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NOTATION AND DEFINITIONS

F, - a finite field of g elements, where g =p™, p € P, m € N¥,

F," - an n-dimensional vector space over the field F,, where n € N¥;

P,"* - the set of all mappings of F," into F * or g-valued vectorial functions;
A,"*and L,"* the subsets of all affine fnd linear mappings from the set P,".

In the case k < n, a vectorial function F € P,"¥ is called balanced if for any y € F ¥
the condition F -1 (y) = g™ is satisfied.

B,"* - the subset of all balanced vectorial functions from the set P, .
For k = n the set B,”" coincides with the set of permutations of the space F".
S," - the subset of all permutations of the space F ",

p(F,F’) - the Hamming distance in the space F 9" between the functions F
and F’ from Pk,



ON APPROXIMATION
OF DISCRETE FUNCTIONS BY LINEAR ANALOGUES

Two approaches to determining the measure of closeness of a discrete function
to linear ones:

based on an estimate of the Hamming distance from a function to a set of
linear mappings;

based on the difference properties of the function.

[Glukhov M.M., “On the approximation of discrete functions by linear functions”, Mat. Vopr. Kriptogr.,
7:4 (2016), 29-50. In Russian]

Both approaches are widely used in cryptography.

The present paper considers the possibilities of approximating g-valued
vectorial functions by affine analogs in the framework of the first approach.

Let’s now imagine how this approach was previously used for the cases of
Boolean functions, g-valued functions and g-valued vectorial functions.



BOOLEAN FUNCTIONS

Soviet cryptographers in the 1960s studied the statistical structure of Boolean
functions, which for the function{e P,"1is the set %A/| le L,"1}, where A/ =2"1- p(f,]).
The value of the maximum modulus A, of such coefficients can be considered as a
measure of closeness to the set A,”!. It was shown that the lower bound A, > 27?1 js

achievable only for even n for the class of functions called minimal. [Glukhov M. M., “On
the approximation of discrete functions by linear functions”... + Tokareva N. “Bent functions: results and
applications to cryptography”, Academic Press, Elsevier, Global, 2015, 220 p.]

A few years later, for even n, Boolean bent functions were defined, which are

essentially minimal. [Rothaus O. S., “On "bent" functions”, Journal of Combinatorial Theory, Series A,
20:3 (1976), 300-305]

As a similar measure of closeness of the function f € P,”! to the set A,"1, the value
N:=min {p(f,a) | a € Az”'li]was defined, which was called the nonlinearity of the
function f.olt was shown that the upper bound

NfS 217-1_ 211/2—1 (1)

is achievable only for even n for Boolean bent functions. [Meier W., Staffelbach O.

“Nonlinearity criteria for cryptographic functions”, EUROCRYPT 1989, LNCS 434, Springer, Berlin,
Heidelberg, 1990, 549-562]




Q-VALUED FUNCTIONS

The statistical structure of g-valued functions, as well as its analogue with respect to

the set of affine functions, were considered by Ambrosimov A.S. [Ambrosimov A.S.,
“Approximation of k-ary functions by functions from the given system”, Fundam. Prikl. Mat., 3:3,

(1997), 653-674. In Russian] Taking into account the normalization used by him, the latter,
which we will call the extended statistical structure, for the function f € P " has the
form {b(fa) | ae A"}, where d(£a) =(q-1)/q - p(f.))/q".

By analogy with Boolean case, the Hamming distance from the function f € P,"!to

the set A1 was called nonlinearity of the function f. [Nyberg K. “On the construction of
highly nonlinear permutations”, EUROCRYPT 1992, LNCS 658, Springer, Berlin, Heidelberg, 1993, 92-98]

In previous works of the author, the study of the extended statistical structure and
nonlinearity of g-valued functions was continued. In particular, the upper bound

Ne< (g-Dg™' -g"#1 (2)
was proved, which, as was reported at the previous symposium, for g > 2, even for
even n, is achieved only for a part of the g-valued bent functions.




Q-VALUED VECTORIAL FUNCTIONS

In the recently published work of the author, the study of the extended statistical
structure and nonlinearity of g-valued vectorial functions was started. [Ryabov V.G,
“Approximation of vector functions over finite fields and their restrictions to linear manifolds by affine
analogues”, Diskr. Mat., 34:2 (2022), 83-105. In Russian]

For the mapping F € P,"X, the extended statistical structure is the set {0(£A4) |A € A"},

where 8(EA) = (g“- 1)/ g~- p(F,A)/q", and the nonlinearity, by analogy with the
previous definitions, is given by the formula
Ny = min {p(F,A) | A€ A4 (3)

The value of the maximum coefficient of the extended statistical structure o-and the
nonlinearity Nr can be considered as a measure of closeness of the mapping F to the
set A,"¥. These parameters are related by the equality N;= (g“- 1) g™*- drq"
An upper bound was also obtained

Ne< (§°- D@ - g% (4)




OTHER TYPES
OF NONLINEARITY OF Q-VALUED VECTORIAL FUNCTIONS

To date, other types of nonlinearity of g-valued vectorial functions, which are in
demand in linear and differential methods of cryptanalysis, have become widespread.

An important place is occupied by the nonlinearity defined for the mapping F € P,
with a set of coordinate functions f= (f, ..., fi) by the formula

NLe=min {N,n| w e F\{0}}. (5)
[Nyberg K. “On the construction of highly nonlinear permutations”...]
Using an approach based on the difference properties of a vectorial function from
P,7% involves studying the structure {5#® |a eF,/\ {0}, b € F}}, where

5 b= |{xeF,"| (x® a) © Ax) = b}|. The value ofthe maximum coeff1c1ent of
thls structure §Fdef1nes another type of nonlinearity of the vectorial function £

However, it should be noted that when using NL: and d,to measure the proximity
of the mapping F to the set A%, collisions may occur when vectorial functions
that are not affine are equated to affine ones.




BENEFITS OF USING NONLINEARITY N; "€

The previously used proximity measures for vector functions were not metrics. In
contrast, the Hamming distance used here is a metric in a space representing all
mappings from P, "X,

It is directly related to the maximum size of a piecewise affine region and allows one
to obtain a lower bound on the number of such regions for all possible
representations of a g-valued vectorial function in piecewise atfine form.

For clarification, we use another well-known concept. Let us divide the space F " into
sets on which the restrictions of the vectorial function F € P,"¥ coincide with the
restrictions of some affine mappings. The smallest number of such sets under all

possible partitions is called the order of affinity and is denoted by ard F. [Fomichev V.M.,
‘Discrete mathematics and cryptology”, Dialog-MIFI, Moscow, 2003, 397 p. In Russian].

ard F = [q"/(q"- N¢)|. (6)
The use of an extended statistical structure creates a basis for studying the
Bossibilities of representing g-valued mappinﬁs in a piecewise affine form, which can
e useful in the case of applying analysis methods that use affine approximations
(see, for example, [Gorshkov S.P., Dvinyaninov A.V., “Lower and upper bounds for the affinity order
of transformations of Boolean vector spaces”, Prikl. Diskr. Mat., 2(20), (2013), 14-18. In Russian]).



PROPERTIES OF NONLINEARITY N¢

[Ryabov V.G., “Approximation of vector functions over finite fields and their restrictions to linear
manifolds by affine analogues”...]

> it was shown that the unordered set of coefficients of the extended statistical
structure {0(£A)} and the nonlinearity N, are invariants for EA-equivalent g-
valued vector functions from P, "k;

> Ne=max{Nn| weF/} =NL.
For the balanced mapping G € B,"¥, we obtain a refinement of the upper bound (4)
Ne< (g~ Dg™ - g7 - 1. (7)
It follows from (6) that the permutation S € 5" satisfies the upper bound
N.<qg"- 2. (8)
1

Taking into account the correspondence of permutations S € S,” and s€ S ', we
have a chain of inequalities 0 < NL. < N. < N. < g" - Z.



THE CASE
OF BOOLEAN BALANCED MAPPINGS AND PERMUTATIONS

In the case of balanced mappings and permutations, following from (1) the upper
bound of the alternative nonlinearity of the form 271 - 27/2-1 can be refined using
the well-known estimate of the nonlinearity of balanced functions, namely, for
G e B, (S€S,"), n= 4, we have the inequality of the form

NL < 201— 20/2-1_ 2. (9)

|Seberry J., Zhang X.-M., Zheng Y., “Nonlinearity and propagation characteristics of balanced
Boolean functions”, Information and Computation, 119:1, (1995), 1-13]

Using the Sidelnikov-Chabaud-Vaudenay’s bound, we also get an upper bound for
a permutation S€ S, of the form NL; < 27/ - Zn-1)/2,

Consider the Boolean permutations from S,%. Among the "good" permutations, the
researchers include those generated by the power function x? over the field F;
ford=7 11, 13, 14. Indeed, all these four permutations have, in accordance with (9),
the maximum possible alternative nonlinearity equal to 4, a nonlinearity equal to 9,
and in accordance with (6) an affinity order greater than or equal to 3.




THE CASE
OF BOOLEAN BALANCED PERMUTATIONS (continued)

Adams C. and Tavares S. proposed "good" Qermutations in their opinion, the first of
which was called the permutation 5" € S Jgenerated the permutation of the form
s’={9 13,10, 15 11, 14,7, 3,12, 8 6, 2, é, ,0, 51eS, 1 {Adams C., Tavares S., “Good S-
boxes are easy to find”, CRYPTO 1989, LNCS 435, Springer,llger in, Heidelberg, 1990, 612-615]

Permutation $”, like the previous four permutations, has the maximum possible
alternative VL. nonlinearity equal to 4 However, its nonlinearity N is equal to &and, as
can be seen from the table below, its order of affinity ard S” is equal to Z.

x 0000 o0O0O1 OO10 0OO11 0100 0101 O110 O111 1000 1001 1010 1011 1100 1101 1110 1111
$’ 1001 1101 1010 1111 1011 1110 O111 0011 1100 1000 0110 0010 0100 0001 0000 0101

A, 1001 1101 0OO11 0111 1101 1001 0111 0OO11 1100 1000 0110 0010 1000 1100 OO10 0110

A, 1110 1011 1010 1111 1011 1110 1111 1010 O0OO1 0100 0101 OOOO 0100 0001 0000 oO101

The reverse situation is also possible. For example, for the permutation S” € S,?
generated by the permutation s” from Appendix “A” of GOST R 34.11-94 of the form
s”=1{6,12,7,1,5,15,13,8,4,10,9, 14,0, 3, 11, /2\} € 5,1, the value of the alternative
nonlinearity NVL¢- is only Z, but its nonlinearity 1S equal to 9, and the order of affinity
ard S”is equal to 5.
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ESTIMATES FOR THE DISTRIBUTION
OF NONLINEARITY OF BALANCED MAPPINGS AND PERMUTATIONS

Consider a set of mappings with nonlinearity not exceeding a given value of the form
{Fe P, | Nr < r}, where 0 <r < q"(in what follows, we will use the short notation

{N: < r}) As follows from (4), for r > (g¥ - 1)g™k- ”/Z‘k the set {N; < r} coincides
with the entire set P, ¥

In the case of k=1, it is shown that for Boolean functions for 0 < r < 2m1- 221 the

following mequahty holds: [{N; < r}| < 2™1 )., r(2"). [Zubkov A.M., Serov A.A., “Bounds for
the number of Boolean functions admlttlng affine approximations of a given accuracy” D|screte Math.

Appl., 20:5-6 (2010), 467-486] This result was generalized to the case of g-valued

functions. [Ryabov V.G., “Approximation of restrictions of g-valued logic functions to linear manifolds
by affine analogues”, Discrete Math. Appl., 31:6 (2021), 409-419]

In the case of an arbitrary k, with a random and equally probable choice of the
function F from the set P,"kand 0 < r < (g“- 1) g™* - g¥/%7*, for the probability of
the event {N: < r}the fo?lowmg estimate was obtained:

P(Ne<r)< gt 19Dy 7 (") (g% - 1). (10)

[Ryabov V.G., “Approximation of vector functions over finite fields and their restrictions to linear
manifolds by affine analogues”...]




ESTIMATES FOR THE DISTRIBUTION OF NONLINEARITY
OF BALANCED MAPPINGS AND PERMUTATIONS (continued)

The following theorem holds for balanced mappings.

Theorem. Let the mapping G be chosen randomly and with equal probability from the
set B,"*. Then for 0 <r < g" - g™ for the probability of the event {N; < r} we have

the following estimate
P(Ne<r)< (gDl n=F"(@"""- ") X iig" 1/(@" -\ X o' (-1)7 /). (11)
Corollary. Let the mapping S be chosen randomly and with equal probability from the

set S,". Then for 0 <r < q" - g™ for the probability of the event {Ns < r} we have the
following estimate

P(Ns< 1) <TI4=" (""" - q") X i’ 1/(@"- )L X o' (-1)' /1. (12)

Applying formulas (10) and (12) to mappings from P,%# and permutations from 5,4, we
obtain the relations P (N < 7)< 0,12 and P (N < 7) < 0,37. Thus, the nonlinearity of

most Boolean mappings of the space F,? into itself and permutations of this space is
greater than or equal to 8.
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CONSTRUCTION OF HIGHLY NONLINEAR VECTORIAL FUNCTIONS

For g = 2 and even values of n = 2k, the alternative nonlinearity reaches the upper
bound in (1) only in the case of Boolean vectorial bent functions.

For g > 2 and k = 1, not all bent functions have maximum alternative nonlinearity (2)
[Ryabov V.G., “Nonlinearity of bent functions over finite fields”, Mat. Vopr. Kriptogr., 12:4 (2021), 87—
98. In Russian]. For k > 1, a similar situation occurs for g-valued vectorial bent functions.

Method. For q = p™, m = 2and an even n/m, we take the bent function f € P,/m%and
represent the field F, as an m-dimensional vector space on the field F,. Then the
mapping F whose coordinate functions are the coordinates f in this representation is a

vectorial bent function from P,»™ [Ambrosimov A.S., “Properties of bent functions of g-valued

logic over finite fields”, Discrete I\/!at%. Appl., 4:4 (1994), 341-350; Ryabov V.G., “Criteria for the
Maximum Nonlinearity of a Function over a Finite Field”, Diskr. Mat., 33:3 (2021), 79-91. In Russian].

Example. Take two bent functions from Ps?!: f; = x;x, with nonlinearity N; =64 and
f2 = x2D 3 x,? with maximum nonlinearity Ne, = 71 [Ryabov V.G., “Maximally nonlinear
functions over finite fields”, Diskr. Mat., 33:1 (2021), 47-63. In Russian]. The resulting vector
functions from P;%? have the form: I-;z = {2x x3€B)§,X4€BX2X , X XD x,x,} and
F,={2x°P 2x 7P x /P 2x,x Dx;x,, X, @XZZ@Z)@ @ Zx,x,}. For their alternative
nonlinearity: NL,, =48 and NL.,= 51. For nonlinearity and order of affinity: N, = 64
and N, = 68; ard'F,>5and ard F, > 7.
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CONSTRUCTION OF HIGHLY NONLINEAR
VECTORIAL FUNCTIONS (continued)

In the case p = 2, if the alternative nonlinearity of a Boolean vectorial function F € P,"?
satisfies the condition NL;= 271 - 2%/2-1 then the following inequalities hold:

N> 3 (272-2v%2),ard F >3ifn =4 6 andard F>4ifn> 8 (12)

For ndivisible by 4 the relations (12) hold for the Boolean vectorial bent function
from P,"2, which consists of the coordinates of the bent function from P21,

[Ryabov V.G. ”APproximation of vector functions over finite fields and their restrictions to linear
manifolds by affine analogues”...].

In the case p = 3, the following statement is true.

Statement. If the alternative nonlinearity of a Boolean vectorial function F € P;"?
satisfies the condition NL.=2 - 31 - 37/2-1 then the following inequalities hold:

N> 4- (2372 - 3122,
ard F = 4,if n = 2, ard F = 7)ifn = 4, (13)
ardFF > 8ifn = 6 ardF > 9,ifn> 8

Corollary. For q = 9 and n divisible by 4, for a vector bent function F € P;"? consisting of
the coordinates of a maximally nonlinear bent function fe€ P,", the relations (13) hold.



THANK YOU FOR YOUR
ATTENTION!

E-mail: 4vryabov@gmail.com



