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Perspective blind signatures for standardization

Abe scheme

Chaum-Pedersen 
scheme

Tessaro-Zhu 
scheme

Tessaro S., Zhu C. «Short Pairing-Free Blind 
Signatures with Exponential Security», 2022
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How secure is Chaum-Pedersen blind signature scheme?

used in U-Prove!
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Blind signatures

 𝑠𝑘, 𝑝𝑘 ← 𝐾𝑒𝑦𝐺𝑒𝑛 : key generation algorithm

 𝑏, 𝜎 ← 𝑆𝑖𝑔𝑛𝑒𝑟 𝑠𝑘 , 𝑈𝑠𝑒𝑟 𝑝𝑘,𝑚 : interactive signing 
protocol that is run between a Signer and a User

 𝑏 ← 𝑉𝑒𝑟𝑖𝑓𝑦(𝑝𝑘,𝑚, 𝜎): verification algorithm

security notions

unforgeability blindness



Base blocks:

 elliptic curve ℰ of prime order 𝑞 with base point 𝑃

 hash function 𝐻: 0,1 ∗→ ℤ𝑞
∗

 hash function ℋ: 0,1 ∗ → ℰ

Chaum-Pedersen scheme

hash-to-curve constructions: RFC 9380 «Hashing to elliptic curves»

Original description is given for multiplicative group of finite field

Chaum D., Pedersen T. P. «Wallet databases with observers», 1992
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𝑑 ←$ ℤ𝑞
𝑄 ← 𝑑𝑃
return (𝑑, 𝑄)

KeyGen

Key generation algorithm:



Chaum-Pedersen signature

𝑍 ← 𝑑𝑀
𝑘 ←$ ℤ𝑞
𝐴 ← 𝑘𝑃, 𝐵 ← 𝑘𝑀

𝑠 ← 𝑘 + 𝑐𝑑

𝑀′ ← ℋ(𝑚)
𝛼 ←$ ℤ𝑞 , 𝑀 ← 𝛼−1𝑀′

𝑍′ ← 𝛼𝑍
𝑢, 𝑣 ←$ ℤ𝑞
𝐴′ ← 𝑢𝐴 + 𝑣𝑃,
𝐵′ ← 𝑢𝛼𝐵 + 𝑣𝑀′
𝑐′ ← 𝐻 𝑀′ ∥ 𝑍′ ∥ 𝐴′ ∥ 𝐵′

𝑐 ← 𝑐′𝑢−1

𝑠′ ← 𝑢𝑠 + 𝑣
𝜎 ← 𝑠′, 𝑐′, 𝑍′
return 𝜎return 1

Signer (𝑑) User (𝑄,𝑚)

𝑍, 𝐴, 𝐵

𝑀

𝑐

𝑠

Sign (𝑑,𝑚)
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hash-to-curve
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proving DLog equality: log𝑃 𝑄 = log𝑀 𝑍 , provides unforgeability
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Verify (𝑄,𝑚, 𝜎):  𝑐′ = 𝐻 ℋ 𝑚 ∥ 𝑍 ∥ 𝑠𝑃 − 𝑐𝑄 ∥ 𝑠ℋ 𝑚 − 𝑐𝑍
?
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Unforgeability property

strong 
unforgeability

weak 
unforgeability

all (message, signature) pairs 
are distinct

all messages are distinct

Threat (one-more forgery): adversary generates (ℓ + 1) valid (message, 
signature) pairs after ℓ successful interactions with the Signer

Attack: adversary can act as a User and open parallel sessions of the 
Signing protocol
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ROS-style attack

ℓ successful sessions

(𝑚, 𝜎1), . . . , (𝑚, 𝜎ℓ+1)

(ℓ+1) valid signatures

Chaum-Pedersen scheme does not provide strong unforgeability when the number 
of parallel sessions ℓ ≥ ⌈log 𝑞⌉.

Signer

𝑍, 𝐴1, 𝐵1 , … , (𝑍, 𝐴ℓ, 𝐵ℓ)

𝑐1, … , 𝑐ℓ

𝑠1, … , 𝑠ℓ

𝑀,… ,𝑀

(breaks one-more unforgeability)



ROS-style attack: distinct messages

Let 𝑀ℓ+1 = ℋ(𝑚ℓ+1) for some new message 𝑚ℓ+1

known
log𝑃𝑀ℓ+1

ROS attack works

unknown
log𝑃𝑀ℓ+1

ROS attack does not work



ROS-style attack: distinct messages

Let 𝑀ℓ+1 = ℋ(𝑚ℓ+1) for some new message 𝑚ℓ+1

known
log𝑃𝑀ℓ+1

ROS attack works

unknown
log𝑃𝑀ℓ+1

ROS attack does not work

still hope….



1. Motivation
2. Chaum-Pedersen blind signature
3. Analysis: strong unforgeability
4. Analysis: weak unforgeability

Outline



Weak unforgeability: assumptions

Necessary conditions for security:

1) for ℋ,ℰ:

for given 𝑚 it should be hard to find 𝛼:  ℋ 𝑚 = 𝛼𝑃



Weak unforgeability: assumptions

Necessary conditions for security:

2) for 𝐻:

for given 𝑀′, 𝑍′, 𝑠′ it should be hard to find 𝑐′:

𝑐′ = 𝐻(𝑀′ ∥ 𝑍′ ∥ 𝑠′𝑃 − 𝑐′𝑄 ∥ (𝑠′𝑀′ − 𝑐′𝑍′))



Weak unforgeability: assumptions

Necessary conditions for security:

3) Discrete Logarithm problem? 



Weak unforgeability: assumptions

Signer
𝑀

𝑍 = 𝑑𝑀

Necessary conditions for security:

3) Discrete Logarithm problem? 



Weak unforgeability: assumptions

Signer
𝑀1 = 𝑄

𝑍1 = 𝑑𝑀1 = 𝑑2𝑃

𝑀2 = 𝑍1

𝑍2 = 𝑑𝑀2 = 𝑑3𝑃

𝑀ℓ = 𝑍ℓ−1

𝑍ℓ = 𝑑𝑀ℓ = 𝑑ℓ+1𝑃

𝑑𝑃, 𝑑2𝑃,… , 𝑑ℓ+1𝑃

Necessary conditions for security:

3) Discrete Logarithm problem? 



Weak unforgeability: assumptions

Necessary conditions for security:

3) Strong Discrete Logarithm problem (SDL) 

𝑑𝑃, 𝑑2𝑃,… , 𝑑𝑠𝑃 𝑑



Weak unforgeability: assumptions

Necessary conditions for security:

3) Strong Discrete Logarithm problem (SDL) 

𝑑𝑃, 𝑑2𝑃,… , 𝑑𝑠𝑃 𝑑

Cheon J. H., 2006
“Security analysis of the strong Diffie-Hellman 
problem”

Best known method: 

𝑇 ≈ log 𝑞 ⋅
𝑞

𝑠
+ 𝑠 for 𝑠 that divide 𝑞 − 1



Weak unforgeability: assumptions

Necessary conditions for security:

3) Strong Discrete Logarithm problem (SDL) 

𝑑𝑃, 𝑑2𝑃,… , 𝑑𝑠𝑃 𝑑

Curve 𝐥𝐨𝐠 𝒒 𝒔𝒎 𝑻

id-tc26-gost-3410-2012-256-paramSetB 256 ≈ 232 2120

id-tc26-gost-3410-2012-256-paramSetC 256 ≈ 262 2105

id-tc26-gost-3410-2012-256-paramSetD 256 ≈ 264 2104

id-tc26-gost-3410-12-512-paramSetA 512 ≈ 225 2252

id-tc26-gost-3410-12-512-paramSetA 512 ≈ 211 2259

𝑠𝑚 − maximal divisor of (𝑞 − 1) such that 𝑠𝑚 ≤ 264 + 1



Weak unforgeability: security bound 

Restrictions on the set of adversaries:
 ℋ is a random oracle 
 𝐻 is a random oracle
 Algebraic Group Model (AGM)



Weak unforgeability: security bound 

𝑍, (𝑧1, … , 𝑧𝑛)𝑋1, … , 𝑋𝑛

𝑍 =

𝑖=1

𝑛

𝑧𝑖𝑋𝑖

For each group element returned by the adversary, the adversary should
provide the coefficients of decomposition of this element into a linear
combination of all the received elements.

Restrictions on the set of adversaries:
 ℋ is a random oracle 
 𝐻 is a random oracle
 Algebraic Group Model (AGM)



Weak unforgeability: security bound

Sufficient conditions for security:

1) Strong One-More Discrete Logarithm problem (SOMDL)

𝑂1
(CDH oracle)

𝑂2
(Dlog oracle)

𝑖, 𝑌

𝑥𝑖𝑌

𝑌

𝐷𝐿𝑜𝑔𝑃𝑌
𝑡 queries ℓ queries

𝑥1𝑃, … , 𝑥ℓ+1𝑃

𝑥1, … , 𝑥ℓ+1

Parameters: 𝑡, ℓ



Weak unforgeability: security bound

Sufficient conditions for security:

1) Strong One-More Discrete Logarithm problem (SOMDL)

𝑂1
(CDH oracle)

𝑂2
(Dlog oracle)

𝑖, 𝑌

𝑥𝑖𝑌

𝑌

𝐷𝐿𝑜𝑔𝑃𝑌
𝑡 queries ℓ queries

𝑥1𝑃, … , 𝑥ℓ+1𝑃

𝑥1, … , 𝑥ℓ+1

Parameters: 𝑡, ℓ

≈ SDL ≈ OMDL (One-More DLog problem) 



Weak unforgeability: security bound

Sufficient conditions for security:

2) Representation problem (REPR)

𝑥1𝑃,… , 𝑥𝑠𝑃 𝛼1, … , 𝛼𝑠, 𝛽: 𝛼1𝑥1 +⋯+ 𝛼𝑠𝑥𝑠 + 𝛽 = 0

Best known method: solving DLog problem or finding the collision 
between input points

Parameters: 𝑠



Weak unforgeability: security bound

𝐴𝑑𝑣𝐶𝑃−𝐵𝑆
𝑤𝑈𝐹 𝒜 ≤ 2 ⋅ 𝐴𝑑𝑣𝐺,2𝑡,𝑡

𝑆𝑂𝑀𝐷𝐿 ℬ + 𝐴𝑑𝑣𝐺,𝑞1+ℓ+1
𝑅𝐸𝑃𝑅 (𝒞) +

2 ℓ + 1 + 𝑞2
𝑞

,

where
 𝑞1 – number of queries to random oracle ℋ
 𝑞2 – number of queries to random oracle 𝐻
 𝑡 – number of open sessions
 ℓ – number of closed sessions



Weak unforgeability: summary

Necessary conditions

1) for ℋ, ℰ:

for given 𝑚 it should be hard to 
find 𝛼: ℋ(𝑚)=𝛼𝑃

2) for 𝐻:

for given 𝑀′, 𝑍′, 𝑠′ it should be 
hard to find 𝑐′:
𝑐′=𝐻(𝑀′∥𝑍′∥(𝑠′𝑃−𝑐′𝑄)∥(𝑠′𝑀′−𝑐′𝑍′))

3) hard SDL problem

Sufficient conditions (in AGM) 

1) hard REPR problem
(under assumption that ℋ is RO)

2) sufficiently big 𝑞
(under assumption that 𝐻 is RO)

3) hard SOMDL problem



 Chaum-Pedersen scheme does not 
provide strong unforgeability

 Necessary condition for weak 
unforgeability – SDL problem that is not 
harder than DLog

 Need hash-to-curve construction

Conclusion



Future work

gap

necessary 
conditions

sufficient 
conditions

SDL SOMDL

*The picture is taken from: NIST Crypto Reading Club, M. Backendal & M. Haller, Thriving in Between Theory and Practice: How Applied 
Cryptography Bridges the Gap



Thank you for your attention!

Questions?

babueva@cryptopro.ru
lah@cryptopro.ru

mailto:babueva@cryptopro.ru
mailto:lah@cryptopro.ru

