

Transitive piecewise polynomial transformations over primary residue rings and some statistical properties of the generated sequences

Vasin Anton, Lipina Tatiana

JSC «Aktiv-Soft»

Iteration of polynomial transformations

Applications:

- nonlinear arithmetic pseudorandom sequence generators;
- nonlinear components and blocks in stream ciphers (e.g., Achterbahn, Bleep64, Fountain, Grain, Trivium);
- polynomial-based blocks in cipher systems (e.g., the WG family, AEAD-cipher WAGE).

Desirable properties of output sequences:

- large **periods** and ranks (combinatorial-algebraic approach);
- high algorithmic complexity (algorithmic approach);
- indistinguishability from an ideal random sequence by a polynomial probabilistic algorithm (computational complexity approach);
- good statistical properties (statistical approach).

Transitive polynomial transformations

Maximal period T of a polynomial generator:

- over a finite field GF(q): T = q;
- over a residue ring \mathbb{Z}_{p^n} : $T = p^n$ (Anashin V.S., Larin M.V.);
- over other Galois rings $GR(q^n, p^n)$ (Anashin V.S., Ermilov D.M., Kozlitin O.A., Larin M.V.):

$$T = q(q-1)p^{n-2} < q^n = |R|.$$

Piecewise polynomial functions over Galois rings

- Let R be a Galois ring $GR(q^n, p^n)$;
- for $x = p^l \hat{x}$, where $\hat{x} \in R^*$, $0 \le l \le n$, $F(x) = f_0 + f_1 x + \ldots + f_d x^d \in R[x]$ define

$$\phi_F(x) = \phi_F(p^l \hat{x}) = f_0 + p^l (f_1 \hat{x} + \dots + f_d \hat{x}^d).$$

- $x_0, x_1 = \phi_F(x_0), \dots, x_{m+1} = \phi_F(x_m), \dots, x_0 \in R,$ piecewise polynomial sequence;
- for $x' \in pR$ define the set $Orb(x') = \{x', \phi_F(x'), \dots, \phi_F^{q-1}(x')\},\$
- consider the sequence $x_0 = 0, x_1 = \phi_F(x_0), \dots, x_{m+1} = \phi_F(x_m), \dots$, let $\mathcal{B}(\phi_F) = \overline{x_{q-1}} + pR$.

Piecewise polynomial functions over Galois rings

Let ϕ_F be a permutation over R, $\bar{\phi}_F$ — full-cycle permutation over GF(q), π — full-cycle permutation over pR, $x \in Orb(x')$. Define the function $\Phi_{F,\pi} \colon R \to R$ as:

$$\Phi_{F,\pi}(x) = \begin{cases} \phi_F(x), \text{ если } x \notin \mathcal{B}(\phi_F); \\ \pi(x'), \text{ если } x \in \mathcal{B}(\phi_F). \end{cases}$$

The period of a sequence, generated by the function $\Phi_{F,\pi}$, equals |R|. Question: in what cases can we set $\pi(x') = \phi_F(x)$, $x \in \text{Orb}(x')$, that is $\Phi_{F,\pi}(x) = \phi_F(x)$?

Transitivity of piecewise polynomial functions

In what cases is the function ϕ_F a full-cycle permutation over R?

- $\blacksquare \text{ Let } R = \mathbb{Z}_{2^n};$
- $\phi(2^l\hat{x}) = 2^la\hat{x}^{e-1} + b$ is a piecewise inversive function, where e is the exponent of R;
- $\{\phi^i(x_0)\}_{i=0}^{\infty}, x_0 \in R,$ piecewise inversive sequence.

Theorem (J. Eichenauer-Herrmann, H. Grothe)

A piecewise inversive sequence over \mathbb{Z}_{2^n} has period 2^n iff $a \equiv_4 1$ u $b \equiv_2 1$.

Transitivity of piecewise polynomial functions

Let

$$d' = \begin{cases} d, & d \equiv 1 \mod 2, \\ d-1, & d \equiv 0 \mod 2. \end{cases}$$

Theorem

A piecewise polynomial function ϕ_F is transitive over \mathbb{Z}_{2^n} for any $n \geq 1$ iff the following relations hold:

- 1. $f_0 \equiv 1 \mod 2$;
- 2. $f_1 + f_3 + \ldots + f_{d'} \equiv 1 \mod 4$;
- 3. $f_2 + f_4 + \ldots + f_{2\lfloor \frac{d}{2} \rfloor} \equiv 0 \mod 4$.

Piecewise power functions

Corollary

A piecewise power function $\phi_F(2^l \hat{x}) = 2^l a \hat{x}^d + b$ is transitive over \mathbb{Z}_{2^n} for any $n \geq 1$ iff d is odd, $a \equiv_4 1$, $b \equiv_2 1$.

Theorem (M.V. Larin)

A polynomial $F(x) = \sum_{k \geq 0} f_k x^k \in \mathbb{Z}[x]$ is transitive modulo 2^n for any $n \geq 1$ iff the following relations hold:

- 1. $f_3 + f_5 + \ldots \equiv_4 2f_2$;
- 2. $f_4 + f_6 + \ldots \equiv_4 f_1 + f_2 1$;
- 3. $f_1 \equiv_2 1$;
- 4. $f_0 \equiv_2 1$.

In particular, $f_1 \equiv_2 1$, therefore, full-cycle binomials can only be of the first degree.

Discrepancy

Definition

The discrepancy D_l of a segment x_0, \ldots, x_{l-1} of a sequence $\{x_i\}_{i=0}^{\infty} \in [0,1)^{\infty}$ is defined by

$$D_l(x_0,\ldots,x_{l-1}) = \sup_{0<\alpha\leq 1} \left| \frac{N([0,\alpha),l)}{l} - \alpha \right|,$$

where $N([0, \alpha), l) = |\{x_n \in [0, \alpha) \mid 0 \le n \le l - 1\}|.$

For a sequence of i.i.d. random variables uniformly distributed on [0,1), as $l \to \infty$ we have

$$D_l = O(l^{-1/2}(\log \log l)^{1/2}).$$

Discrepancy of piecewise polynomial sequences

- $R = \mathbb{Z}_q, \ q = p^n, \ p > 2;$
- $[x_i]_{i=0}^{\infty}$ piecewise polynomial sequence of period q over R;
- $P = \left\{ \frac{x_i}{q} \right\}_{i=0}^{\infty};$
- $V(R) = \frac{4}{\pi^2} n \ln p + \frac{4}{5}.$

Theorem

Let ϕ_F be a transitive piecewise polynomial function over R, and $d \geq 2$, (d, p) = 1. Then for l, such that $1 \leq l \leq q$, we have

$$D_l(P) < \frac{1}{q} + 3V(R)p^{-\frac{1}{2s}}l^{-\frac{1}{2}}q^{\frac{1}{2}},$$

where
$$s = d^{\sqrt{\frac{3}{2}p}+1}$$

Comparison of the asymptotics of estimates

piecewise polynomial sequence over \mathbb{Z}_q as $q \to \infty$, p, d, l = O(q):

$$D_l = O(l^{-1/2}q^{1/2}p^{-\frac{1}{2s}}\log q), \ s = d^{\sqrt{\frac{3}{2}p+1}};$$

polynomial generator over \mathbb{Z}_q as $q \to \infty$, l = O(q) (E. El-Mahassni, A. Winterhof):

$$D_l = O(l^{-1/2}q^{1/2}\log\log\log q \cdot (\log\log q)^{-1/2});$$

polynomial generator over GF(p) as $p \to \infty$, l = O(p) (H. Niederreiter, I.E. Shparlinski):

$$D_l = O(l^{-1/2}p^{1/2}\log\log p \cdot \log^{-1/2}p).$$

Autocorrelation coefficients

Definition

Autocorrelation coefficients of a sequence $\{x_i\}_{i=0}^{\infty}$, where $x_i = \phi_F^i(x_0)$, $x_0 \in R$, are complex numbers, defined as

$$A_{\phi_F}(l, s, g) = \sum_{i=0}^{l-1} e^{2\pi i \frac{g(x_i - x_{i+s})}{q}}.$$

The smaller the value of $|A_{\phi_F}(l,s,g)|$, the more «uncorrelated» segments

$$(x_0, \ldots, x_{l-1})$$
 and (x_s, \ldots, x_{l+s-1})

are between each other.

Autocorrelation coefficients of piecewise polynomial sequences

Theorem

Let ϕ_F be a transitive piecewise polynomial function over R, and $d \geq 2$, (d,p) = 1. Then for $h = \frac{q}{(q,q)}$ we have

$$|A_{\phi_F}(q, s, g)| < 4,41h^{-\frac{1}{d^s}}q + 2sp^{-1}q.$$

This estimate is nontrivial for small values of the shift $s < \frac{p}{2}$ and the generating polynomial degree d: $d^s < \frac{1}{\log_h 4,41}$.

Thank you for your attention!