About “k-bit security” of MACs based on hash function Streebog

Vitaly Kiryukhin

LLC «SFB Lab», JSC «InfoTeCS»

CTCrypt 2023
June 9, 2023

vitaly.kiryukhin@sfblaboratory.ru
Informal definition

A keyed cryptoalgorithm is “k-bit secure” (to some threat) if the attacker’s probability of success is bounded by

\[p \leq \frac{t}{2^k} \]

t – computational power of the adversary

k – key length in bits
Informal definition

A keyed cryptoalgorithm is “*k*-bit secure” (to some threat) if the attacker’s probability of success is bounded by

\[p \leq \frac{t}{2^k} \]

\(t \) – computational power of the adversary

\(k \) – key length in bits

Further in the presentation, we use the term “*k*-bit security” simultaneously for key recovery, forgery, and distinguishing
Streebog is a keyless hash function

- Modified MD-structure (checksum and counters have been added)
- Compression function \(g : V^n \times V^n \times V^n \rightarrow V^n, n = 512 \) bit
- Finalization with message bit-length \(L \) and checksum \(\Sigma \)
From keyless to keyed

Two provably secure ways to transform Streebog to a keyed hash function:

- double hashing
 \[\text{HMAC-Streebog}(K, M) = H((K \oplus opad)||H(K \oplus ipad||M)) \]

- key prepending
 \[\text{Streebog-K}(K, M) = H(K||M) \]
Guaranteed security level

CTCrypt 2022:
– security proofs for HMAC-Streebog and Streebog-K,
but only $\frac{k}{2}$-bit security – enough for practical use, but far from ideal
Guaranteed security level

CTCrypt 2022:
– security proofs for HMAC-Streebog and Streebog-K,
but only $\frac{k}{2}$-bit security – enough for practical use, but far from ideal

Now, CTCrypt 2023:
– precise tight bounds, k-bit security for many cases
How to improve security bounds?

Bottleneck

Even if keyed Streebog is used properly with **random and uniform keys**, a lot of **related keys** appear **inside** it because of the checksum

New message ⇒ New Σ = \(m_1 \oplus \ldots \oplus m_L \) ⇒ New related key \(K \oplus Σ \)

Even more related keys in HMAC-Streebog
How to improve security bounds?

Bottleneck

Even if keyed Streebog is used properly with random and uniform keys, a lot of related keys appear inside it because of the checksum.

Related-key setting

In general case, the security degrades to $\frac{k}{2}$-bit.
How to improve security bounds?

Bottleneck
Even if keyed Streebog is used properly with random and uniform keys, a lot of related keys appear inside it because of the checksum.

Related-key setting
In general case, the security degrades to $\frac{k}{2}$-bit.

Example
- Query g with one input x under q different keys $K \leftarrow \Sigma_1, \ldots, K \leftarrow \Sigma_q$.
How to improve security bounds?

Bottleneck

Even if keyed Streebog is used properly with random and uniform keys, a lot of related keys appear inside it because of the checksum.

Related-key setting

In general case, the security degrades to $\frac{k}{2}$-bit.

Example

- Query g with one input x under q different keys $K \oplus \Sigma_1, \ldots, K \oplus \Sigma_q$.
- Store outputs y_1, \ldots, y_q in memory, $y_i = g(K \oplus \Sigma_i, x)$.
How to improve security bounds?

Bottleneck

Even if keyed Streebog is used properly with random and uniform keys, a lot of related keys appear inside it because of the checksum.

Related-key setting

In general case, the security degrades to $\frac{k}{2}$-bit.

Example

- **Query** g with one input x under q different keys $K \oplus \Sigma_1, ..., K \oplus \Sigma_q$
- **Store outputs** $y_1, ..., y_q$ in memory, $y_i = g(K \oplus \Sigma_i, x)$
- **Repeat** t times: guess \tilde{K}, compute $\tilde{y} = g(\tilde{K}, x)$, check $\tilde{y} \in \{y_1, ..., y_q\}$
- If $\tilde{y} = y_i$ then $\tilde{K} = K \oplus \Sigma_i$ and all keys are revealed.

The attack is successful if $t \cdot q = 2^k$, optimum at $t = q = 2^k$.2
How to improve security bounds?

Bottleneck

Even if keyed Streebog is used properly with *random and uniform keys*, a lot of **related keys** appear inside it because of the checksum.

Related-key setting

In general case, the security degrades to \(\frac{k}{2} \)-bit.

Example

- Query \(g \) with one input \(x \) under \(q \) different keys \(K \oplus \Sigma_1, ..., K \oplus \Sigma_q \)
- Store outputs \(y_1, ..., y_q \) in memory, \(y_i = g(K \oplus \Sigma_i, x) \)
- Repeat \(t \) times: guess \(\tilde{K} \), compute \(\tilde{y} = g(\tilde{K}, x) \), check \(\tilde{y} \in \{y_1, ..., y_q\} \)
- If \(\tilde{y} = y_i \) then \(\tilde{K} = K \oplus \Sigma_i \) and all keys are revealed
- The attack is successful if \(t \cdot q = 2^k \), optimum at \(t = q = 2^{\frac{k}{2}} \)
How to improve security bounds?

Bottleneck

Even if keyed Streebog is used properly with random and uniform keys, a lot of related keys appear inside it because of the checksum.

Related-key setting

In general case, the security degrades to $\frac{k}{2}$-bit.

\Rightarrow we should develop a more subtle related-key model and prove that this is sufficient for keyed Streebog.
Observation

Suppose we query different \(x_1, \ldots, x_q \) (instead of one \(x \)) under corresponding keys \(K \oplus \Sigma_1, \ldots, K \oplus \Sigma_q \)

\[
y_i = g(K \oplus \Sigma_i, x_i)
\]

Before the guessing, we can choose only one \(x_i \) and one “target” \(K \oplus \Sigma_i \), instead of any from \(\{K \oplus \Sigma_1, \ldots, K \oplus \Sigma_q\} \) in the general case

The success probability is \(\approx t \cdot 2^{-k} \) and does not depend on \(q \)

The situation is similar for the provable security approach
Detailed \textit{PRF-RKA} model

\textbf{PRF-RKA}

\[
\text{Adv}_{g}^{\text{PRF-RKA}^{\oplus}}(\mathcal{A}) = \Pr \left(K \xleftarrow{\text{R}} K; \mathcal{A}^{g_{K^{\oplus}}(\cdot)} \Rightarrow 1 \right) - \\
\quad - \Pr \left(K \xleftarrow{\text{R}} K; R_{i} \xleftarrow{\text{R}} \text{Func}(X, Y), \forall i \in K; \mathcal{A}^{R_{K^{\oplus}}(\cdot)} \Rightarrow 1 \right)
\]

The query \((x, \kappa)\) from \(\mathcal{A}\) is the pair (input, relation)

The resources of \(\mathcal{A}\):

- \(t\) computations; \(q\) queries to the oracle; \(r\) related keys;
- \(d\) different relations queried with the same \(x\) \((d \leq r \leq q)\).
Detailed PRF-RKA model

PRF-RKA

\[
\text{Adv}^{\text{PRF-RKA}}_{g}(\mathcal{A}) = \Pr \left(K \xleftarrow{\text{R}} K; \mathcal{A}^{g_{K\oplus}(\cdot)} \Rightarrow 1 \right) - \\
- \Pr \left(K \xleftarrow{\text{R}} K; R_i \xleftarrow{\text{R}} \text{Func}(X, Y), \forall i \in K; \mathcal{A}^{R_{K\oplus}(\cdot)} \Rightarrow 1 \right)
\]

The query \((x, \kappa)\) from \(\mathcal{A}\) is the pair (input, relation)

The resources of \(\mathcal{A}\):

- \(t\) computations; \(q\) queries to the oracle; \(r\) related keys;
- \(d\) different relations queried with the same \(x\) \((d \leq r \leq q)\).

Heuristic bound

\[
\text{Adv}^{\text{PRF-RKA}}_{g}(t, q, r, d) \leq \frac{t \cdot d}{2^k} \leq \frac{t \cdot r}{2^k} \leq \frac{t \cdot q}{2^k}
\]
Intuition behind the proof

A new model by itself is not enough, we need a completely new proof...
Intuition behind the proof

A new model by itself is not enough, we need a completely new proof...

- The values $Y_1, ..., Y_q$ are “almost random”

If there is no collision in $(IV, Y_1, ..., Y_q)$, then all inputs to $g(K \oplus \Sigma, \cdot)$ are different ($d = 1$)

Otherwise, the attacker has already achieved his goal, and we increase Adv by the collision probability
Theorem (PRF-security of Streebog-K)

\[\text{Adv}^{\text{PRF}}_{\text{Streebog-K}}(t, q, l) \leq \]

\[\leq \text{Adv}^{\text{PRF-RKA}}_{g^\land}(t', q', q', d = 1) + \text{Adv}^{\text{PRF}}_{\text{Csc}}(t', q, l') + \frac{q^2 + q}{2^{n+1}}, \]

\(t \) – computation resources of the adversary \((t' \approx t)\)

\(q \) – number of adaptively chosen messages \((q' = q + 1)\)

\(l \) – maximum length of the message (in \(n \)-bit blocks)
Theorem (PRF-security of HMAC-Streebog)

\[\text{Adv}_{\text{HMAC-Streebog}}^{\text{PRF}}(t, q, l) \leq \]
\[\leq \text{Adv}_{g^\lambda}^{\text{PRF-RKA} \oplus \oplus}(t', q', q', d = 2) + \]
\[+ \text{Adv}_{\text{Csc}}^{\text{PRF}}(t', q, l') + \text{Adv}_{\text{Csc}}^{\text{PRF}}(t', q, l'_\tau) + \frac{2q^2 + q}{2^n} + \frac{q^2}{2^{\tau+1}}, \]

\(t \) – computation resources of the adversary \((t' \approx t)\)
\(q \) – number of adaptively chosen messages \((q' = 2q + 2)\)
\(l \) – maximum length of the message (in \(n \)-bit blocks), \(l'_\tau \in \{2, 3\} \)
\(\tau \in \{256, 512\} \) – bit length of the output
Heuristic bounds: Streebog-K and HMAC-Streebog-512

The probability of at least one successful forgery with \(v \) attempts is

\[
\Pr(\text{forgery}) \lesssim \frac{t}{2^k} + \frac{t \cdot q \cdot l}{2^{n-1}} + \frac{q^2}{2^{n-1}} + \frac{v}{2^\tau}
\]

- \(t \) – computation resources of the adversary
- \(q \) – number of adaptively chosen messages
- \(l \) – maximum length of the message (in \(n \)-bit blocks)
- \(\tau \) – bit length of the tag (\(\tau \leq n \))
- \(k \) – bit length of the key (\(k \leq n \))
Corollary: Streebog-K and HMAC-Streebog-512

Suppose that:

1. the amount of the processed blocks $q \cdot l < 2^{n-k}$
2. the tag is no shorter than the key ($\tau \geq k$)

and also recall that:

3. the amount of the processed blocks is less than key space $q \cdot l < 2^k$
Corollary: Streebog-K and HMAC-Streebog-512

Suppose that:

1. the amount of the processed blocks $q \cdot l < 2^{n-k}$
2. the tag is no shorter than the key ($\tau \geq k$)

and also recall that:

3. the amount of the processed blocks is less than key space $q \cdot l < 2^k$

The bound is simplified to

$$Pr(\text{forgery}) \approx \frac{t}{2^k} + \frac{t \cdot q \cdot l}{2^{n-1}} + \frac{q^2}{2^{n-1}} + \frac{v}{2^\tau} \approx \frac{t}{2^k}$$

⇒ Streebog-K and HMAC-Streebog-512 are "k-bit secure" up to 2^{n-k} processed blocks of data.
Corollary: Streebog-K and HMAC-Streebog-512

Suppose that:

1. the amount of the processed blocks $q \cdot l < 2^{n-k}$
2. the tag is no shorter than the key ($\tau \geq k$)

and also recall that:

3. the amount of the processed blocks is less than key space $q \cdot l < 2^k$

The bound is simplified to

$$\Pr(\text{forgery}) \leq \frac{t}{2^k} + \frac{t \cdot q \cdot l}{2^{n-1}} + \frac{q^2}{2^{n-1}} + \frac{\nu}{2^\tau} \approx \frac{t}{2^k}$$

\Rightarrow Streebog-K and HMAC-Streebog-512 are “k-bit secure” up to 2^{n-k} processed blocks of data
Corollary: Streebog-K and HMAC-Streebog-512

\[k \leq \frac{n}{2} = 256 \]

The only effective way to forge/distinguish is by guessing the key.
Corollary: Streebog-K and HMAC-Streebog-512

<table>
<thead>
<tr>
<th>$k \leq \frac{n}{2} = 256$</th>
</tr>
</thead>
<tbody>
<tr>
<td>The only effective way to forge/distinguish is by guessing the key</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$k = \frac{3}{4}n = 384$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to $\approx 2^{128}$ processed blocks,</td>
</tr>
<tr>
<td>the only effective way to forge/distinguish is by guessing the key</td>
</tr>
</tbody>
</table>
Corollary: Streebog-K and HMAC-Streebog-512

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k \leq \frac{n}{2} = 256$</td>
<td>The only effective way to forge/distinguish is by guessing the key</td>
</tr>
<tr>
<td>$k = \frac{3}{4}n = 384$</td>
<td>Up to $\approx 2^{128}$ processed blocks, the only effective way to forge/distinguish is by guessing the key</td>
</tr>
<tr>
<td>$k = n = 512$</td>
<td>Even after processing a single L-block message, the probability of forgery is extremely small, but L times greater than the “ideal” one</td>
</tr>
</tbody>
</table>
Corollary: Streebog-K and HMAC-Streebog-512

<table>
<thead>
<tr>
<th>Key Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k \leq \frac{n}{2} = 256$</td>
<td>The only effective way to forge/distinguish is by guessing the key.</td>
</tr>
<tr>
<td>$k = \frac{3}{4} n = 384$</td>
<td>Up to $\approx 2^{128}$ processed blocks, the only effective way to forge/distinguish is by guessing the key.</td>
</tr>
<tr>
<td>$k = n = 512$</td>
<td>Even after processing a single L-block message, the probability of forgery is extremely small, but L times greater than the “ideal” one.</td>
</tr>
</tbody>
</table>

For $k > \frac{n}{2} = 256$ and beyond the “2^{n-k} bound”, the probability of forgery is greater than “ideal”, but negligible for most practical cases.
Corollary: HMAC-Streebog-256

If 256-bit Streebog is used, then

HMAC narrows the state after the first hashing from n to $\frac{n}{2}$ bits.

Due to the “internal” collision, the bound is increased by $\frac{q^2}{2^{\frac{n}{2}+1}}$.
Corollary: HMAC-Streebog-256

If 256-bit Streebog is used, then

HMAC narrows the state after the first hashing from n to $\frac{n}{2}$ bits.

Due to the “internal” collision, the bound is increased by $\frac{q^2}{2^{\frac{n}{2}+1}}$.

\Rightarrow HMAC-Streebog-256 is “k-bit secure” if

1. the amount of blocks $q \cdot l < 2^{n-k}$
2. the amount of messages $q < 2^{\frac{n}{2}-k}$
Corollary: HMAC-Streebog-256

If 256-bit Streebog is used, then

HMAC narrows the state after the first hashing from \(n \) to \(\frac{n}{2} \) bits.

Due to the “internal” collision, the bound is increased by \(\frac{q^2}{2^{n/2+1}} \).

\[\Rightarrow \text{HMAC-Streebog-256 is “} k \text{-bit secure” if} \]

1. the amount of blocks \(q \cdot l < 2^{n-k} \)
2. the amount of messages \(q < 2^{\frac{n}{2}-k} \)

Both conditions always hold for \(k \leq \frac{n}{4} = 128 \).

Short keys (\(k \leq \frac{n}{2} = 256 \)) are not formally permitted for HMAC-Streebog. Hence, the second condition is NOT fulfilled in practice.
Tightness of the bounds and attacks

Provable security – the upper bound:

\[
\Pr(\text{forgery}) \leq \frac{t}{2^k} + \frac{t \cdot q \cdot l}{2^{n-1}} + \frac{q^2}{2^{n-1}} + \frac{v}{2^\tau}
\]

Each term in the upper bound corresponds to a term in the lower (probability of an attack):

1. Key guessing
2. "Tricky" attack through the imperfection of the cascade
3. Birthday-paradox forgery/distinguishing
4. Tag guessing

⇒ The obtained upper bounds are tight and cannot be further improved
Tightness of the bounds and attacks

Provable security – the upper bound:

\[
\Pr(\text{forgery}) \lesssim \frac{t}{2^k} + \frac{t \cdot q \cdot l}{2^{n-1}} + \frac{q^2}{2^{n-1}} + \frac{\nu}{2^\tau}
\]

Each term in the upper bound corresponds to a term in the lower (probability of an attack):

1. Key guessing
2. “Tricky” attack through the imperfection of the cascade
3. Birthday-paradox forgery/distinguishing
4. Tag guessing
Tightness of the bounds and attacks

Provable security – the upper bound:

\[
\Pr(\text{forgery}) \lesssim \frac{t}{2^k} + \frac{t \cdot q \cdot l}{2^{n-1}} + \frac{q^2}{2^{n-1}} + \frac{\nu}{2^\tau}
\]

Each term in the upper bound corresponds to a term in the lower (probability of an attack):

1. Key guessing
2. “Tricky” attack through the imperfection of the cascade
3. Birthday-paradox forgery/distinguishing
4. Tag guessing

⇒ The obtained upper bounds are tight and cannot be further improved
“Keyed Streebog” vs “Keyed Sponge”

Streebog can be used without HMAC – the Streebog-K construction. The same is true for the sponge-based hash functions (like SHA-3).
“Keyed Streebog” vs “Keyed Sponge”

Streebog can be used without HMAC – the Streebog-K construction. The same is true for the sponge-based hash functions (like SHA-3).

If the state size of Streebog \((n)\) = the capacity of sponge \((c)\), then the security bounds for Streebog-K and “Keyed Sponge” are the same.

Bertoni G., Daemen J., Peeters M., Van Assche G.

On the security of the keyed sponge construction – 2011
Typical warnings

- The proofs themselves use the “standard model” without heuristics, but all the statements about “\(k\)-bit security” are obtained under assumptions about the “good” properties of the compression function.
Typical warnings

- The proofs themselves use the “standard model” without heuristics, but all the statements about “k-bit security” are obtained under assumptions about the “good” properties of the compression function.

- Threats outside the model:
 - side-channel attacks
 - fault attacks
 - quantum computations
 - etc.

The results do not say anything about these threats!

- All statements are only about adaptive chosen message attacks in the single-key setting and “classical” computations.
Conclusion

1. New detailed \textit{PRF-RKA} security model
 (pseudorandom function under related key attacks)
Conclusion

1. New detailed \textit{PRF-RKA} security model
 (pseudorandom function under related key attacks)

2. New security proofs for HMAC-Streebog and Streebog-K through
 reduction to the \textit{PRF-RKA} security of the compression function
Conclusion

1. New detailed PRF-RKA security model
 (pseudorandom function under related key attacks)

2. New security proofs for HMAC-Streebog and Streebog-K through reduction to the PRF-RKA security of the compression function

3. Streebog-K and HMAC-Streebog-512 are “k-bit secure” PRF up to 2^{n-k} processed blocks ($n = 512$ is the state size, $k \leq n$ is the key size)
Conclusion

1. New detailed $PRF\text{-}RKA$ security model
 (pseudorandom function under related key attacks)

2. New security proofs for HMAC-Streebog and Streebog-K through reduction to the $PRF\text{-}RKA$ security of the compression function

3. Streebog-K and HMAC-Streebog-512 are “k-bit secure” PRF up to 2^{n-k} processed blocks ($n = 512$ is the state size, $k \leq n$ is the key size)

4. Tightness: attacks match the provable security bounds
Thank you for attention!
Questions?

All reference implementations are available at
https://gitflic.ru/project/vkir/streebog