

Recovering Secret Keys of HMAC with Preimage-Finding Oracle: How Easy Is It?

Sergey Panasenko, panasenko@guardant.ru

Marina Skorobogatova, sma@aktiv-company.ru

JSC «Active soft», Moscow, Russian Federation

Preimage Oracle

Let's assume that an adversary can obtain preimages for any hash value (calculated by a hash function H) using the preimage Oracle P:

$$\{\rho\}=\mathrm{P}_s(h),$$

where:

- h a hash value for finding preimages;
- *s* a length of preimages to be found;
- $\{\rho\} = \{p_1, ..., p_z\}$ a collection of z preimages of required length found by the Oracle.

If the hash function H outputs *n*-bit values and its output values are distributed uniformly, then we can assume that on average:

$$z \approx 2^{s-n}$$

Note: when $s \le n$, z can be interpreted as a probability to find a single preimage.

Hash-Based Message Authentication Codes

Hash-based message authentication codes (HMAC) *:

 $\mathrm{HMAC}(K,\ m) = \mathrm{hash}((k\ \oplus\ opad)\ \|\ \mathrm{hash}((k\ \oplus\ ipad\)\ \|\ m))$

Where:

- *m* an input message of arbitrary length;
- K— a secret key for HMAC calculation, and k— its aligned/padded version to the block size b of the underlying hash function;
- *ipad* & *opad* constants of *b*-bit length.

Input messages and corresponding HMAC values are usually known to an adversary. If the adversary has the preimage Oracle, she can easy obtain intermediate values: $k \oplus opad$

Question: Can she determine the correct value of secret key *k* (e.g. to forge any message)?

* M. Bellare, R. Canetti, H. Krawczyk. Keying Hash Functions for Message Authentication. CRYPTO 1996.

Search Technique

Conditions: the adversary has the preimage Oracle P and a known pair of message m (of length *len*) and its HMAC value h calculated with the key (aligned/padded) k.

Step 1: Using the Oracle the adversary obtains a collection of preimages:

$$\{c_1, ..., c_z\} = \mathbf{P}_s(h),$$

where s = b + n, i.e. the size of collection is $z \approx 2^{s-n} = 2^b$, and:

$$c_i = c_i^l \parallel c_i^r, \quad i = 1,...,z \ c_i^l = k_i \oplus opad \ c_i^r = ext{hash}((k_i \oplus ipad) \parallel m)$$

 $c_i^r = \text{hash}((k_i \oplus ipad) \parallel m_i)$ **Step 2:** To find the required key the adversary needs to check every candidate $c_i, i = 1,...,z$ by inverting the right part of it to obtain another collection of possible candidates:

$$\{d_{i_1}, ..., d_{i_y}\} = \mathcal{P}_{b+len} \ (c_i^r) \\ d_{i_j} = d_{i_j}^l \parallel d_{i_j}^r, \quad j = 1, ..., y, \quad y \approx 2^{b+len-r} \\ d_{i_j}^l = k_{i_j} \oplus ipad$$

Step 3: Performing the exhaustive search among values c_i , i = 1,...,z and d_{i_j} , j = 1,...,y for every c_i . The criteria for determining that the valid key has been found:

$$k_{i_j} = k_i = k$$
 and $d_{i_j}^r = m$

It's Not So Easy

Average work (not considering storage requirements and possible false positives):

- $1 + z/2 \approx 2^{b-1}$ Oracle P calls;
- $y * z/2 \approx 2^{2b+len-n-1}$ comparisons.

Hash function	Block size (equal to the length of <i>k</i>) <i>b</i>	Output size n	Length of preimages S	Oracle calls	Comparisons
				(lower bound at <i>len</i> = 1)	
Streebog-256	512	256	768	2 ⁵¹¹	2 ⁷⁶⁸
Streebog-512	512	512	1024	2 ⁵¹¹	2 ⁵¹²

Conclusion:

HMAC over Streebog-256/512 is resistant against the key recovery attack described above (when an adversary has the preimage Oracle).

Thank you! Ouestions?

Sergey Panasenko panasenko@guardant.ru

Marina Skorobogatova sma@aktiv-company.ru

hh