On the unforgeability of the Chaum-Pedersen blind signature

Liliya Akhmetzyanova, <u>Alexandra Babueva</u> CryptoPro LLC

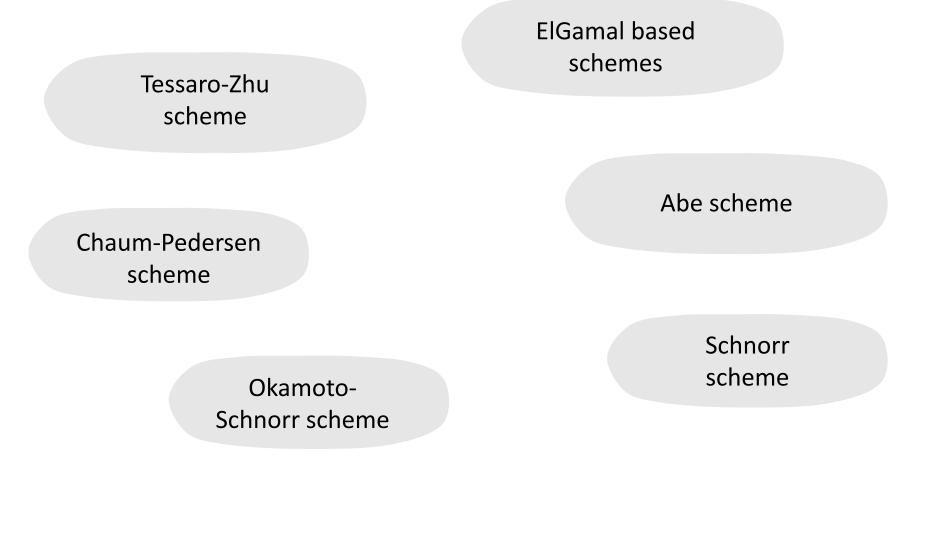
CTCrypt'2024

- 1. Motivation
- 2. Chaum-Pedersen blind signature
- 3. Analysis: strong unforgeability
- 4. Analysis: weak unforgeability

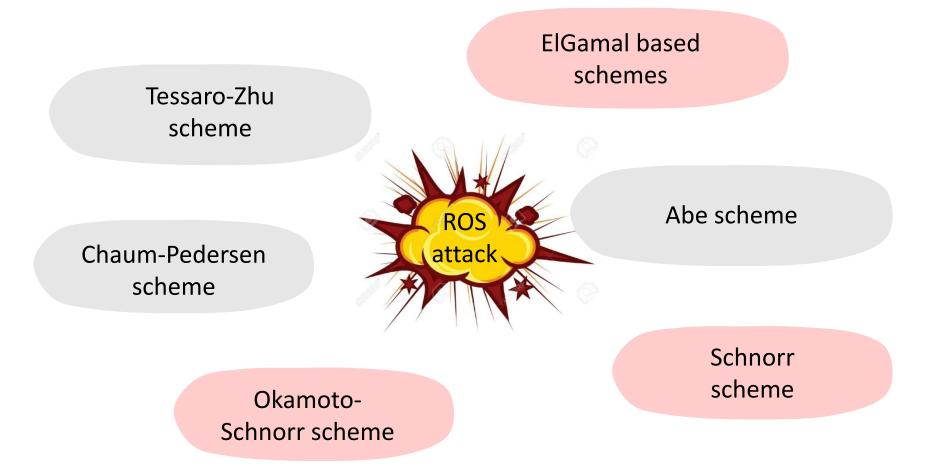
1. Motivation

- 2. Chaum-Pedersen blind signature
- 3. Analysis: strong unforgeability
- 4. Analysis: weak unforgeability

Perspective blind signatures for standardization



Perspective blind signatures for standardization



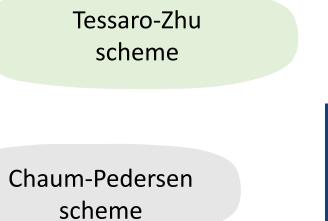
Benhamouda F. et al «On the (in)security of ROS», 2021

Tessaro-Zhu scheme

Chaum-Pedersen scheme

Abe scheme

Tessaro S., Zhu C. «Short Pairing-Free Blind Signatures with Exponential Security», 2022



Abe scheme

used in U-Prove!

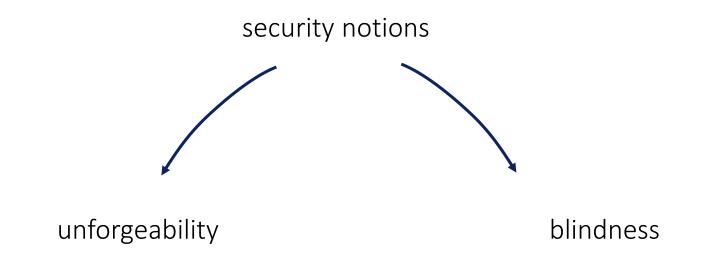
1. Motivation

2. Chaum-Pedersen blind signature

- 3. Analysis: strong unforgeability
- 4. Analysis: weak unforgeability

Blind signatures

- $(sk, pk) \leftarrow KeyGen()$: key generation algorithm
- $(b,\sigma) \leftarrow \langle Signer(sk), User(pk,m) \rangle$: interactive signing protocol that is run between a Signer and a User
- $b \leftarrow Verify(pk, m, \sigma)$: verification algorithm



Original description is given for multiplicative group of finite field Chaum D., Pedersen T. P. «Wallet databases with observers», 1992

Base blocks:

- elliptic curve \mathcal{E} of prime order q with base point P
- hash function $H: \{0,1\}^* \to \mathbb{Z}_q^*$
- hash function H: {0,1}* → E
 hash-to-curve constructions: RFC 9380 «Hashing to elliptic curves»

Original description is given for multiplicative group of finite field Chaum D., Pedersen T. P. «Wallet databases with observers», 1992

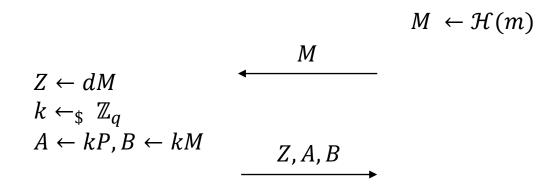
Base blocks:

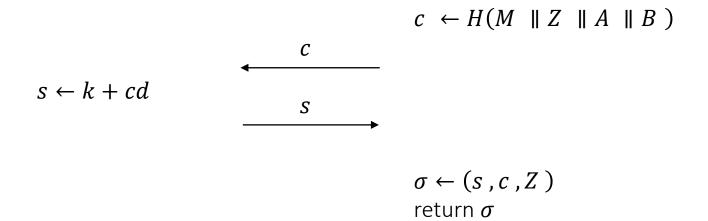
- elliptic curve \mathcal{E} of prime order q with base point P
- hash function $H: \{0,1\}^* \to \mathbb{Z}_q^*$
- hash function H: {0,1}* → E
 hash-to-curve constructions: RFC 9380 «Hashing to elliptic curves»

Key generation algorithm:

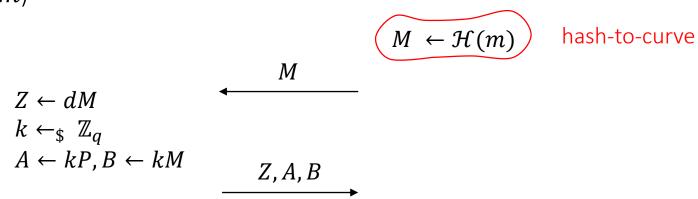
 $\frac{\text{KeyGen()}}{d \leftarrow_{\$} \mathbb{Z}_{q}}$ $Q \leftarrow dP$ return (d, Q)

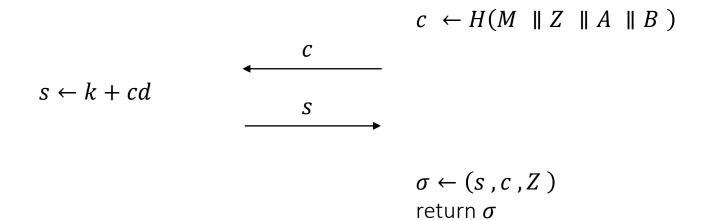
 $\underline{\text{Sign}}(d,m)$



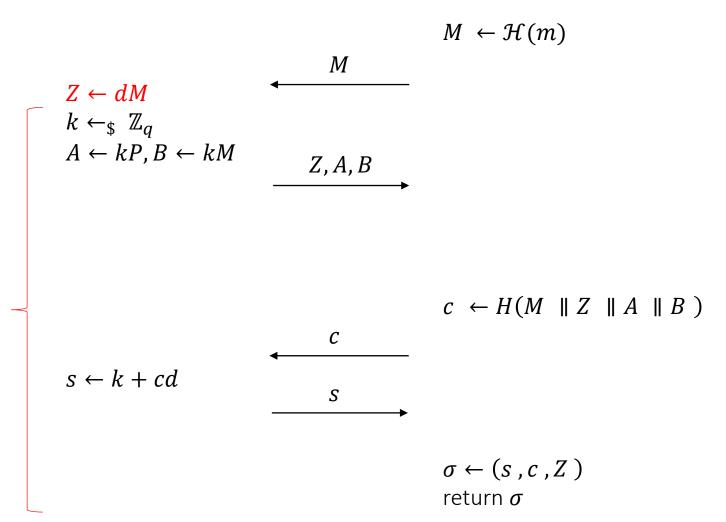


 $\underline{\text{Sign}}(d,m)$



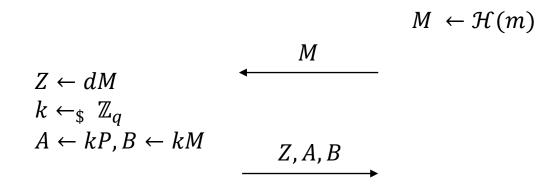


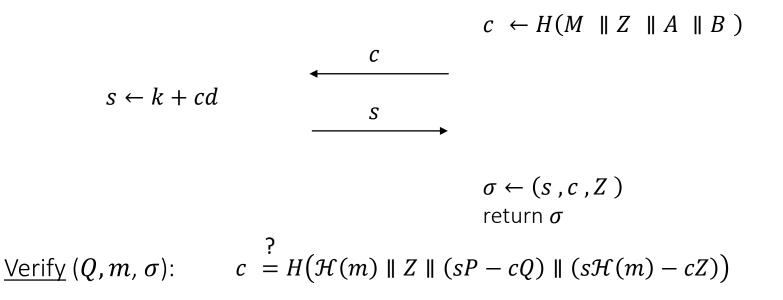
 $\underline{\text{Sign}}(d,m)$



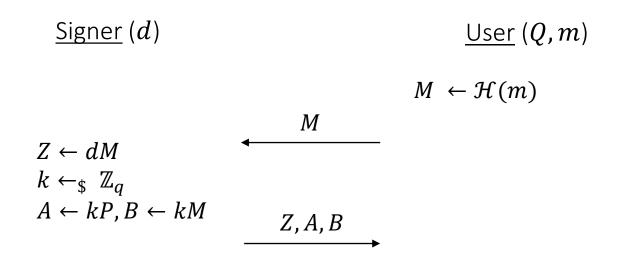
proving DLog equality: $\log_P Q = \log_M Z$, provides unforgeability

 $\underline{\text{Sign}}(d,m)$



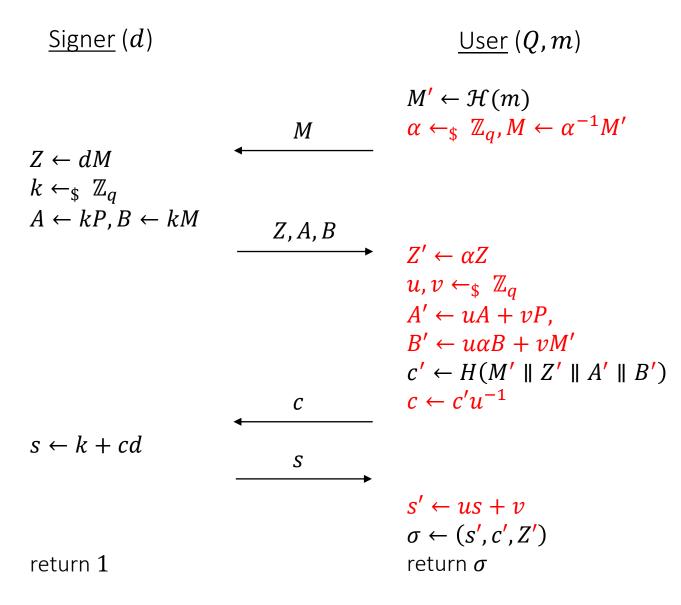


Chaum-Pedersen blind signature

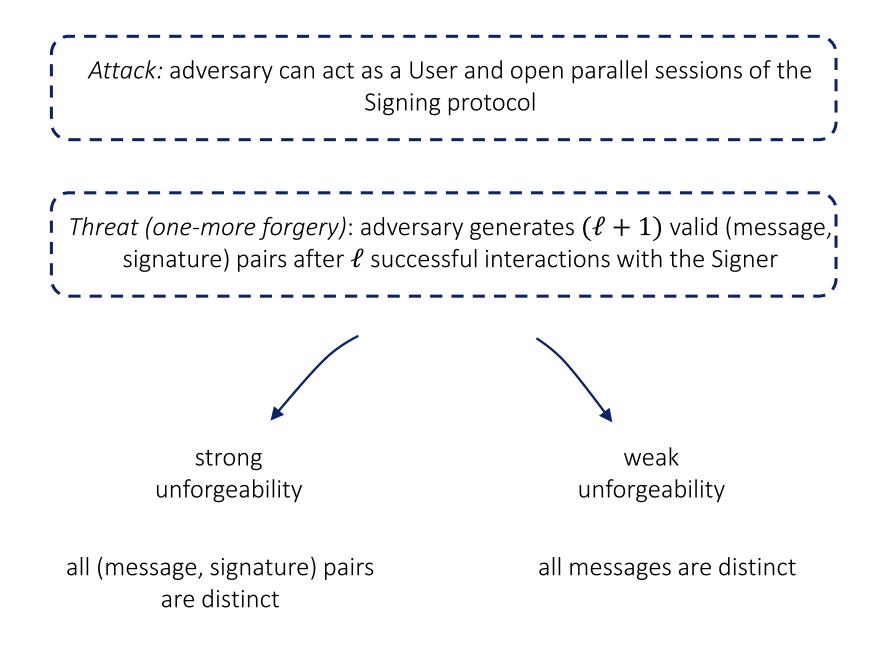


 $c \leftarrow H(M \parallel Z \parallel A \parallel B)$ $s \leftarrow k + cd$ $s \leftarrow s \rightarrow \sigma \leftarrow (s, c, Z)$ return 1 $return \sigma$

Chaum-Pedersen blind signature

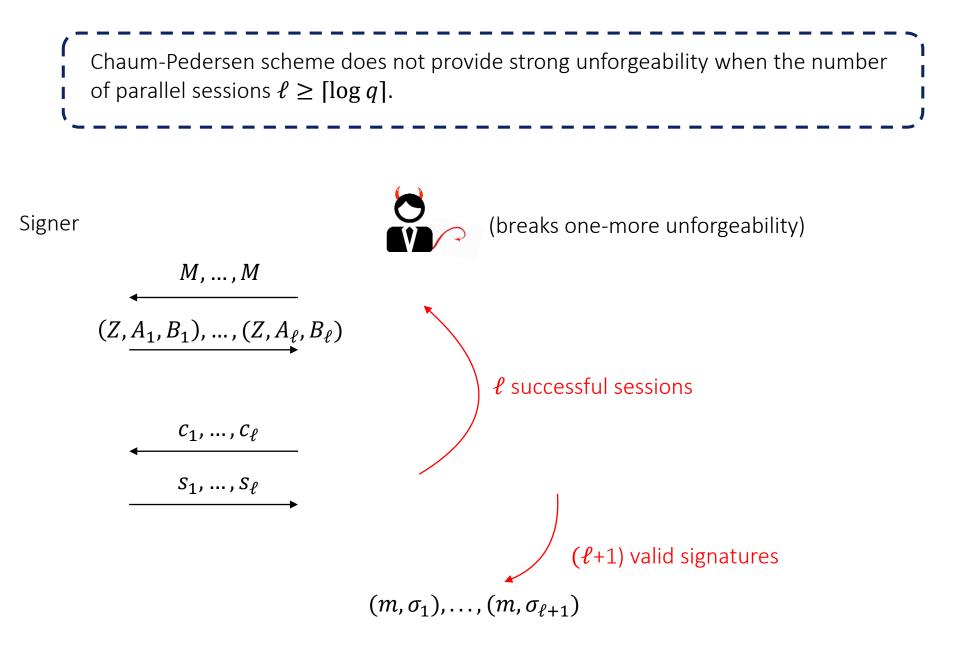


for blindness!



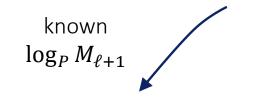
1. Motivation

- 2. Chaum-Pedersen blind signature
- 3. Analysis: strong unforgeability
- 4. Analysis: weak unforgeability



ROS-style attack: distinct messages

Let $M_{\ell+1} = \mathcal{H}(m_{\ell+1})$ for some new message $m_{\ell+1}$

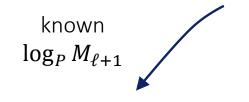


ROS attack works

ROS attack does not work

ROS-style attack: distinct messages

Let $M_{\ell+1} = \mathcal{H}(m_{\ell+1})$ for some new message $m_{\ell+1}$



ROS attack works

ROS attack does not work

- 1. Motivation
- 2. Chaum-Pedersen blind signature
- 3. Analysis: strong unforgeability
- 4. Analysis: weak unforgeability

1) for \mathcal{H}, \mathcal{E} :

for given *m* it should be hard to find α : $\mathcal{H}(m) = \alpha P$

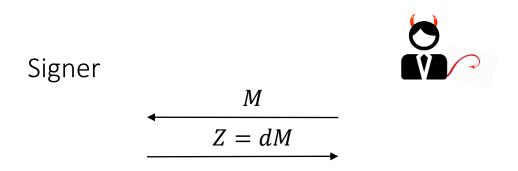
2) for *H*:

for given M', Z', s' it should be hard to find c':

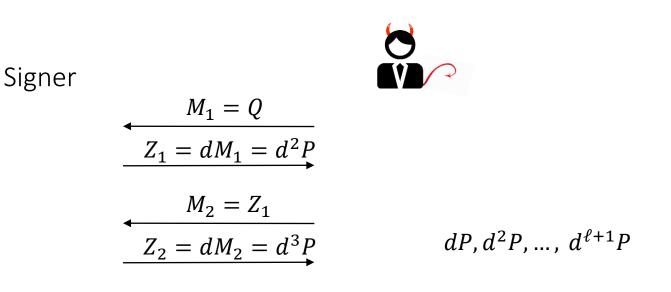
 $c' = H(M' \parallel Z' \parallel (s'P - c'Q) \parallel (s'M' - c'Z'))$

3) Discrete Logarithm problem?

3) Discrete Logarithm problem?



3) Discrete Logarithm problem?



$$M_{\ell} = Z_{\ell-1}$$

$$Z_{\ell} = dM_{\ell} = d^{\ell+1}P$$

Weak unforgeability: assumptions

Necessary conditions for security:

3) Strong Discrete Logarithm problem (SDL)

3) Strong Discrete Logarithm problem (SDL)

$$\left(dP, d^2P, \dots, d^sP \longrightarrow d \right)$$

Best known method: Cheon J. H., 2006

"Security analysis of the strong Diffie-Hellman problem"

$$T \approx \log q \cdot \left(\sqrt{\frac{q}{s}} + \sqrt{s}\right)$$
 for s that divide $(q - 1)$

3) Strong Discrete Logarithm problem (SDL)

$$\left(dP, d^2P, \dots, d^sP \longrightarrow d \right)$$

Curve	log q	s _m	Т
id-tc26-gost-3410-2012-256-paramSetB	256	$\approx 2^{32}$	2 ¹²⁰
id-tc26-gost-3410-2012-256-paramSetC	256	$\approx 2^{62}$	2 ¹⁰⁵
id-tc26-gost-3410-2012-256-paramSetD	256	$pprox 2^{64}$	2 ¹⁰⁴
id-tc26-gost-3410-12-512-paramSetA	512	$\approx 2^{25}$	2 ²⁵²
id-tc26-gost-3410-12-512-paramSetA	512	$\approx 2^{11}$	2 ²⁵⁹

 s_m – maximal divisor of (q-1) such that $s_m \leq 2^{64}+1$

Restrictions on the set of adversaries:

- \mathcal{H} is a random oracle
- *H* is a random oracle
- Algebraic Group Model (AGM)

Restrictions on the set of adversaries:

- \mathcal{H} is a random oracle
- *H* is a random oracle
- Algebraic Group Model (AGM)

For each group element returned by the adversary, the adversary should provide the coefficients of decomposition of this element into a linear combination of all the received elements.

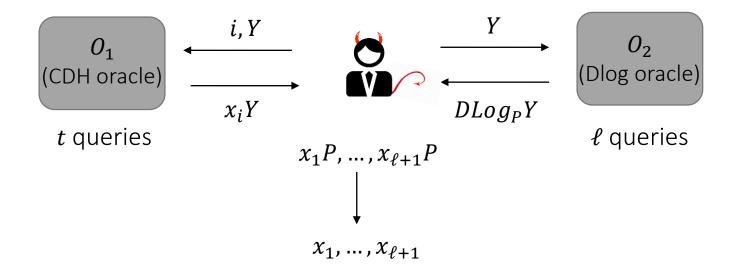
$$X_1, \dots, X_n \qquad \qquad Z, (Z_1, \dots, Z_n)$$

$$Z = \sum_{i=1}^n z_i X_i$$

Sufficient conditions for security:

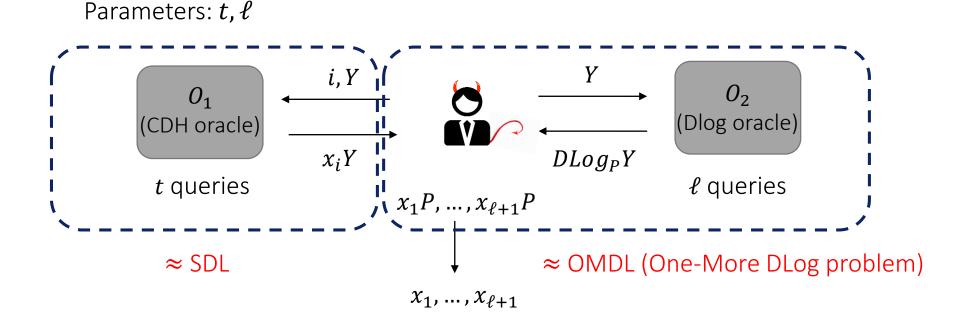
1) Strong One-More Discrete Logarithm problem (SOMDL)

Parameters: t, ℓ



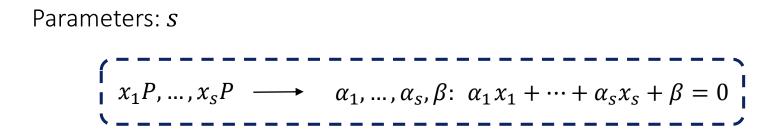
Sufficient conditions for security:

1) Strong One-More Discrete Logarithm problem (SOMDL)



Sufficient conditions for security:

2) Representation problem (REPR)



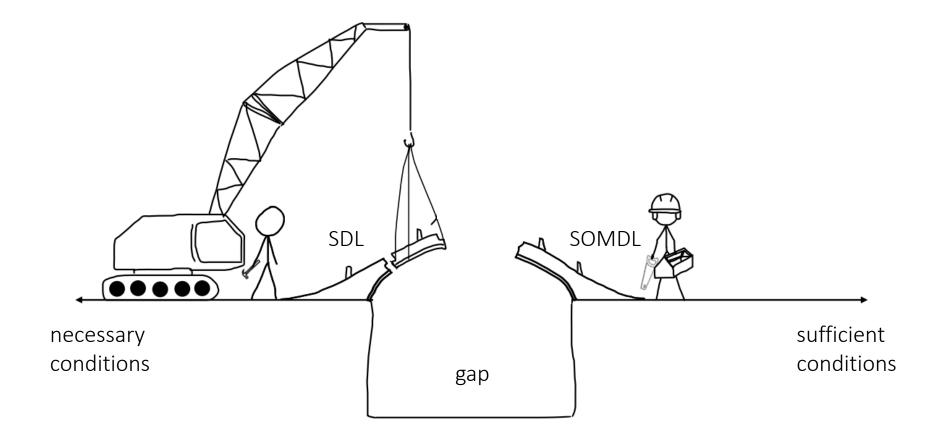
Best known method: solving DLog problem or finding the collision between input points



Weak unforgeability: summary

Necessary conditions	Sufficient conditions (in AGM)	
1) for \mathcal{H}, \mathcal{E} :	1) hard REPR problem (under assumption that ${\cal H}$ is RO)	
for given m it should be hard to find α : $\mathcal{H}(m)=\alpha P$		
2) for <i>H</i> :	2) sufficiently big q (under assumption that H is RO)	
for given M', Z', s' it should be hard to find c' : c'=H(M' Z' (s'P-c'Q) (s'M'-c'Z'))		
3) hard SDL problem	3) hard SOMDL problem	

- Chaum-Pedersen scheme does not provide strong unforgeability
- Necessary condition for weak unforgeability – SDL problem that is not harder than DLog
- Need hash-to-curve construction



*The picture is taken from: NIST Crypto Reading Club, M. Backendal & M. Haller, Thriving in Between Theory and Practice: How Applied Cryptography Bridges the Gap

Thank you for your attention! Questions?

babueva@cryptopro.ru lah@cryptopro.ru

