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DISCLAIMER

1. The presentation does NOT contain:
− predictions about the timeframe
for creating an efficient quantum computer;

− in-depth details of quantum computing.

2. We talk mostly about provable security, less about constructive
cryptanalysis, and a little about common sense.

3. Almost all the results presented are essentially well known and
do not claim any novelty.
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WELL-KNOWN OR WELL-RECOGNISED STATEMENTS

It is commonly believed that by using Shor’s algorithm and an
efficient quantum computer, it is possible to break existing
asymmetric algorithms: RSA, ECDSA, GOST 34.10, Diffi-Hellman etc.

We will not discuss this, but try to answer the following questions:
• What about other cryptoalgorithms and protocols?
• How to prove security?
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BASIC INFORMATION
ABOUT QUANTUM COMPUTING



QUBIT (QUANTUM BIT)

• Qubit is a two-level quantum system

• Element of 2D complex space

• Like the classical bit, has two distinguished

basis states (e.g., |0⟩ = (1 0)⊤ and |1⟩ = (0 1)⊤)

• Unlike the classical bit, can be “both” at the
same time (superposition):

|𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ ,

where 𝛼 and 𝛽 are complex w.r.t. normalization
constraint |𝛼|2 + |𝛽|2 = 1 5



MANY-QUBIT SYSTEMS
• 𝑛-qubit system is a tensor product of the spaces of its
individual qubits

• A state of the system is

|𝜓⟩ = ∑
𝑥∈{0,1}𝑛

𝛼𝑥 |𝑥⟩

• Has 2𝑛 basis states – the growth is exponential
• Any linear transformation acts on all 2𝑛 states in superposition
(“quantum parallelism”)
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TRANSFORMATIONS

• Transformations of qubits are unitary operators (“gates”)
• 1-qubit gates:

− Pauli’s group: 𝐼 , 𝑋, 𝑍, 𝑌 ;
− Hadamard 𝐻, etc.

• 2-qubit gates: 𝐶𝑁𝑂𝑇 – controlled bit-flip (𝑋𝑂𝑅), 𝐶𝑍, 𝑆𝑊𝐴𝑃 , etc.

• 3-qubit gates:

− Toffoli – controlled 𝐶𝑁𝑂𝑇 (𝐴𝑁𝐷+𝑋𝑂𝑅);
− Fredkin – controlled 𝑆𝑊𝐴𝑃 , etc.

• To construct any 𝑛-qubit gate with arbitrary precision, we need
a smaller set of 1-/2-/3-qubit gates (“universal set”)
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MEASUREMENT
• Measurement is a special (non-unitary) type of transformation
• It makes qubit to probabilistically collapse into one of the
basis states, destroying superposition

|𝛼|2 (and |𝛽|2) are probabilities to find qubit in |0⟩ (and |1⟩) state
after measurement
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SIMPLIFYING ANALOGY FROM THE CLASSICAL WORLD

superposition of 𝑁 qubits distribution over 2𝑁 bitstrings
transformation distribution change
measurement sampling from distribution

9



GATE MODEL

• Gate model: computations are represented as circuits
• We can think of:

− logical qubits as “register memory”
− gates as time (in their total number or in layers)

10



THREE SETTINGS: Q0, Q1, Q2



FORMAL COMMENTS

Setting is defined by answers to two questions:

– how does the adversary interact with cryptosystem?

– what kind of computations can the adversary perform?

Setting Interactions Computations
Q0 Classic Classic
Q1 Classic Quantum
Q2 Quantum Quantum

12



Q0: CLASSIC INTERACTIONS AND COMPUTATIONS

The crypto reality familiar to everyone.
13



Q1: COMPUTATIONS BECOME QUANTUM

Possible near future.
The adversary will have built an efficient quantum computer.
We probably won’t know it right away. 14



Q2: EVERYTHING BECOMES QUANTUM

We’re definitely not here.
We’ll definitely be able to detect if we end up here. 15



THREE SETTINGS: Q0, Q1, Q2

Cryptographers prefer stronger models.

Q1 is stronger than Q0.

Q2, although not realistic now, is the strongest model.

Why not just use it everywhere?

⇒ Many cryptoalgorithms are insecure in Q2!
⇒ Many cryptoalgorithms have much worse security bounds in Q2!
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WHAT IS INSECURE IN Q2?

Examples:

• CBC-MAC-like schemes

• AEAD-scheme GCM

• Wegman-Carter MAC (information theoretic secure scheme!)

• SPHINCS+ (postquantum hash-based signature)
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EXAMPLE: ATTACK ON WEGMAN-CARTER IN Q2

𝑇𝑎𝑔 = 𝑀𝑠𝑔 ⊗ 𝐾𝑒𝑦 ⊕ 𝑂𝑛𝑒𝑇𝑖𝑚𝑒𝐾𝑒𝑦

𝑇𝑎𝑔,𝑀𝑠𝑔, 𝐾𝑒𝑦, 𝑂𝑛𝑒𝑇𝑖𝑚𝑒𝐾𝑒𝑦 ∈ 𝐺𝐹(2𝑛)

• Query the tag oracle with the superposition of 𝑀𝑠𝑔1 and 𝑀𝑠𝑔2
• Use Deutsch’s algorithm to recover 𝑖-th secret bit of

𝑀𝑠𝑔1 ⊗ 𝐾𝑒𝑦 ⊕𝑀𝑠𝑔2 ⊗ 𝐾𝑒𝑦
• Recover all bits of 𝐾𝑒𝑦 in several queries⇒ universal forgery

DAN BONEH, MARK ZHANDRY – 2012

QUANTUM-SECURE MESSAGE AUTHENTICATION CODES
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EXAMPLE: ATTACK ON SPHINCS/SPHINCS+ IN Q2

• Find 𝑓 messages signed by a single instance of FTS

• Fix index 𝑖𝑑𝑥 ∈ {0, 1}64 of target FTS

• Search a message with 𝑖𝑑𝑥 by Grover’s algorithm
and ≈ 232 superposition queries to signing oracle

• Repeat 𝑓 times and make a forgery

QUAN YUAN, MEHDI TIBOUCHI, MASAYUKI ABE – 2023

QUANTUM-ACCESS SECURITY OF HASH-BASED SIGNATURE SCHEMES
19



THESIS №1 ABOUT MODELS

• Q0 is our reality
• Q1

− realistic
− possibly “near future”
− “hard-to-detect”

• Q2

− interesting and powerful model
− NOT realistic now and in near future
− “easy-to-detect”

Next, we talk only about Q1

20



TWO “TYPES” OF SECURITY PROOFS



TWO “TYPES” OF SECURITY PROOFS

1. Standard Model – reduction of protocol security to the
complexity of some problem(s)

2. Random Oracle Model – some component (hash, cipher,
permutation) is idealised a priori
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LOGIC OF PROOF IN STANDARD MODEL

Let there exist an arbitrary algorithm A

that efficiently attacks a protocol P,

then there exists an algorithm B

that is equally efficient at solving a hard problem H.

But H is said to be unsolvable, so P cannot be attacked!

23



STANDARD MODEL

EXAMPLES OF PROOFS IN STANDARD MODEL

• CTR encryption indistinguishability

• CMAC unforgeability

• Merkle-Damgard hash collision and preimage resistance

• SPHINCS signature indistinguishability
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RANDOM ORACLE MODEL

One of the cryptoprotocol algorithms (e.g. hash function) is

immediately replaced by “ideal and incomputable‘’ Random Oracle.

No real hash function can be a Random Oracle,

no real block cipher can be an “ideal cipher”,

but ROM is useful and gives a simpler proofs and effective

protocols.

25



RANDOM ORACLE MODEL

EXAMPLES OF PROOFS IN ROM

• ECDSA / GOST 34.10 unforgeability

• Sponge-like hash properties

• PBKDF2 time hardness

• Davies-Meyer compression collision/preimage resistance

• Kyber (lattice-based KEM) indistinguishability

26



Q1 AND SECURITY PROOFS
IN STANDARD MODEL



Q1 AND PROOFS IN STANDARD MODEL

GOOD NEWS

...black-box (reduction) proofs can be adapted

SLIGHTLY LESS GOOD NEWS

...complexity of basic problems should be re-evaluated because of
the presence of a quantum computer

28



Q1: TWO POSSIBLE APPROACHES

1. ALL COMPUTATIONS ARE QUANTUM

• An adversary and oracles are quantum algorithms

• All queries are quantum (i.e. superpositions)

• Before computing the oracle’s response, the query is measured

• The response can be computed using only classical
computations

⇒ Simple and implicit approach, quantum and classical resources

are accounted for together.
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Q1: TWO POSSIBLE APPROACHES

2. “MAGIC BOX”
• An adversary and oracles are classical algorithms
• All queries are classical
• The adversary gains access to another oracle,
a “magic box”, a quantum computer 𝑄𝐶

• QC accepts classical queries (programmes),
executes them, returns the result

• Each query to the QC implicitly specifies
the distribution on the outputs

⇒ Explicit, but more flexible approach.
The resources can be accounted for in more detail.

Formally, all algorithms and oracles are running on Quantum Turing Machines. 30
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IDEA OF PROOF ADAPTATION WITH “MAGIC BOX”

Classical setting (Q0)
An algorithm A, by accessing the oracle O, produces the result R.
An algorithm B that uses A, models an oracle O for it, and uses R to
solve some hard problem H.
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IDEA OF PROOF ADAPTATION WITH “MAGIC BOX”

Quantum setting (Q1)
A gains access to QC. B also gains access to the same QC.
B responds to queries from A to O in the same way as before in Q0.
B responds to queries from A to QC by simple forwarding.
The proof is preserved, but instead of H, we have “H in Q1”.

32



BASIC HARD PROBLEMS IN Q1

Although the proof persists,

the basic hard problems may no longer stay as such:

• problem may become easily solvable (e.g. discrete log);

• problem’s complexity may be reduced (e.g. block ciphers

security).

33



EXAMPLE: RESOURCES OF QC
QC can be implemented in a variety of ways,
including non-universal.

GATE MODEL
• total time
• number of restarts
• number of parallel instances
• number of qubits
• memory size and type
• max depth
• ... and so on

The adversary has its own “classical” resources and QC resources.
In the simplest case, the running times are 𝑡𝐶 and 𝑡𝑄.
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EXAMPLE: RESOURCES OF QC

Definitely,

“classic operations” 𝑡𝐶 ≥ “quantum operations” 𝑡𝑄,

but now and in near future

“classic operations” 𝑡𝐶 ≫ “quantum operations” 𝑡𝑄.

35



RESULTS

We obtain post-quantum security proofs (Q1) for:

• Encryption modes (CBC, CFB, OFB, CTR, CTR-ACPKM)

• MAC modes (OMAC, OMAC-ACPKM)

• AEAD (MGM)

• Keyed hash (HMAC-Streebog, Streebog-K)

• Unkeyed hash (preimage/collision resistance of Streebog)

• Protocols (CRISP, IPlir, TLS with PSK).

NOTE
Security models are usually denoted by the suffix/prefix “Q1” or “PQ”.
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EXAMPLE: CTR-ACPKM WITH BLOCK CIPHER E

𝑠 sections of 𝜎 𝑛-bit blocks each.

37



EXAMPLE: CTR-ACPKM WITH BLOCK CIPHER E

THEOREM (Q0 – CLASSICAL)

Adv𝐼𝑁𝐷-𝐶𝑃𝑁𝐴CTR-ACPKM(𝑡𝐶 , 𝑠, 𝜎) ≤ 𝑠 ⋅ Adv𝑃𝑅𝑃E (𝑡′𝐶 , 𝜎) + 𝑠 ⋅ ( 𝜎2

2𝑛+1 ) ,

THEOREM (Q1 – QUANTUM)

Adv𝐼𝑁𝐷-𝐶𝑃𝑁𝐴-𝑄1CTR-ACPKM (𝑡𝐶 , 𝑡𝑄, 𝑠, 𝜎) ≤ 𝑠 ⋅ Adv𝑃𝑅𝑃-𝑄1E (𝑡′𝐶 , 𝑡𝑄, 𝜎) + 𝑠 ⋅ ( 𝜎2

2𝑛+1 ) ,

𝑡𝐶 classical and 𝑡𝑄 quantum computation resources, 𝑡′𝐶 ≈ 𝑡𝐶 ,
𝑠 sections of 𝜎 𝑛-bit blocks each.
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EXAMPLE: KEYED STREEBOG PRF-SECURITY

𝐻 = Streebog(𝐾||𝑀),
block length 𝑛 = 512 bit,
key length 𝑘 ≤ 𝑛.

39



EXAMPLE: KEYED STREEBOG PRF-SECURITY

THEOREM (Q0 – CLASSICAL)
Adv𝑃𝑅𝐹Streebog-K(𝑡𝐶 , 𝑞, 𝑙) ≤

≤ Adv
𝑃𝑅𝐹-𝑅𝐾𝐴⊞
g▿ (𝑡′𝐶 , 𝑞′, 𝑞′, 1) + ℓ′ ⋅ Adv

𝑃𝑅𝐹-𝑅𝐾𝐴⊕
g⊳ (𝑡′𝐶 , 𝑞) +

𝑞2 + 𝑞
2𝑛+1 ,

THEOREM (Q1 – QUANTUM)
Adv𝑃𝑅𝐹-𝑄1Streebog-K(𝑡𝐶 , 𝑡𝑄, 𝑞, 𝑙) ≤

≤ Adv
𝑃𝑅𝐹-𝑅𝐾𝐴⊞-𝑄1
g▿ (𝑡′𝐶 , 𝑡𝑄, 𝑞′, 𝑞′, 1) + ℓ′ ⋅ Adv

𝑃𝑅𝐹-𝑅𝐾𝐴⊕-𝑄1
g⊳ (𝑡′𝐶 , 𝑡𝑄, 𝑞) +

𝑞2 + 𝑞
2𝑛+1 ,

𝑡𝐶 classical and 𝑡𝑄 quantum computation resources, (𝑡′𝐶 ≈ 𝑡𝐶 ),
𝑞 adaptively chosen messages (𝑞′ = 𝑞 + 1), 𝑛 = 512,
ℓ is the maximum length of the message (in 𝑛-bit blocks), ℓ′ = ℓ + 1. 40



THESIS №2: SECURITY PROOFS IN STANDARD MODEL

• Security proof in Standard Model can be easily adapted to Q1

• The complexity of basic problems should be re-evaluated

• If a post-quantum scheme has classical proof “only through

reduction”, then we should care only about underlying basic

problems, not about the whole scheme

41
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THE COMPLEXITY OF BASIC PROBLEMS



LIST OF BASIC PROBLEMS

• PRP-security of Kuznyechik

• PRP-security of Magma

• PRF-security of Streebog compression function (CF)

• Preimage/collision resistance of Streebog CF or Streebog itself

• Syndrome decoding of random linear code

• and many others

43



QUANTUM MEMORY (QRAM)

Interactions Computations QRAM
Q0 Classical Classical No

Q1 Classical Quantum
No

expensive
cheap

Q2 Quantum Quantum

44



QUANTUM MEMORY (QRAM)

• Special gate that can be used to address data quantumly
• “One more dimension” in gate-based circuits
• Time cost of access:

− 𝑂(√𝑚) (“expensive”)
− 𝑂(1) (“cheap” assumption)

45



UNIVERSAL METHODS

Method Target Time Probability QRAM

Q0 – Classical

Bruteforce/guessing key / preimage 2𝑘 𝑡𝐶/2𝑘 −

𝜌-Pollard collision 2𝑛/2 𝑡2𝐶/2𝑛 −

Q1 – Quantum

Grover key / preimage 2𝑘/2 𝑡2𝑄/2𝑘 −

Brassard-Høyer-Tapp collision 2𝑛/3 𝑡2𝑄/2
2
3 𝑛 2𝑛/3

... and others

46



PRP-SECURITY OF KUZNYECHIK

Q0 – CLASSICAL

Adv𝑃𝑅𝑃Kuznyechik(𝑡𝐶 , 𝜎) ⪅
𝑡𝐶
2𝑘

Q1 – QUANTUM

Adv𝑃𝑅𝑃-𝑄1Kuznyechik(𝑡𝐶 , 𝑡𝑄, 𝜎) ⪅
𝑡𝐶
2𝑘 +

𝑡2𝑄
2𝑘

𝑡𝐶 / 𝑡𝑄 – classical / quantum
computation resources,
𝜎 – number of adaptively
chosen PT-CT pairs,
𝑘 = 256 – key bit length.

47



PRP-SECURITY OF MAGMA

Q0 – CLASSICAL
Adv𝑃𝑅𝑃Magma(𝑡𝐶 , 𝜎) ⪅

𝑡𝐶
2192 + 𝜎

264

Q1 – QUANTUM (NO QRAM)

Adv𝑃𝑅𝑃-𝑄1Magma (𝑡𝐶 , 𝑡𝑄, 𝜎) ⪅
𝑡𝐶
2192 + 𝜎

264 +
𝑡2𝑄
2256

Q1 – QUANTUM (HUGE CHEAP QRAM)

Adv𝑃𝑅𝑃-𝑄1Magma (𝑡𝐶 , 𝑡𝑄, 𝜎) ⪅
𝑡𝐶
2192 + 𝜎

264 +
𝑡2𝑄
2224

X. DONG, B. DONG, X. WANG – 2018
QUANTUM ATTACKS ON SOME FEISTEL
BLOCK CIPHERS 48



PRF-SECURITY OF STREEBOG COMPR. FUNCTION

Q0 – CLASSICAL

Adv𝑃𝑅𝐹g▿ (𝑡𝐶 , 𝜎) ⪅
𝑡𝐶
2𝑘

, Adv𝑃𝑅𝐹g⊳ (𝑡𝐶 , 𝜎) ⪅
𝑡𝐶
2𝑘

+ 𝜎2

2𝑛 ,

Q1 – QUANTUM

Adv𝑃𝑅𝐹-𝑄1g▿ (𝑡𝐶 , 𝑡𝑄, 𝜎) ⪅
𝑡𝐶
2𝑘

+
𝑡2𝑄
2𝑘

, Adv𝑃𝑅𝐹-𝑄1g⊳ (𝑡𝐶 , 𝑡𝑄, 𝜎) ⪅
𝑡𝐶
2𝑘

+
𝑡2𝑄
2𝑘

+ 𝜎2

2𝑛 ,

𝑘 ≤ 𝑛 = 512,
Similar bounds for PRF-RKA (related key attack) notion. 49



PREIMAGE RESISTANCE: STREEBOG COMPR. FUNCTION

Q0 – CLASSICAL
Adv𝑃𝑅𝐸g (𝑡𝐶 ) ⪅

𝑡𝐶
2𝑛

Q1 – QUANTUM

Adv𝑃𝑅𝐸-𝑄1g (𝑡𝐶 , 𝑡𝑄) ⪅
𝑡𝐶
2𝑛 +

𝑡2𝑄
2𝑛

50



COLLISION RESISTANCE: STREEBOG COMPR. FUNCTION

Q0 – CLASSICAL

Adv𝐶𝑅g (𝑡𝐶 ) ⪅
𝑡2𝐶
2𝑛

Q1 – QUANTUM (NO QRAM)

Adv𝐶𝑅-𝑄1g (𝑡𝐶 , 𝑡𝑄) ⪅
𝑡2𝐶
2𝑛

Q1 – QUANTUM (HUGE CHEAP QRAM)

Adv𝐶𝑅-𝑄1g (𝑡𝐶 , 𝑡𝑄) ⪅
𝑡2𝐶
2𝑛 +

𝑡2𝑄
2

2𝑛
3

51



SYNDROME DECODING OF RANDOM LINEAR CODE

Q0 – CLASSICAL
Adv𝑆𝐷𝑛,𝑘,𝑤 (𝑡𝐶 ) ⪅

𝑡𝐶
(𝑛𝑤)/(

𝑛−𝑘
𝑤 )

Q1 – QUANTUM

Adv𝑆𝐷-𝑄1𝑛,𝑘,𝑤 (𝑡𝐶 , 𝑡𝑄) ⪅
𝑡𝐶

(𝑛𝑤)/(
𝑛−𝑘
𝑤 )

+
𝑡2𝑄

(𝑛𝑤)/(
𝑛−𝑘
𝑤 )

• 𝑛, 𝑘 – code parameters
• 𝑤 – error vector’s weight

(assuming ISD is the best attack – classical due to [Prange, 1962];
quantum due to [Bernstein, 2010])

52



SPECIAL METHODS
IN QUANTUM CRYPTANALYSIS



SPECIAL METHODS

Q0: Is it possible to do better than key guessing?

Q1: Is it possible to do better than Grover’s

algorithm (or other generic attacks)?

54



EXAMPLE: AES-256 CRYPTANALYSIS IN Q0

Rounds Time Data Memory Method

7 2172 234 232 Square, 2000

7 298 299 296 MITM, 2013

8 2196 2113 282 MITM, 2013

9 2203 2117 2202 MITM, 2020

14 2256 3 − key guessing

BONNETAIN X., NAYA-PLASENCIA M., SCHROTTENLOHER A. – FSE 2020

QUANTUM SECURITY ANALYSIS OF AES
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EXAMPLE: AES-256 CRYPTANALYSIS IN Q1

Rounds Q. Time Data QRAM Cl. Memory Method

7 2111 237 − 236 Square

7 297 237 227 238 Square

8 2126.6 2113 – 288 MITM

9 ? ? ? ? ?

14 2128 3 − − Grover

BONNETAIN X., NAYA-PLASENCIA M., SCHROTTENLOHER A. – FSE 2020

QUANTUM SECURITY ANALYSIS OF AES
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EXAMPLE: KUZNYECHIK CRYPTANALYSIS IN Q0

Rounds Time Data Memory Method

4 2137 29 210 Integral

4 256 256 210 Multiset-Algebraic

5 2120 2120 210 Multiset-Algebraic

5 2159 2113 2154 MITM, 2018

6 2214 2113 2207 MITM, 2018

6 2141 2120 2132 Multiset-Algebraic + FFT, 2023

7 2148 2128 2140 Multiset-Algebraic + FFT, 2023

9 2256 3 − key guessing
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QUANTUM ATTACK ON 4-ROUND KUZNYECHIK

𝐶 = X[𝐾5]LSX[𝐾4]LSX[𝐾3]LSX[𝐾2]LSX[𝐾1](𝑃)

• 4 rounds (5 rounds keys)

• X – XOR with round key

• S – 16 byte S-boxes

• L – MDS matrix
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QUANTUM ATTACK ON 4-ROUND KUZNYECHIK

Classical integral attack:

• Choose structure of 256 PT

• First byte in each PT is different (A)

• Sum of blocks after 3 round gives zero (B)

• Use equivalent representation of the last

two rounds (swap X and L)

• Guess 136 bit: all 𝐾′
5 and one byte in 𝐾′

4

• Decrypt CT and check B-property for
several structures
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QUANTUM ATTACK ON 4-ROUND KUZNYECHIK

Quantum integral attack:

• Use 18 structures (256 ⋅ 18 PT)

• Compose an “oracle” F that gets 136 bits

of keys and returns True if the B-property
is true for all structures

• Without QRAM “oracle” F uses about

𝑡𝐹𝑄 ≈ 1
4 ⋅ 256 ⋅ 18 ⋅ 2 “encryptions”

• Use Grover’s algorithm for F,

about 2136/2 = 268 iterations

• Totally 𝑡𝑄 ≈ 268 ⋅ 𝑡𝐹𝑄 ≈ 279 “encryptions”
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QUANTUM ATTACK ON 4-ROUND KUZNYECHIK

“Naive” Grover’s application gives 𝑡𝑄 ≈ 2128 .
Classical method 𝑡𝐶 ≈ 2136.
Proposed quantum integral attack 𝑡𝑄 ≈ 280.

OPEN PROBLEM

How to attack more rounds of Kuznyechik with QC?
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EXAMPLE: STREEBOG BLOCK CIPHER CRYPTANALYSIS

Secret key setting. Key length = block length = 512 bit.

Rounds Time Data Cl.Memory QRAM Method
Q0 – Classical

6 2140 268 268 − integral
6.75 2399.5 2483 2349 − imp. diff., 2015
7 2421 264 2354 − imp. polytopic, 2021
12 2512 2 − − key guessing

Q1 – Quantum
6 2104 268 268 − integral
12 2256 2 − − Grover
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EXAMPLE: FULL-ROUND MAGMA CRYPTANALYSIS

Rounds Time Data Cl. Memory QRAM Method

Q0 – Classical

32 2224 232 264 − Ref. points

32 2192 264 236 − Fix. points

32 2256 5 − − key guessing

Q1 – Quantum

32 2112 264 264 264 Fix. points

32 2128 5 − − Grover

X. DONG, B. DONG, X. WANG – 2018
QUANTUM ATTACKS ON SOME FEISTEL BLOCK CIPHERS
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THESIS №3: QUANTUM CRYPTANALYSIS

CRYPTANALYSIS IN Q1

Non-trivial results can be achieved:

• better than Grover search;

• better than classical methods.

“RULE OF THUMB”

For symmetric cryptoalgorithms in Q1,

“non-trivial quantum attack” is harder to construct than

“non-trivial classical attack”.
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NUMERICAL ESTIMATES
AND UNTIGHT BOUNDS



TIGHTNESS OF THE SECURITY BOUNDS

Lower bounds ≈ Upper bounds⇒ tightness

Proof adaptation from Q0 to Q1: tight bounds can become untight
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REASON OF UNTIGHTNESS

The upper bound obtained using the “hybrid argument” (summand

𝑁 ⋅ 𝐴𝑑𝑣(...)) may not be achieved by the generic multitarget attack.
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MULTITARGET ATTACKS

KEY RECOVERY
𝜇 independent 𝑘-bit secret keys 𝐾1,...,𝐾𝜇, 𝜇 PT-CT pairs,

𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡𝑖 = Enc(𝐾𝑖 , 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡), 1 ≤ 𝑖 ≤ 𝜇.

Find at least one key from 𝐾1,...,𝐾𝜇.

PREIMAGE
𝜇 random 𝑘-bit hash values 𝑌1,...,𝑌𝜇.
Find (𝑖, 𝑋):

Hash(𝑋) = 𝑌𝑖 , 1 ≤ 𝑖 ≤ 𝜇.
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MULTITARGET ATTACKS

Probability of recovery of one (out of 𝜇) keys

Q0
Q1 Q1 Q1

No QRAM costly QRAM cheap QRAM

𝜇 ⋅
𝑡𝐶
2𝑘

𝑡2𝑄
2𝑘 √𝜇 ⋅

𝑡2𝑄
2𝑘

𝜇 ⋅
𝑡2𝑄
2𝑘

Q0: The success probability is increased linearly by 𝜇
Q1: It’s more complicated and depends on QRAM
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EXAMPLE: CTR-ACPKM WITH KUZNYECHIK

Q0 – CLASSICAL

Adv𝐼𝑁𝐷-𝐶𝑃𝑁𝐴CTR-ACPKM(𝑡𝐶 , 𝑠, 𝜎) ⪅ 𝑠 ⋅
𝑡𝐶
2𝑘

+ 𝑠 ⋅ ( 𝜎2

2𝑛+1 ) ,

Q1 – QUANTUM

Adv𝐼𝑁𝐷-𝐶𝑃𝑁𝐴-𝑄1CTR-ACPKM (𝑡𝐶 , 𝑡𝑄, 𝑠, 𝜎) ⪅ 𝑠 ⋅
𝑡𝐶
2𝑘

+ 𝑠 ⋅
𝑡𝑄2

2𝑘
+ 𝑠 ⋅ 𝜎2

2𝑛+1 ,

𝑡𝐶 / 𝑡𝑄 – classical / quantum computation resources,

𝑠 sections of 𝜎 𝑛-bit blocks each,
𝑘 = 256, 𝑛 = 128.
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EXAMPLE: CTR-ACPKM

Attack Lower bound Upper bound

Recovery of one key
from ACPKM key-chain

𝑠 ⋅
𝑡𝐶
2𝑘

𝑠 ⋅
𝑡𝐶
2𝑘

Absence of the birthday paradox
in each of 𝑠 sections

𝑠 ⋅ 𝜎2

2𝑛+1 𝑠 ⋅ 𝜎2

2𝑛+1

Grover’s algorithm
𝑡2𝑄
2𝑘

𝑠 ⋅
𝑡2𝑄
2𝑘

⇒ Tightness in Q0, but not in Q1.

OPEN PROBLEM
Is it possible to accelerate an attack
on the ACPKM keychain using QC even with “cheap QRAM”?
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EXAMPLE: KEYED STREEBOG

Q0 – CLASSICAL

Adv𝑃𝑅𝐹Streebog-K(𝑡𝐶 , 𝑞, 𝑙) ⪅
𝑡𝐶
2𝑘

+
𝑡𝐶 ⋅ 𝑞 ⋅ 𝑙
2𝑛−1 + 𝑞2 + 𝑞

2𝑛+1

Q1 – QUANTUM

Adv𝑃𝑅𝐹-𝑄1Streebog-K(𝑡𝐶 , 𝑡𝑄, 𝑞, 𝑙) ⪅
𝑡𝐶
2𝑘

+
𝑡𝐶 ⋅ 𝑞 ⋅ 𝑙
2𝑛−1 + 𝑞2 + 𝑞

2𝑛+1 +
𝑡𝑄2

2𝑘
+
𝑡𝑄2 ⋅ 𝑞 ⋅ 𝑙
2𝑛−1

𝑡𝐶 / 𝑡𝑄 – classical / quantum computation resources,
𝑞 – number of adaptively chosen messages (𝑞′ = 𝑞 + 1),
ℓ – maximum length of the message (in 𝑛-bit blocks), ℓ′ = 𝑙 + 1.
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THESIS №4: HEURISTIC ESTIMATES IN Q1

• Due to the “hybrid argument”

some security bounds become untight after proof adaptation.
• Tightness can be returned by:

− new proofs (reductions) to other problems;
− new generic quantum attacks.

• The key capacity estimates mostly remain the same

(here, as always, we’re not talking
about side channels and other “off-model” threats).
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Q1 AND SECURITY PROOFS IN ROM



REASON FOR DIFFICULTY

Why doesn’t the “as for standard model‘’ adaptation work?
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EXAMPLE

Adversary A has access to a keyed
hash function H𝐾 that is modelled

as a Random Oracle RO.

𝑞 queries to H𝐾 .

𝑡 queries (“computations”) to RO.
Goal: secret key 𝐾 .

Pr(𝐾′ = 𝐾) ≤ 𝑡
2𝑘
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EXAMPLE

Let’s go to quantum setting and give A access to QC.

The adversary’s probability of success has NOT changed.
The RO’s “description” cannot be used in QC.

But A should get a
quadratic speed up due to Grover’s algorithm...
⇒ ROM is inadequate in Q1.
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SECURITY PROOFS IN ROM

Security proofs in Random Oracle Model
(ROM) can NOT be easily adapted to Q1.
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FROM ROM TO QROM

79



QROM – QUANTUM RANDOM ORACLE MODEL

Quantum adversary A can make superposition queries to RO.
Even all 2𝑁 outputs can be computed after a single 𝑁-bit query.

Most of the classical proof methods stop working.

Other special techniques have been developed over the last 15

years, but that’s a different broad discussion.
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EXAMPLES: SECURE CRYPTO IN QROM

FUJISAKI-OKAMOTO TRANSFORM

“Weak” public-key encryption⇒ secure KEM

K. HOVELMANNS, E. KILTZ, S. SCHAGE, D. UNRUH. – PKC 2020
GENERIC AUTHENTICATED KEY EXCHANGE IN THE QUANTUM RANDOM
ORACLE MODEL

... and many other papers.

81



EXAMPLES: SECURE CRYPTO IN QROM

FIAT-SHAMIR TRANSFORM

Three-round interactive proof⇒ non-interactive proof

J.DON, S.FEHR, C.MAJENZ, C.SCHAFFNER – CRYPTO 2019
SECURITY OF THE FIAT-SHAMIR TRANSFORMATION IN THE QUANTUM
RANDOM-ORACLE MODEL

... and many other papers.
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CAN A REAL HASH PLAY THE ROLE OF QROM?

No real hash function can essentially implement a (quantum) ROM.
We can hope only on (quantum) indifferentiability under some
other assumptions (“ideal cipher” or “ideal permutation” models).
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QUANTUM INDIFFERENTIABILITY: MD

M. ZHANDRY – CRYPTO 2019
HOW TO RECORD QUANTUM QUERIES, AND APPLICATIONS TO QUANTUM
INDIFFERENTIABILITY
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QUANTUM INDIFFERENTIABILITY: SPONGE

G.ALAGIC, J.CAROLAN, C.MAJENZ, S.TOKAT – 2025
THE SPONGE IS QUANTUM INDIFFERENTIABLE – 2025

85



QUANTUM INDIFFERENTIABILITY: STREEBOG?

OPEN PROBLEM
Streebog is proven to be indifferentiable from ROM
under “ideal cipher” assumption [ABB23].
Prove the analogous for the quantum case (QROM).

[ABB23] L. R. AKHMETZYANOVA, A. A. BABUEVA, A. A. BOZHKO
STREEBOG AS A RANDOM ORACLE
CTCrypt 2023
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CONCLUSION

• Q1 in the most adequate setting for “quantum threat”.

• Existing security proofs of cryptoalgorithms and protocols
in the “Standard Model” (only through black-box reductions)
can be easily adapted to Q1 setting.

• The numerical heuristic complexities of the basic problems
should be re-evaluated for Q1.
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CONCLUSION

• Revaluation should take into account both universal
(i.e. Grover) and special methods of quantum cryptanalysis.

• Quantum cryptanalysis may give non-trivial results,
but as “rule of thumb” for symmetric algorithms in Q1:
“non-trivial quantum attack” means
“non-trivial classical attack”.

• The key capacity estimates for protocols and modes mostly
remain the same, but some security bounds become untight.

• Existing security results in “Random Oracle Model”
should be reformulated from scratch in “Quantum ROM”,
but a lot of the results and tools already exist.
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Thank you for attention!
Questions?

VITALY KIRYUKHIN,
ANTON NAUMENKO,
ANDREY SHCHERBACHENKO
LLC “SFB Lab”, JSC “InfoTeCS”

CTCrypt 2025
4 June 2025
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