

Protection against adversarial attacks with randomisation of recognition algorithm

Svetlana Koreshkova¹

Grigory Marshalko²

¹ JSC «Kryptonite»

² Technical committee for standardisation TC 26

September 16, 2020

Biometrics

Biometrics are measurable anatomical, physiological, or behavioral characteristics that are inherent in every person. For example:

- fingerprint
- \cdot palmprint
- face recognition
- iris recognition
- voice
- gait

Adversarial attack

Examples of adversarial attacks

- Limited-memory Broyden-Fletcher-Goldfarb-Shanno attack (L-BFGS): minimization of the loss function towards the target class
- Fast Gradient Sign Method (FGSM): adding some weak noise at each stage of optimization to go in some metric towards the desired class of images

🞽 Examples of Adversarial attacks

- Jacobian-based Saliency Map Attack (JSMA): adding perturbations to optimize specific gradient parameters
- **DeepFool**: calculating the minimum noise map, which will spoof the algorithm

Protection against adversarial attacks

- Adversarial training: adding adversarial examples to the training database
- **Gradient masking**: reducing the sensitivity of the model to small disturbances in the input data by smoothing the gradients in the direction

- **Defensive Distillation**: using a smaller network to evaluate inference function of the recognition system
- Ensemble Method: using multiple classifiers and combining their results
- LBP operator for color images: combining the values of the LBP operators for one channel

Recognition system based on the LBP algorithm

Consider a block $B_Z^{t\times t}$, t = 2q + 1, q = 1, 2, ... of brigtness matrix of image Z. Then operator $LBP : [0, 255]^{t\times t} \rightarrow [0, 2^{t^2-1} - 1]$ when applied to the block is defined by the following formula:

$$LBP(B_Z^{t\times t}) = \sum_{q=0}^{t^2-1} 2^q s(p_q - p_{(x^c,y^c)}),$$

where (x^c, y^c) – coordinates of the central pixel $B_Z^{t\times t}$, p_q – brigtness of a pixel with number q (in a certain ordering) from $P_Z^{t\times t}$, s(x) – Heaviside step function.

Elassic LBP operator

Dividing the image into blocks and forming an image histogram

The resulting image histograms H_1, H_2 are compared according to the metric L_1 .

$$d(H_1,H_2) = \sum_i |H_1(i) - H_2(i)|.$$

The metric is used to determine the closest class of images with the nearest neighbour method:

$$Near(H_Y) = \arg\min_{1 \leq k \leq N} d(H_Y, H_{X_k l}), 1 \leq l \leq M_k,$$

where H_Y — histogram of input image, $H_{X_{kl}}$ — histograms of database images, N — number of image classes, M_k — number of images per class k.

Attack on the LBP algorithm

Selection of uninformative pixels (set P)

- Manual selection
- Select uniform areas using pixel brightness
- Selection by histogram

original

brightness

histogram

Description of the attack

Input: X, Y — brightness matrices of attacking and attacked images. **Output:** Z — brightness matrix of the modified image.

- Let H_X is a histogram of $X,\,H_Y$ is a historgam of Y, $H_Z=H_{Z'}=H_X$
- \cdot Let P denote the set of all uninformative pixels
- + Do while $d(H_Z,H_Y) < d(H_{Z^\prime},H_Y)$:
 - 1. $H_{Z'} = H_Z$
 - 2. We randomly choose a pixel i from the set P
 - 3. We select a block with center in pixel *i* and calculate LBP operator value *j* for the block
 - 4. Let $p(\boldsymbol{j}) = H_Z(\boldsymbol{j}) H_Y(\boldsymbol{j})$
 - 5. If $p(j) \ge 0$, then pixel i is removed from P
 - 6. If p(j) < 0, then a small disturbance is added to the pixels in the LBP operator block in Z

Examples of changing the image depending on iterations

Modified LBP algorithm and its properties

For the modification, it is proposed that for each case of identification a permutation $\sigma \xrightarrow{\mathcal{U}} \mathcal{S}_n$, where $n = t^2 - 1$, is generated. According to this permutation, the elements from the set $P_Z^{t \times t}$ are selected. So the LBP operator function takes the following form:

$$LBP'(P_Z^{t \times t}) = \sum_{q=0}^{t^2-1} 2^q s(p_{\sigma(q)} - p_{(x^c, y^c)})$$

The Fisher-Yates algorithm can be used as a pseudo-random permutation generation algorithm.

Examples of basic and modified images for t = 3

Identification results table for standard and proposed methods

LBP algorithm for	LBP algorithm for	Algorithm	FAR,	FRR,
database	input image	threshold	%	%
Basic	Basic	9	0	34.3
Basic	Basic	10	0	14.3
Basic	Basic	11	75	5.7
Basic	Modified	9	0	100
Basic	Modified	10	0	100
Basic	Modified	11	0	100
Modified	Modified	9	0	34.3
Modified	Modified	10	0	14.3
Modified	odified Modified		75	5.7
Modified	Basic	9	0	100
Modified	Basic	10	0	100
Modified	Nodified Basic		0	100 15

Consider a probability distribution f, describing a corresponding histogram of a block, $P(x_i = f_i), i = 0, 2^{t^2-1} - 1$. Let $r = 2^{t^2-1}$.

Definition

«Weak» permutation is a permutation, leaving elements with equal probabilities in their classes, i.e.

$$(f_0, \dots, f_{r-1}) = (\underbrace{f'_0, \dots, f'_0}_{a_0}, \dots, \underbrace{f'_k, \dots, f'_k}_{a_k}), k < r.$$

Definition

«Strong» permutation for distribution is a permutation with $D_{f,f^\pi}=max_i|f_i-f_i^\pi|>\epsilon.$

Estimating the number of «strong» permutations

Lemma

The number of «strong» permutations is equal to

$$\begin{split} r! &- \sum_{k=0}^{\min\{|F_0|,|F_1|\}} \binom{|F_0|}{k} \binom{|F_1|}{|F_1|-k} \binom{|F_1|+|F_{\epsilon}|-k}{|F_{\epsilon}|} |F_0|!|F_1|!|F_e|!,\\ \text{where } F_0 &= \{f_i: f_i = 0, i = \overline{0, r-1}\},\\ F_1 &= \{f_i: 0 < f_i \leq \epsilon, i = \overline{0, r-1}\} \text{ and } F_{\epsilon} = \{f_i: f_i > \epsilon, i = \overline{0, r-1}\}. \end{split}$$

The table of cardinality of the sets of permutation elements depending on the parameter ϵ and the corresponding number of permutations.

ε	$ F_0 $	$ F_1 $	$ F_{\epsilon} $	Number of «weak»	Number	of
				permutations	«strong»	
					permutations	
2	179	46	29	$\approx 2^{1576}$	$\approx 2^{1684}$	
5	179	61	14	$\approx 2^{1621}$	$\approx 2^{1684}$	
7	179	65	9	$\approx 2^{1629}$	$\approx 2^{1684}$	
9	179	67	7	$\approx 2^{1636}$	$\approx 2^{1684}$	
11	179	69	5	$\approx 2^{1642}$	$\approx 2^{1684}$	
13	179	71	4	$\approx 2^{1654}$	$\approx 2^{1684}$	
17	179	72	2	$\approx 2^{1653}$	$\approx 2^{1684}$	
20	179	73	1	$\approx 2^{1661}$	$\approx 2^{1684}$	

In this work

- The modified LBP algorithm is developed
- Comparison of FAR and FRR for the original and the modified systems is performed
- The characteristics of the proposed algorithm are estimated
- The dependence of the number of «strong» permutations on the parameters of the system is estimated

Thanks for your attention!