𝑚 ∈ Dom compute 𝑐 ← 𝐸𝑘(𝑚).
2. If 𝑐 ∈ Dom, then 𝑚 maps to 𝑐.
3. If 𝑐 ∉ Dom, then 𝑐 ← 𝐸𝑘(𝑐) and go to step 2.

• The algorithm is provably secure;
• The expected number of encryption operations (before one
obtains 𝑐 ∈ Dom) is determined by the quantity 2𝑛

|Dom|
;

• Side-channel attacks (time) does not give an information to the
adversary;
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Prefix encryption

If the domain Dom is small enough, then we can use the following
idea:

1. Compute the number list:

𝑆 = (𝐸𝑘(0), … , 𝐸𝑘(𝑁 − 1));

2. To encrypt the message 𝑚 ∈ ℤ𝑁 map 𝑚 to the position of 𝐸𝑘(𝑚)
in the sorted list.

The method is provably secure but requires 𝑂(𝑁) encryption
operations at the initial step and 𝑂(𝑁) memory to store the table.
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Attacks on the solutions



Attack on FF2

Assume that the adversary has 𝑛 ciphertexts of the form:

𝑐𝑗 = 𝐹𝑒𝑖𝑠𝑡𝑒𝑙𝐸𝑘(𝑡𝑗)(𝑚).

Then he can try different keys 𝑠𝑘𝑗 ∈ {0, 1}128 and obtain

𝑐′𝑗 = 𝐹𝑒𝑖𝑠𝑡𝑒𝑙𝑠𝑘𝑗 (𝑚).

If 𝑐′𝑗 = 𝑐𝑖 , then (with high probability) 𝑠𝑘𝑗 = 𝐸𝑘(𝑡𝑗), i.e., he can recover
the derived key for the given tweak 𝑡𝑗 without knowing the value of
master-key 𝑘.
If the number of ciphertexts 𝑛 = 2𝑢, then the collision is expected to
occur after 2128−𝑢 steps.
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Attacks on FF1, FF3

Two types of attacks:

1. Exploit the wrong design of tweak mixing (specific for FF3). In
these attacks, the adversary adaptively chooses plaintexts to be
encrypted on two selected 𝑡1, 𝑡2 ∈ Twk.

2. Intrinsic feature of Feistel network over small domains: the
proposed number of rounds is not enough to hide the plaintext
statistics (a slight bias after one round of Feistel network, which
can be amplified using different tweaks 𝑡 ∈ Twk for the same
message).
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Attacks on FF1, FF3: remarks

Some remarks:

• The number of required texts formally exceeds the domain size;
• In fact only a minimal (even constant) number of texts are
required for each 𝑡 ∈ Twk.

• This fact was not reflected in the original security model. All the
proofs were obtained in a weaker model, in which the adversary
cannot make the number of requests to the oracle that exceeds
the domain size.
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Notation

The following notation is used:

𝑛 — bitsize of one half of the message 𝑚 ∈ Dom, i.e.
Dom = {0, 1}2𝑛;

𝑁 — number of different halves of the message, i.e.
𝑁 = 2𝑛;

𝑟 — number of rounds in Feistel network;
𝑞 — number of oracle queries;
𝑡 — time complexity (in parrots);
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Short summary of attacks: 1

Year: 2004
Threat: distinguisher, generic Feistel network

Resources: 𝑞𝑡 = 𝑁𝑟−2 encryptions queries on different 𝑡 ∈ Twk,
two messages per tweak (𝑞𝑒 = 2), time complexity
𝑡 ≈ 𝑞𝑡𝑞𝑒

Comments: attack distinguishes Feistel network output from a
random string
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Short summary of attacks: 2

Year: 2016
Threat: message recovery, generic Feistel network

Resources: 𝑞𝑡 = 𝒪(𝑛 ⋅ 𝑁𝑟−2) encryptions queries on different
𝑡 ∈ Twk, 3 messages per tweak (𝑞𝑒 = 3), time
complexity 𝑡 ≈ 𝑞𝑡

Comments: 1. The adversary knows ciphertexts of three different
messages (𝑥, 𝑥′, 𝑥∗) under tweaks 𝑡1, … , 𝑡𝑞, and
recovers the message 𝑥.

2. The message 𝑥′ is fully known to the adversary but
unrelated to 𝑥.

3. 𝑥∗ and 𝑥 share a common right side; only the left
side of 𝑥∗ is known to the adversary.

4. The attack is not adaptive; only the knowledge of
plaintexts is required.
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Short summary of attacks: 3

Year: 2017
Threat: Entire codebook recovery for 𝑡1, 𝑡2 for FF3.

Resources: 𝑞𝑒 = 𝒪(𝑁
11
6 ) encryption queries on two tweaks

𝑡1, 𝑡2 ∈ Twk (𝑞𝑡 = 2); time complexity 𝑡 = 𝒪(𝑁5)
Comments: 1. The adaptive choice of messages is required.

2. We assume that the adversary can control the
choice of 𝑡 ∈ Twk. The attack does not work if the
adversary does not have complete control over 𝑡.
Partial truncation of the tweak can be applied to
prevent the threat.
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Short summary of attacks: 4

Year: 2018
Threat: Recovery of multiple messages 𝑚1, … ,𝑚𝑝 generic

Feistel network
Resources: 𝑞𝑡 = 𝒪(𝑁𝑟−4(𝑛 ⋅ 𝑁 + 𝑝)) different tweaks, number of

plaintexts per tweak: 𝑞𝑒 = 𝒪(𝑛 ⋅ 𝑁), time complexity
𝑡 = 𝒪(𝑛 ⋅ 𝑁𝑟−2(𝑛 + 𝑝))

Comments: 1. The attack is not adaptive; only the knowledge of
plaintexts is required.

2. It is assumed that the adversary knows
ciphertexts for 𝜏 known plaintexts 𝑥1, … 𝑥𝜏 and for
𝑝 messages (plaintexts) under attack 𝑚1, …𝑚𝑝 for
𝑞 different tweaks.

3. It is assumed that right halves of 𝑥1, … , 𝑥𝜏
comprise all possible right halves of messages.

4. The correlation between 𝑥1, … , 𝑥𝜏 and 𝑚1, …𝑚𝑝 is
not required.
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Short summary of attacks: 5

Year: 2019
Threat: Entire codebook recovery for 𝑡1, 𝑡2 for FF3.

Resources: 𝑞𝑒 = 𝒪(𝑁
11
6 ) encryption queries on two tweaks

𝑡1, 𝑡2 ∈ Twk, 𝑞𝑡 = 2; time complexity 𝑡 = 𝒪(𝑁
17
6 )

Comments: 1. The attack is the strengthened version of the first
attack on FF3.

2. The adaptive choice of messages is required.
3. The attack does not work if the adversary cannot
obtain full control over 𝑡.
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Recent attack on Feistel Networks (2020)

Algorithm Resourses Threat
FF1, 𝑘𝑙𝑒𝑛 = 128, 𝑟 = 10 𝑞 = 260, 𝑡 = 270 Distinguishing attack
FF3-1, 𝑘𝑙𝑒𝑛 = 128, 𝑟 = 8 𝑞 = 280, 𝑡 = 2100 Distinguishing attack
FEA-2, 𝑘𝑙𝑒𝑛 = 128, 𝑟 = 18 𝑞 = 280, 𝑡 = 284 Distinguishing attack
FEA-2, 𝑘𝑙𝑒𝑛 = 256, 𝑟 = 24 𝑞 = 280, 𝑡 = 284 Distinguishing attack
FEA-1, 𝑘𝑙𝑒𝑛 = 192, 𝑟 = 14 𝑞 = 236, 𝑡 = 2136 Key recovery
FEA-1, 𝑘𝑙𝑒𝑛 = 256, 𝑟 = 16 𝑞 = 248, 𝑡 = 2136 Key recovery
Generic Feistel network 𝑞 = 2𝑛(𝑟−4), 𝑡 = 2𝑛(𝑟−3) Distinguishing attack
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State of the art

Large domains: OK (disk encryption);
Tiny domains: OK (provably secure shuffling methods);
Small domains: no standardized provably secure solution so far, all

NIST and ISO candidates are (theoretically) broken.
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Quasigroup based FPE



Quasigroup

Definition (Quasigroup)
A set 𝑄 with a binary operation on it:

∘ ∶ 𝑄 × 𝑄 → 𝑄,

which obeys the following property:

for each 𝑎, 𝑏 ∈ 𝑄 there exist
unique 𝑥, 𝑦 ∈ 𝑄 such that:

𝑎 ∘ 𝑥 = 𝑏, 𝑦 ∘ 𝑎 = 𝑏.

Equivalently, operations of left and right multiplication

𝐿𝑎 ∶ 𝑄 → 𝑄, 𝐿𝑎(𝑥) = 𝑎 ∘ 𝑥

𝑅𝑎 ∶ 𝑄 → 𝑄, 𝑅𝑎(𝑦) = 𝑦 ∘ 𝑎

are bijections on 𝑄.
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Pseudorandom permutations on Q

We want to measure how close the composition of quasigroup
operations (for instance, left multiplications) to the random
permutation on 𝑄.

Algorithm 9 Experiment Left
1: function INIT(𝜆)
2: 𝜋 ←𝑅 𝑃𝑒𝑟𝑚(𝑄)
3: function 𝒪(𝑚)
4: return 𝜋(𝑚)

Algorithm 10 Experiment Right
1: function INIT(𝜆)
2: 𝑘1, … , 𝑘𝜆 ←𝑅 𝑄
3: function 𝒪(𝑚)
4: return 𝑘1 ∘ (𝑘2 ∘ (… (𝑘𝜆 ∘
𝑚)…)
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Adversary

An adversary 𝒜 tries to distinguish between random and
«structured» permutation.

𝐴𝑑𝑣𝑃𝑅𝑃𝑄 (𝒜) = ℙ[𝑅𝑖𝑔ℎ𝑡(𝒜) → 1] − ℙ[𝐿𝑒𝑓𝑡(𝒜) → 1].

𝐼𝑛𝑆𝑒𝑐𝑃𝑅𝑃𝑄 (𝑡, 𝑞) = max
𝒜∈𝐴(𝑡,𝑞)

(𝐴𝑑𝑣𝑃𝑅𝑃𝑄 (𝒜)),

where 𝐴(𝑡, 𝑞) is a set of adversaries, whose running time does not
exceed 𝑡 and who uses no more than 𝑞 oracle queries.
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Remarks

• The quantity 𝐼𝑛𝑆𝑒𝑐𝑃𝑅𝑃𝑄 (𝑡, 𝑞) directly depends on the structure of
the quasigroup 𝑄.

• We want it to be as small as possible for any given 𝑡, 𝑞.
• The inappropriate choice of quasigroup (i.e., 𝑄 = ℤ𝑁 ) can make
the problem trivial to solve.

• The problem might be hard for certain classes of quasigroups.
• For instance, for polynomially complete quasigroups: the
problem of deciding whether or not an equation over such a
quasigroup has a solution is NP-complete.
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Quasigroup based FPE

• Let 𝑄 be the quasigroup over the set Dom = {0, 1}𝑛 for some
«small» 𝑛.

• Two-step procedure:
1. given the key 𝑘 ∈ Keys and the tweak 𝑡 ∈ Twk, use some keyed
pseudorandom generator 𝑃𝑅𝐺 to produce a sequence of
«random-looking» and «independent» elements 𝑞𝑖 ∈ 𝑄, 𝑖 = 1, … , 𝜆,
where 𝜆 is the parameter of the scheme and is chosen based on
the quasigroup structure;

2. encrypt the message 𝑚 ∈ Dom using quasigroup operation.
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Possible operations

Some possible variants might be:

𝑚 → 𝐿𝑞𝜆(… 𝐿𝑞1(𝑚)…) = 𝑞𝜆 ∘ (… ∘ 𝑞2 ∘ (𝑞1 ∘ 𝑚)…), (1)

𝑚 → 𝑅𝑞𝜆(…𝑅𝑞1(𝑚)…) = (… (𝑚 ∘ 𝑞1) ∘ 𝑞2 …) ∘ 𝑞𝜆, (2)

𝑚 → 𝐷𝑞𝜆(…𝐷𝑞1(𝑚)…). (3)

The operation 𝐷𝑞𝑖 equals 𝐿𝑞𝑖 if 𝑖-th bit of output of some random
generator (for instance, based on values 𝑘 and 𝑡) is equal to 0, and
𝑅𝑞𝑖 otherwise.
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Quasigroup based FPE: theorem

Theorem
Let 𝑞𝑡 be the maximal number of different tweaks, 𝑞𝑒 be the maximal
number of encryption queries per tweak, 𝑡 is the number of
operations (running time). Then:

𝐼𝑛𝑆𝑒𝑐𝑇𝑃𝑅𝑃(𝑡, 𝑞𝑡, 𝑞𝑒) ≤

≤ 𝐼𝑛𝑆𝑒𝑐𝑃𝑅𝐺(𝑞𝑡, 𝑡 + 𝜆𝑞𝑡𝑞𝑒) + 𝑞𝑡𝐼𝑛𝑆𝑒𝑐𝑃𝑅𝑃𝑄 (𝑞𝑒, 𝑡 + (1 + 𝜆2)𝑞𝑒𝑞𝑡).
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Conclusions

Further areas of research may include:

1. Consideration of specific classes of quasigroups as a basis for
proposed cryptosystem (with an emphasis on the polynomially
complete quasigroups);

2. Estimating the hardness of quasigroup problem based on
existing results on NP-completeness;

3. Implementing the cryptosystem over specific quasigroups and
estimating statistical properties of resulting algorithms;
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Summary

In this report:

1. FPE: statement of the problem;
2. Proposed solutions;
3. Attacks;
4. Quasigroup based FPE;
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