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French-Russian Scientific Cooperation in
Cryptography and Information Security

Vladimir Fomichev1,2,3 and Alisa Koreneva2

1Financial University under the Government of the Russian Federation,
2«Security Code», LLC,

3Federal Research Center "Informatics and Management" of the Russian Academy of Sciences
fomichev.2016@yandex.ru, a.koreneva@securitycode.ru

Abstract

In this talk we would like to share the experience we have gained from the col-
laboration with an independent French academic and technical Journal of Computer
Virology and Hacking Techniques (JICV) initiated by its Editor-in-Chief, Professor
Eric Filiol. The mission of this joint project is a contribution to raising awareness
of the Russian research activity. This task is staple, as the publications of Russian
scientists are unfortunately not sufficiently known in the Western world, due to the
historically low attention to the Russian language and electronic resources of Russian
journals. We contributed to the collaboration as guest editors of the journal special
issue titled Russian Research in Cryptology and Information Security Systems. This
issue covered state-of-the-art works of Russian researchers on fundamental problems
and applications of cryptography and information security and was successfully pub-
lished in December 2020, providing two articles from the editors, one invited paper
and eight selected articles. We give an outline of the papers and highlight its scientific
value.

Keywords: Scientific Cooperation, cryptography, information Security.
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You Only Speak Once: Private Computing on
Public Blockchains

Hugo Krawczyk

IBM Research, USA
hugokraw@gmail.com

Abstract

Blockchains are well-known for their consensus and integrity properties but se-
crecy is hard to impose, let alone general secure privacy-preserving computation.
In this talk I will introduce a notion called "You Only Speak Once" (YOSO) and
show how it leads to scalable secure (multi-party) computation over blockchains. In
the YOSO model of computation, a small subset of parties (physical machines) are
periodically assigned ephemeral roles that require the machine to send a single mes-
sage after which the machine erases all its state. Thus, an attacker, that is limited
on the number of machines it can control at any given time, cannot know which
machines/roles to attack till they speak; but then it is too late to learn useful infor-
mation from their compromise. This model can be realized in blockchains where it
is unpredictable who the proposer of the next block is, such as in bitcoin, Algorand
and others.

Keywords: blockchain, multi-party computation, YOSO.
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Towards post-quantum cryptographic
standards, focus on code-based cryptography

Jean-Christophe Deneuville

French Civil Aviation University, France
jean-christophe.deneuville@enac.fr

Abstract

Late 2017, the National Institute for Standards and Technologies (NIST) ini-
tiated a process to standardize quantum safe cryptographic primitives: public-key
encryption, key-exchange and digital signature schemes. The process is currently in
the 3rd round, and several candidates (among the finalists) should be selected for
standardization at the end of this round, some others (among the alternates) should
be selected after another round.

In this talk, I will give an overview of the finalists and alternate candidates,
with a focus on code-based proposals. To do so, I will recall some fundamentals of
code-based cryptography, present historical constructions that have inspired recent
designs, and provide elements to understand why code-based cryptography stands
as a mature possible replacement for encryption.

I will also compare the code-based finalist (Classic McEliece) with the alternate
candidates (BIKE and HQC) to explain why a 4th round makes sense for a wide
adoption of code-based encryption.

Finally, I will conclude the talk with challenges and open questions code-based
cryptography faces.

Keywords: quantum safe cryptographic primitives, code-based cryptography.
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Some properties of one mode of operation of
block ciphers

Dmitriy Bogdanov1 and Vladislav Nozdrunov2

1National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Russia
2Technical Committee on Standardisation “Cryptographic Information Security” (TC 026),

Russia
bogdanov_ds@tc26, nozdrunov_vi@tc26.ru

Abstract
As part of the work of the Technical Committee for Standardization “Cryptog-

raphy and Security Mechanisms” (TC 026), a draft document [6] was presented in
2019 describing the mode of operation for full disk encryption (hereinafter referred
to as the DEC regime).

This mode is a modification of the CTR [4] mode, made taking into account the
operating conditions of block-oriented data carriers and some of their features. In
this paper, the cryptographic characteristics of the DEC mode, such as the limit on
the number of partition keys generated and the probability of collision the keystream
used for sector encryption, are investigated.

Keywords: full disk encryption, modes of operation, cryptographic protocols, CTR, KDF.

1 Introduction

As part of the work of the Technical Committee on Standardisation
«Cryptographic Information Security» (TC26), a draft document [6] was
submitted in 2019 describing a block cipher mode designed to ensure data
confidentiality on block-oriented data carriers (hereinafter – DEC mode).
This mode is a modification of the CTR [4] mode, made with respect to
the operating conditions of block-oriented data carriers and some of their
peculiarities.

Most modern storage medium read and write in whole sectors – bit strings
of fixed length. Regardless of whether a whole sector or a fraction of it is oc-
cupied by "usable" information, the whole sector will be read or overwritten.
Accordingly, it is assumed here and below that no empty or incomplete sec-
tors can exist.

In DEC mode operation, it is assumed that the medium is represented as
w consecutive partitions, where a partition is the set of s sectors, w, s ∈ N.
DEC mode uses gamification to encrypt the plaintext on the storage medium.
The DEC mode itself describes the procedure for generating the initialization
values CTR(i, lj,i, t) and the encryption keys Kj,i,lj,i.

CTCrypt 2021 12
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2 Brief description of DEC mode

Initialisation values are generated according to the rule:

CTR(i, lj,i, t) = i||(lj,i · q)�n/2 t,
j – partition number, i – sector number in partition, lj,i – count of number of
encryptions of i-th sector of j-th partition, n – block length of block cipher
used, q – sector size in blocks1, �n/2, · – addition and multiplication in ring
Z

2
n
2
, t ∈ {0, 1, · · · , q − 1}, eK – mapping implementing encryption2 using

the key K and defined in [4].
Note that theDEC mode ensures that there is no overlap of CTR(i, lj,i, t)

values when the counter values lj,i differ by less than 2n

q .
The keys Kj,i,lj,i (hereafter referred to as sector keys) are generated using

the derived key function KDF described in [5] from the partition keys. Par-
tition keys are generated with the KDF derivation function and the secret
master key. A complete description of the procedure for generating sector
keys and partition keys is beyond the scope of this paper.

Keystream blocks are generated according to the rule:

∆t = eKj,i,lj,i
(CTR(i, lj,i, t)). (1)

To encrypt the plaintext X0, · · · , Xq−1 on sector number i of partition
number j, the counter value lj,i is incriminated and keystream blocks are
generated by rule 1. The ciphertext C0, · · · , Cq−1 is written to the sector,
where Ci = Xi ⊕∆i, i = {0, · · · , q − 1}.

3 On limiting the number of sector keys

The cryptographic properties of the KDF function are discussed in detail
in work [1], in particular, the statistical properties of the key sequences pro-
duced are studied. In DEC mode, the following parameters are used in terms
of work [1, 5]: f – the pseudorandom function – CMAC. L – length of output
– 256, d – length of input3 – 1536, n – function output length f – block
length of the block cipher used, β = dLne the intermediate key generation
step follows a simplified procedure.

Then for the advantages 4 of the adversary, whose computational capa-
bility is limited by the value t, solving the problem of distinguishing q keys

1In most modern storage medium, bit length of sector l ∈ {4096, 32768}. Thus, q = l
n ∈ N.

2Implying that value CTR(i, lj,i, t) is translated into a bit string of length n
3Length of output function «format».
4Models Advprf

∗

f and Advprff are given in [1].

D. Bogdanov and V. Nozdrunov 13
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generated during DEC mode from random function values, can be estimated
as follows:

Advprf
∗

kdf2 (t, q) ≤ Advprff (t, βq) +
βq(βq − 1)

2d
. (2)

When using the block cipher «Kuznechik», the estimate (2) will take the
form:

Advprf
∗

kdf2 (t, q) ≤ AdvprfCMAC(t, 2q) +
2q(2q − 1)

21536
≤

≤ 2884q2

2128
+

t′

2256
+

24q + 1

2128
+

2q(2q − 1)

21536
,

(3)

where t′ = t+ O(24q). The estimate (3) can be used to determine limits on
the number of sector keys generated from a single partition key based on the
allowed values of adversary dominance. For example, with t ≤ 2128, q ≤ 251

the adversary advantages will be less than 10−3.
If the block cipher «Magma» is used, the estimate (2) will take the form

Advprf
∗

kdf2 (t, q) ≤ AdvprfCMAC(t, 4q) +
4q(4q − 1)

21536
≤

≤ 46096q2

264
+

t′

2192
+

96q + 1

264
+

4q(4q − 1)

21536
,

(4)

where t′ = t+ O(96q). The estimate (4) can be used to determine limits on
the number of sector keys generated from a single partition key based on the
allowed values of adversary dominance. For example, with t ≤ 2128, q ≤ 217

the adversary advantages will be less than 10−3.
For a typical 1TB consumer SSD drive, the write/rewrite endurance is

about 1200TB or 254 bits. Most storage medium have a sector size of either
4096 bits or 32768 bits. Thus, when using DEC mode with the block cipher
«Kuznechik», a single partition key is enough to produce sector keys5 for the
whole life of the medium.

4 On the probability of a collision of keystream

Due to the nature of the DEC mode, a complete collision of the
keystreams used to encrypt the entire sector will result in recovering a bit-
wise sum of plaintetxts. This section provides an estimate from above of the
probability of this event.

For the purposes of this section, it is assumed that all sector keys are real-
izations of independent random variables, that having a uniform distribution
on V256.

5Such that the advantages of an adversary would be less than 10−3.
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x1 x2 x3 · · · xN
Eξ1,1(x1) Eξ1,2(x2) Eξ1,3(x3) · · · Eξ1,N (xN)
Eξ2,1(x1) Eξ2,2(x2) Eξ2,3(x3) · · · Eξ2,N (xN)

...
...

...
...

...
EξM,1

(x1) EξM,2
(x2) EξM,3

(x3) · · · EξM,N
(xN)

Table 1:

4.1 Mathematical model

Let M,N ∈ N, x1, · · · , xN ∈ X , where X – some set, xi 6= xj at
i 6= j. Denote by x the set {x1, · · · , xN}. Let among all injective map-
pings E : x → X a randomly chosen ordered set of K (not necessarily
distinct) functions. Let us denote the functions from this set by E1, · · · , EK .
Let ξi,j, i ∈ {1, · · · ,M}, j ∈ {1, · · · , N} be independent random variables
having a uniform distribution on {1, · · · , K}. We need estimate the proba-
bility of event A such that there are i, i′ ∈ {1, · · · ,M}, j, j′ ∈ {1, · · · , N},
(i, j) 6= (i′, j′) such that Eξi,j(j) = Eξi′,j′(j

′). Such sets of pairs (i, j), (i′, j′)
will be further called «collision».

4.2 Relationship between the model and the problem

By virtue of its construction, the sets {CTR(i, lj,i, t), t = 0, · · · , q−1} at
different i, lj,i either do not intersect or coincide. Denote the set of all different
sets {CTR(i, lj,i, t), t = 0, · · · , q−1} by x. By N we denote the power of the
set x. Thus, given a fixed key Kj,i,lj,i, the keystream values produced during
DEC mode can be thought of as an image of some function EKj,i,lj,i

: x →
Vq·n. Note that since eK mappings are permutations, the functions EKk,i,lj,i

are injective. Based on the operational and technical characteristics of the
medium protected by the DEC mode, the numberM – the maximum possible
number of uses of the set {CTR(i, lj,i, t), t = 0, · · · , q − 1} to produce the
gamut can be determined.

Thus, the problem to be solved can be reduced to the model under con-
sideration when X = Vq·n, K = 2256 and x,N,M introduced above.

4.3 Evaluation probability of collision

For clarity, the values of Eξi,j(j) are given in table 1. Let us introduce the
events Ak,l, k ≤ l, k, l ∈ {1, · · · , N} such that Eξi,k(xk) = Eξi′,l(xl) exist.
These events correspond to the fact that the collision occurred between the

D. Bogdanov and V. Nozdrunov 15
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element of k-th and l-th columns of the table 1. Then

A =
N⋃

k≤l
Ak,l, and Pr[A] ≤

N∑

k≤l
Pr[Ak,l].

Let us introduce the events Ak,l
i,i′ consisting of Eξi,k(xk) = Eξi′,l(xl). Then

Ak,k =
N⋃

i<i′

Ak,k
i,i′ , and Pr[Ak,k] ≤

N∑

i<i′

Pr[Ak,k
i,i′ ]

Ak,l =
N⋃

i,i′

Ak,l
i,i′, and Pr[Ak,l] ≤

N∑

i,i′

Pr[Ak,l
i,i′], k 6= l.

Using the law of total probability

Pr[Ak,k
i,i′ ] = Pr[Ak,k

i,i′ |ξi,k = ξi′,k]·Pr[ξi,k = ξi′,k]+Pr[A
k,k
i,i′ |ξi,k 6= ξi′,k]·Pr[ξi,k 6= ξi′,k].

Note that by virtue of the construction of Pr[Ak,k
i,i′ |ξi,k = ξi′,k] = 1,

Pr[Ak,k
i,i′ |ξi,k 6= ξi′,k] = 1

|Q| . Then Pr[A
k,k
i,i′ ] = 1

K + K−1
|Q|·K .

Using the law of total probability

Pr[Ak,l
i,i′] = Pr[Ak,l

i,i′|ξi,k = ξi′,l]·Pr[ξi,k = ξi′,l]+Pr[A
k,l
i,i′|ξi,k 6= ξi′,l]·Pr[ξi,k 6= ξi′,l].

Note that, due to the injectivity of the E functions, the
Pr[Ak,l

i,i′|ξi,k = ξi′,l] = 0, Pr[Ak,l
i,i′|ξi,k 6= ξi′,l] = 1

|Q| . Тогда Pr[A
k,k
i,i′ ] = K−1

|Q|·K .
Thus,

Pr[A] ≤NM(M − 1)

2K
+
NM(M − 1)(K − 1)

2|Q| ·K +
N(N − 1)M 2(K − 1)

2|Q| ·K =

=
NM(M − 1)

2K
+
NM(K − 1)(NM − 1)

2|Q| ·K .

(5)

4.4 The consequence from an evaluation on the probability of
collision

It is of particular interest to study the behaviour of the estimate (5) when
the parameters N,M are changed for a fixed value of NM . The value of NM
corresponds to the total number of write operations on a DEC-protected
medium sector. The parameter N is directly related to the number of sectors
in the partition.
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We will investigate the estimation (5) using the Sturm [2] method. Let
NM = const = S be fixed. Let ∆ > 1 – some number. Let N ′ = N

∆ ,
M ′ = ∆ ·M . Then the estimate (5) for the medium with parameters N ′,M ′

is

N ′M ′(M ′ − 1)

2K
+
N ′M ′(K − 1)(N ′M ′ − 1)

2|Q| ·K =

NM(∆ ·M − 1)

2K
+
NM(K − 1)(NM − 1)

2|Q| ·K >

NM(M − 1)

2K
+
NM(K − 1)(NM − 1)

2|Q| ·K .

Thus, for a fixed value of NM , increasing the parameter M entails in-
creasing the value of the estimate on the collision probability.

In terms of DEC mode, the consequence means that when representing a
medium as one partition with 2

n
2 sectors, the probability of complete collision

of keystreams will be less 6 than when the same medium is represented as 2
n
4

partitions with 2
n
4 sectors.

References
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Misuse-resistant MGM2 mode

Liliya Akhmetzyanova, Evgeny Alekseev, Alexandra Babueva,
Andrey Bozhko, and Stanislav Smyshlyaev

CryptoPro LLC, Russia
{lah, alekseev, babueva, bozhko, svs}@cryptopro.ru

Abstract

We introduce a slight modification of the standard AEAD MGM mode – an
MGM2 mode, for which a nonce is not encrypted anymore before using it as an ini-
tial counter value. For the new mode we provide security bounds regarding security
notions in the nonce-misuse setting (MRAE-integrity and CPA-resilience). The ob-
tained bounds are even better than the bounds obtained for the original MGM mode
regarding standard security notions.

Keywords: MGM, AEAD mode, security notion, security bounds, nonce-misuse,
misuse-resistant

1 Introduction

Authenticated Encryption with Associated Data (AEAD) schemes, which
aim at providing both integrity and confidentiality of data, are recently con-
sidered to be among the most widely used cryptographic schemes. Therefore,
the security of such schemes is crucial. Security analysis of AEAD-schemes is
usually carried out in the provable security paradigm regarding standard no-
tions, introduced in [6], they are IND-CCA and IND-CPA for confidentiality
and INT-CTXT for integrity.

One of the examples of such schemes is an MGM block cipher mode of
operation, that was adopted in Russia as a standard AEAD-mode [13]. The
MGM plaintext encryption procedure is quite similar to encryption in the
СTR2 [18] mode. The main element of the MGM authentication procedure is
a multilinear function with secret coefficients produced in the same way as
the secret masking blocks used for plaintext encryption. Integrity and confi-
dentiality of MGM were analysed in [1] regarding standard security notions.
SinceMGM was not developed with provable security in mind, security proofs
turned out to be cumbersome and, hence, difficult to verify.

CTCrypt 2021 18
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Even though analysis of AEAD-schemes in the standard models is manda-
tory and enough for use in many applications, some environments require
other unusual cryptographic properties, e.g. leakage resilience [5], RUP («Re-
lease of Unverified Plaintext») security [3], KDM («Key Dependent Mes-
sage») security [10], misuse-resistance [19], etc. In the current paper we focus
on misuse-resistance or nonce misuse property [19]. A nonce (number used
only once) is an input to encryption or decryption algorithms of AEAD-
schemes that has to be unique (within a fixed key), but in some applications
such requirement is hard to obtain, not to mention implementation faults.
Misuse-resistant schemes aim to ensure the best possible security when faulty
nonce is provided.

Security notions for misuse-resistant authenticated encryption were orig-
inally proposed by Rogaway and Shrimpton in [19] and further developed
in [4]. Strong variant of misuse-resistant notions, called MRAE («Misuse-
Resistant AE»), was introduced in [19]. This notion is the extensions of the
IND-CCA and INT-CTXT notions by allowing an adversary to repeat nonces
in all of its’ queries. The MRAE notion is similar to a DAE notion [19] («De-
terministic AE») where confidentiality is formalised as follows: ciphertext
of each new query (not only new nonce) has to be indistinguishable from
a random string. Providing such confidentiality is rather strong, and trying
to achieve it seems to lead to loss in performance. All MRAE-secure modes,
known to the authors, demand sufficiently larger amount of block cipher calls
[16] or lose online property [15, 22]. For the reasons above, weak notions for
confidentiality called CPA-res and CCA-res («Chosen Plaintext/Ciphertext
Attack-resilience») were introduced in [4], where the confidentiality should
be achieved only for messages that were encrypted correctly using unique
nonces.

In nonce-misuse setting the MGM mode is obviously insecure in the
MRAE model regarding confidentiality since counter-based encryption is ac-
tually used. MRAE-integrity of the MGM mode was analysed in [17]: the
birthday type attack was proposed. However, no lower bounds for MGM
were proven. So, there is a «hope» to provide non-trivial security bounds for
MGM in the MRAE-integrity and CCA-res models.

Motivating by expectation that the security proof for the MGM mode in
non-standard models will be even more complex, than in standard ones, we
introduce modification of MGM mode – MGM2. The main difference between
two modes lies in the way how secret masking blocks and secret coefficients
of the multilinear function are produced – for the MGM2 mode this process
is carried out in the СTR [18] style (without preliminary nonce encryption).
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Note, that the main cryptographic core of the construction, namely multilin-
ear function, is not changed. We provide the security bounds for MGM2 in
the MRAE-integrity and CPA-res models that turned out to be even better,
than the bounds for the original MGM mode in the standard models. The
corresponding security proofs are relatively short and, we hope, easier to ver-
ify. Among other advantages, the design of the MGM2 mode also allows to
transparently integrate internal re-keying without a master key [2] (in the
same way as for CTR-ACPKM [14] done) to achive new security properties
like leakage-resilience and increase key lifetime.

2 Preliminaries

By {0, 1}s we denote the set of s-component bit strings and by {0, 1}∗
we denote the set of all bit strings of finite length including the empty string.
Let |a| be the bit length of the string a ∈ {0, 1}∗. For a bit string a we denote
by |a|n = d|a|/ne the length of the string a in n-bit blocks. By {0, 1}6s we
denote the set of bit strings which length is less or equal to s.

For a string a ∈ {0, 1}∗ and a positive integer l 6 |a| let msb`(a) be
the string, consisting of the leftmost l bits of a. For nonnegative integers l
and i let strl(i) be l-bit representation of i with the least significant bit on
the right. For bit strings a ∈ {0, 1}n and b ∈ {0, 1}n we denote by a ⊗ b
a string which is the result of their multiplication in GF (2n) (here strings
encode polynomials in the standard way). If the value s is chosen from a
set S uniformly at random, then we denote s U←− S. We define a function

Set1r : {0, 1}n → {0, 1}n, Set1r(x) = x or (

r︷ ︸︸ ︷
0 . . . 0 1

n−r−1︷ ︸︸ ︷
0 . . . 0), 0 6 r < n.

For any set S, define Perm(S) as the set of all bijective mappings on S
(permutations on S), and Func(S) as the set of all mappings from S to S.
A block cipher E (or just a cipher) with a block size n and a key size k is
the permutation family

(
EK ∈ Perm({0, 1}n) | K ∈ {0, 1}k

)
, where K is a

key.

3 Security models

This section introduces models for an adversary that may repeat nonces
in its queries.

We define security model using the notion of «experiment» or «game»
played between a challenger and an adversary. The adversary and challenger
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are modelled using consistent interactive probabilistic algorithms. The chal-
lenger simulates the functioning of the analysed cryptographic scheme for
the adversary and may provide him access to one or more oracles (for details
see [8]).

We describe challengers and adversaries using pseudocodes with the fol-
lowing notations. If a variable x gets a value val then we denote x ←− val.
Similarly, if a variable x gets the value of a variable y then we denote x←− y.
If the variable x gets the result of a probabilistic algorithm A we denote
x

$←− A. If we need to emphasize that A is deterministic than we denote it
by x ←− A. The event when A returned value val as a result is denoted by
A → val (or A $−→ val if A is probabilistic).

Firstly, we introduce the general definition of an AEAD-scheme.

Definition 1. Let K be a set of keys, P be a set of plaintexts, A be a set of
associated data, C be a set of ciphertexts, and T be a set of tags. An AEAD-
scheme with nonce is a set of algorithms Π = {Π.Gen, Π.Enc, Π.Dec},
where

– Π.Gen()
$−→ K : A probabilistic key generation algorithm outputting a

key K ∈ K.

– Π.Enc(K,N,A, P ) −→ (C, T ) : A deterministic algorithm of authenti-
cated encryption taking a key K ∈ K, a nonce N ∈ N, associated data
A ∈ A, a plaintext P ∈ P. An output of the algorithm is a ciphertext
C ∈ C and a tag T ∈ T.

– Π.Dec(K,N,A,C, T ) −→ P : A deterministic algorithm of authenticated
decryption taking a key K ∈ K, a nonce N ∈ N, associated data A ∈ A,
a ciphertext C ∈ C and a tag T ∈ T. An output of the algorithm is a
plaintext P ∈ P or error symbol ⊥.

Let define a MRAE-int («Misuse-Resistant Authenticated Encryption -
integrity») security notion for integrity (the integrity part of MRAE [19]).

Definition 2 (MRAE-int). For an AEAD-scheme Π the advantage of a
MRAE-int-adversary A is defined as follows:

AdvMRAE-int
Π (A) = Pr

[
ExpMRAE-int

Π (A)→ 1
]
,

where experiment ExpMRAE-int
Π is defined below:
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ExpMRAE-int
Π (A)

K
$←− Π.Gen( )

sent← ∅
win← false

AEncrypt,Decrypt( )

return win

Oracle Encrypt(N,A, P )

(C, T )← Π.Enc(K,N,A, P )

sent← sent ∪ {(N,A,C, T )}
return (C, T )

Oracle Decrypt(N,A,C, T )

P ← Π.Dec(K,N,A,C, T )

if (P 6= ⊥) ∧ ((N,A,C, T ) /∈ sent) :

win← true

return P

Let introduce the CPA-res («Chosen Plaintext Attack - resilience») secu-
rity notion for confidentiality, defined in [4].

Definition 3 (CPA-res). For an AEAD-scheme Π with the tag length s the
advantage of a CPA-res-adversary A is defined as follows:

AdvCPA-res
Π (A) = Pr

[
ExpCPA-res-1

Π (A)→ 1
]
− Pr

[
ExpCPA-res-0

Π (A)→ 1
]
,

where experiments ExpCPA-res-b, b ∈ {0, 1}, are defined below:

ExpCPA-res-b
Π (A)

K
$←− Π.Gen( )

L1,L2 ← ∅

b
$←− AO1,O2( )

return b

Oracle O1(N,A, P )

if N ∈ L1 ∪ L2 :

return ⊥
if b = 1:

(C, T )← Π.Enc(K,N,A, P )

else :

C ‖ T U←− {0, 1}|P |+s

L1 ← L1 ∪ {N}
return (C, T )

Oracle O2(N,A, P )

if N ∈ L1 :

return ⊥
(C, T )← Π.Enc(K,N,A, P )

if N /∈ L2 :

L2 ← L2 ∪ {N}
return (C, T )

In [4] the CCA-res («Chosen Сiphertext Attack - resilience») security
notion is also defined. This notion differs from CPA-res in that an adversary
is provided with additional access to a decryption oracle. By the technique
similar to one described in [20] it is easy to show that MRAE-int-security
and CPA-res-security jointly imply CCA-res-security. Therefore, further we
consider the CPA-res security notion only.

4 MGM2 mode

In this section we describe a new AEAD mode called MGM2 which is a
slight modification of the MGM mode. By MGM2[E, r, s] we will denote the
parametrized MGM2 mode with a block cipher E (with block size n and key

size k), a nonce length r,
n

2
6 r 6 3n

4
and a tag length s, 1 6 s 6 n.
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For MGM2[E, r, s] the corresponding sets are as follows: K = {0, 1}k,
N = {0, 1}r, A = P = C = {0, 1}6n(2n−r−2−1), T = {0, 1}s. Moreover, the
following condition should be satisfied: 0 < |A| + |P | 6 n(2n−r−2 − 1). The
key generation, encryption and decryption algorithms are defined in Figure 1.

Difference from MGM. The main difference of the new MGM2 mode
from the original MGM mode is in the modification of the way to produce the
mask values for encryption (Γi), the coefficients of the multilinear function
(Hi), and the tag values T . In MGM2 block cipher inputs, used to generate
values for different use cases (we have three use cases: Γi, Hi, T ), are separated
by fixing the certain bits of inputs. Such a modification allows to obtain better
security bounds, since the collision among block cipher inputs may occur only
among values τ .

5 Security analysis

The security of block cipher modes of operation is commonly analyzed un-
der assumption that the underlying block cipher is PRP-CPA-secure (see [7]),
i.e. EK for a random key is computationally indistinguishable from a random
permutation. We follow this approach and provide security bounds directly
for the mode with a random permutation.

We write MGM2[Perm(n), r, s] for MGM2 that uses a random permu-
tation π as EK and we write MGM2[Func(n), r, s] for MGM2 that uses a
random function ρ.

5.1 Integrity

Theorem 1. For any MRAE-int-adversary A, making at most QE queries
to the Encrypt oracle and at most QD queries to the Decrypt oracle, where
the total block-length of associated data in all queries is at most σA and the
total block-length of plaintexts and ciphertexts in all queries is at most σP ,

AdvMRAE-int
MGM2[Perm(n),r,s](A) 6

(
Q(Q− 1)

2n
+
QD

2s

)(
1− σ − 1

2n

)−σ/2
, (1)

where Q = QE +QD and σ = 2σP + σA + 2Q.

Note that for n > 128 and σ 6 2n/2, the bound (1) can be converted as
follows:

AdvMRAE-int
MGM2[Perm(n),r,s](A) 6 1.7

(
Q(Q− 1)

2n
+
QD

2s

)
. (2)
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MGM2.Gen()

K
U←− {0, 1}k

return K

MGM2.Enc(K,N,A, P )

h← |A|n, q ← |P |n
`← h+ q + 1

. . . . . . . . . . . .Encryption. . . . . . . . . . . .

for i = 1 . . . q do :

Γi ← EK(N‖00‖strn−r−2(i− 1))

C ← P ⊕msb|P |(Γ1 ‖ . . . ‖ Γq)

. . . . . . . . . . . . . Padding . . . . . . . . . . . . .

a← n|A|n − |A|
c← n|C|n − |C|
len← strn/2(|A|) ‖ strn/2(|C|)
M1‖ . . . ‖Ml ← A‖0a‖C‖0c‖len

. . . . . . . . . .Tag generation . . . . . . . . . .

for i = 1 . . . ` do :

Hi ← EK(N‖01‖strn−r−2(i− 1))

τ ← Set1r

(
l⊕

i=1

Mi ⊗Hi

)

T ← msbs(EK(τ))

return (C, T )

MGM2.Dec(K,N,A,C, T )

h← |A|n, q ← |C|n
`← h+ q + 1

. . . . . . . . . . . . . Padding . . . . . . . . . . . . .

a← n|A|n − |A|
c← n|C|n − |C|
len← strn/2(|A|) ‖ strn/2(|C|)
M1‖ . . . ‖Ml ← A‖0a‖C‖0c‖len

. . . . . . . . . Tag verification . . . . . . . . .

for i = 1 . . . ` do :

Hi ← EK(N‖01‖strn−r−2(i− 1))

τ ← Set1r

(
l⊕

i=1

Mi ⊗Hi

)

T ′ ← msbs(EK(τ))

if T ′ 6= T : return ⊥

. . . . . . . . . . . .Decryption. . . . . . . . . . . .

for i = 1 . . . q do :

Γi ← EK(N‖00‖strn−r−2(i− 1))

P ← C ⊕msb|C|(Γ1 ‖ . . . ‖ Γq)

return P

Figure 1: AEAD mode MGM2

Thus, the MGM2 mode provides integrity beyond birthday bound. Note that
for the original MGM mode, if total amount of processed data achieves 2n/2,
the bound, presented in [1], becomes trivial. This result also allows to use
MGM2 as a MAC function (and even as a PRF, see further) by fixing N with
the constant value. Further we provide proof of the Theorem 1.

Proof. The proof is carried out in two steps. In the first step we introduce
an auxiliary MAC-scheme with nonce called MGM2-MAC[r, s] and estimate
its security (see Section 5.1.1).

In the second step we show that the UF-CMA-security of the
MGM2-MAC[r, s] scheme tightly implies the MRAE-int-security of the
MGM2[Func(n), r, s] scheme (see Section 5.1.2).
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The security bound for MGM2[Perm(n), r, s] is obtained using Bern-
stein’s result [9], Theorem 2.3. Due to that theorem for any distinguisher Df
with oracle f : {0, 1}n → {0, 1}n, making at most q queries, the following
inequality holds:

Pr[Dπ → 1] 6 Pr[Dρ → 1] ·
(

1− q − 1

2n

)−q/2
,

where π U←− Perm(n) and ρ U←− Func(n).
If we let D be the algorithm ExpMRAE-int

MGM2[·,r,s](A), where it makes queries to
the oracle instead of calling the underlying function (block cipher), we obtain
the target bound.

5.1.1 Security of MGM2-MAC

We introduce an auxiliary MAC-scheme with nonce called
MGM2-MAC[r, s] based on the scheme MGM2[Func(n), r, s]. Usu-
ally MAC-scheme is defined as a set of algorithms MAC =
{MAC.Gen,MAC.Tag,MAC.Verify}, for MGM2-MAC[r, s] these algorithms
are defined in Figure 2. This scheme is defined for the message set
{M = M1‖ . . . ‖M` : Mi ∈ {0, 1}n, M` 6= 0n, 1 6 ` 6 2n−r−2} (the message
length is divisible by n, the last block is non-zero).

MGM2-MAC.Gen()

ρ, ρ′ U←− Func(n)

K ← (ρ, ρ′)

return K

PreTag(ρ′, N,M)

l← |M |n
for i = 1 . . . ` do :

Hi ← ρ′(N‖01‖strn−r−2(i− 1))

τ ← Set1r

(
l⊕

i=1

(Mi ⊗Hi)

)

return τ

MGM2-MAC.Tag(K,N,M)

τ ← PreTag(ρ′, N,M)

T ← msbs(ρ(τ))

return T

MGM2-MAC.Verify(K,N,M, T )

τ ← PreTag(ρ′, N,M)

T ′ ← msbs(ρ(τ))

if T ′ 6= T : return false

return true

Figure 2: The scheme MGM2-MAC

Firstly, we introduce the standard PRF security notion (in nonce-misuse
setting) for nonce-based MAC-schemes and obtain the PRF-security bound
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for the MGM2-MAC scheme.

Definition 4 (PRF). For a MAC-scheme MAC the advantage of a PRF-
adversary A is defined as follows:

AdvPRF
MAC(A) = Pr

[
ExpPRF−1

MAC (A)→ 1
]
− Pr

[
ExpPRF−0

MAC (A)→ 1
]
,

where experiments ExpPRF−b
MAC (A), b ∈ {0, 1} are defined below:

ExpPRF−b
MAC (A)

if b = 1:

K
$←− MAC.Gen( )

sent← ∅

b′ $←− ATagb( )

return b′

Oracle Tag1(N,M)

if (N,M) ∈ sent :
return ⊥

T← MAC.Tag(K,N,M)

sent← sent ∪ {(N,M)}
return T

Oracle Tag0(N,M)

if (N,M) ∈ sent :
return ⊥

T
U←− {0, 1}s

sent← sent ∪ {(N,M)}
return T

Lemma 1. For any PRF-adversary A, making at most Q queries to the Tag
oracle:

AdvPRF
MGM2-MAC[r,s](A) 6 Q(Q− 1)

2n
.

Proof. Let define auxiliary experimentsExp0 andExp1 (see Figure 3), which
differ from the experiment ExpPRF−1

MGM2-MAC[r,s] as follows. During the setup
phase, the tau set is additionally initialized to empty value, and the flag
bad is set to false. During the experiment execution, the values τ are put in
the tau set, and the flag bad is set to true iff collision among the τ values
occurs. Also, in the Exp0 experiment the tag value is chosen from {0, 1}s
uniformly at random in the case of collision (see line in box).

It is easy to see that Exp1 is exactly the ExpPRF−1
MGM2-MAC[r,s] experi-

ment. Moreover, for any A the value Pr
[
Exp0(A)⇒ 1

]
is exactly the

value Pr
[
ExpPRF−0

MGM2-MAC[r,s](A)⇒ 1
]
. Indeed, in the Exp0 experiment all

tag values T are produced according to the uniform distribution as in
ExpPRF−0

MGM2-MAC[r,s] for the following reasons. For the queries, whose correspond-
ing τ value is new (not in the current set tau), the uniform random function
ρ is applied to the new input and, therefore, returns uniform output. For the
other queries the T value is directly sampled uniformly at random (see the
line in box, Figure 3). Therefore,

AdvPRF
MGM2-MAC[r,s](A) = Pr

[
Exp1(A)⇒ 1

]
− Pr

[
Exp0(A)⇒ 1

]
.

Note that before the bad flag is set to true (denote this event as bad =
true) the Exp0 and Exp1 experiments are functioning identically, therefore
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Expb(A), b ∈ {0, 1}

(ρ, ρ′) $←− MGM2-MAC.Gen( )

bad← false

tau, sent← ∅

b′ $←− ATagb( )

return b′

Oracle Tagb(N,M)

if (N,M) ∈ sent :
return ⊥

τ ← PreTag(ρ′, N,M)

T ← msbs(ρ(τ))

if τ ∈ tau :

bad← true

if b = 0: T
U←− {0, 1}s

tau← tau ∪ {τ}
sent← sent ∪ {(N,M)}
return T

Figure 3: Experiments Exp0 and Exp1

(due to Lemma 2, [8]) the following inequality holds:

Pr
[
Exp1(A)⇒ 1

]
− Pr

[
Exp0(A)⇒ 1

]
6 Pr[bad = true ] .

Let estimate Pr [bad = true ]. Without loss of generality, we assume
the adversary to be deterministic and making Q pairwise different queries
(Ni,M

i), i = 1, . . . , Q. Denote by ρ̃ and ρ̃′ the uniform random variables
with sample space Func(n). We will also use notation colli, i = 2, . . . , Q,
to denote the event that the bad flag is set to true during the first i queries
processing. Thus,

Pr[bad = true ] =

Q∑

i=2

Pr
[
colli ∩ colli−1

]
,

where the probability is defined by the random variables ρ̃ and ρ̃′. Let esti-
mate the value Pr

[
colli ∩ colli−1

]
for any i = 2, . . . , Q.

Note, that each i-th query – the pair (Ni,M
i), where M i =

M i
1‖...‖M i

li
, M i

j ∈ {0, 1}n – is determined by the tag values T1, . . . , Ti−1

previously obtained from the oracle. Without loss of generality, we assume
l1 = . . . = li. Indeed, otherwise we can pad the messages with zero blocks to
the length l := max(l1, . . . , li). This does not change the tag value, and the
padded messages will stay pairwise different because of M j

lj
6= 0n. Therefore,

the T1, . . . , Ti−1 values fully determine l and (N1,M
1), . . . , (Ni,M

i).
For fixed Nj we denote by H̃j

k, j = 1, . . . , i; k = 1, . . . , l, the random

variable ρ̃′(Nj‖01‖strn−r−2(k − 1)). Notice that Pr

[
H̃j
k = B

]
=

1

2n
for any
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B ∈ {0, 1}n. Note that the random variables H̃j
k and H̃ t

k for some j 6= t and

any k are dependent, namely Pr

[
H̃j
k = H̃ t

k

]
= 1, iff Nk = Nj.

For short we denote by H̃j the random variable (H̃j
1 , . . . , H̃

j
` ). Also for

set H = (H1, . . . , H`) and message M = M1‖ . . . ‖M` let τ(H,M) be the

function Set1r

(
l⊕

k=1

Hk ⊗Mk

)
. So, we have

Pr
[
colli ∩ colli−1

]
=

∑

T1,...,Ti−1

Pr
[
colli ∩ colli−1 ∩ {T̃j = Tj}i−1

j=1

]
,

where we write T̃j for random variable msbs(ρ̃(τ(H̃j,M j))), and sum is taken
over all (T1, . . . , Ti−1) ∈ ({0, 1}s)i−1.

For fixed (N1,M
1), . . . , (Ni,M

i) introduce the following conditions on
set H1, . . . , H i, Hj := (Hj

1 , . . . , H
j
` ), j = 1, . . . , i:

Condition E1: ∀ j, t, 1 6 j < t 6 i− 1: τ(Hj,M j) 6= τ(H t,M t).

Condition E2: ∃ j, 1 6 j 6 i− 1: τ(H i,M i) = τ(Hj,M j).

For any fixed T1, . . . , Ti−1, and hence fixed (N1,M
1), . . . , (Ni,M

i), the
event colli ∩ colli−1 occurs iff random variables H̃1, . . . , H̃ i take such values
H1, . . . , H i that the conditions E1 and E2 are satisfied. For short we will
denote the events that these conditions are satisfied by the same way, namely,
by E1 and E2 correspondingly.

Note that fixing values Hj, j = 1, . . . , i, leads to fixing values τj :=
τ(Hj,M j). Therefore,

Pr
[
colli ∩ colli−1

]
=

∑

T1,...,Ti−1

Pr
[
E1 ∩ E2 ∩ {T̃j = Tj}i−1

j=1

]
=

=
∑

T1,...,Ti−1

∑

H1,...,Hi :
E1∩E2

Pr
[
{H̃j = Hj}ij=1 ∩ {msbs(ρ̃(τj)) = Tj}i−1

j=1

]
=

=
∑

T1,...,Ti−1

∑

H1,...,Hi :
E1∩E2

Pr
[
{H̃j = Hj}ij=1

]
· Pr

[
{msbs(ρ̃(τj)) = Tj}i−1

j=1

]
.

Here, sum is taken over all H1, . . . , H i, Hj ∈ ({0, 1}n)l, for which the E1

and E2 conditions are satisfied. The last transition is due to the fact that ρ̃
and H̃j, j = 1, . . . , i, are independent.

Consider the value Pr
[
{msbs(ρ̃(τj)) = Tj}i−1

j=1

]
. For any T1, . . . , Ti−1 and

H1, . . . , H i−1 for which the condition E1 is satisfied, this probability is exactly

L. Akhmetzyanova, E. Alekseev, A. Babueva, A. Bozhko, and S. Smyshlyaev 28



Misuse-resistant MGM2 mode

the probability to sample function ρ, such that i− 1 fixed inputs correspond

to outputs with fixed s bits, i.e
1

2s(i−1)
. Thus:

Pr
[
colli ∩ colli−1

]
=

∑

T1,...,Ti−1

∑

H1,...,Hi :
E1∩E2

Pr
[
{H̃j = Hj}ij=1

]
· 1

2s(i−1)
=

=
1

2s(i−1)

∑

T1,...,Ti−1

Pr[E1 ∩ E2 ] 6 1

2s(i−1)

∑

T1,...,Ti−1

Pr[E2 ] .

Now consider Pr[E2 ] for any fixed T1, . . . , Ti−1, and, hence, any fixed
(N1,M

1), . . . , (Ni,M
i).

Pr[E2 ] = Pr
[
∃ j, 1 6 j 6 i− 1: τ(H̃ i,M i) = τ(H̃j,M j)

]
=

= Pr

[
i−1⋃

j=1

{
τ(H̃ i,M i) = τ(H̃j,M j)

}]
6

i−1∑

j=1

Pr
[
τ(H̃ i,M i) = τ(H̃j,M j)

]
.

Let estimate p := Pr
[
τ(H̃ i,M i) = τ(H̃j,M j)

]
for any j = 1, . . . , i− 1.

We consider two cases:

1. Ni 6= Nj (in this case H̃ i
k and H̃j

k are independent).

2. Ni = Nj (in this case H̃ i
k and H̃j

k are dependent).

The first case: p =
#{H i, Hj : τ(H i,M i) = τ(Hj,M j)}

22nl
.

#{H i, Hj : τ(H i,M i) = τ(Hj,M j)} =

= #
{
H i, Hj :

l⊕

k=1

H i
k ⊗M i

k =
l⊕

k=1

Hj
k ⊗M

j
k

}
+

+ #
{
H i, Hj :

l⊕

k=1

H i
k ⊗M i

k =
l⊕

k=1

Hj
k ⊗M

j
k ⊕ Set1r(0

n)
}
.

Since M i
`i
6= 0n for any i, the cardinality is 2 · 2n(2l−1). And, p =

2

2n
.
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The second case: p =
#{H i : τ(H i,M i) = τ(H i,M j)}

2nl
.

#{H i : τ(H i,M i) = τ(H i,M j)} =

= #
{
H i :

l⊕

k=1

H i
k ⊗ (M i

k ⊕M j
k) = 0n

}
+

+ #
{
H i :

l⊕

k=1

H i
k ⊗ (M i

k ⊕M j
k) = Set1r(0

n)
}
.

Since for the same nonce the messages M i and M j should be different, there
exists k such that M i

k ⊕M j
k 6= 0n. Therefore, the cardinality is 2 · 2n(l−1).

And, p =
2

2n
.

Summing up, we have:

Pr[bad = true ] =

Q∑

i=2

1

2s(i−1)

∑

T1,...,Ti−1

i−1∑

j=1

2

2n
=

Q∑

i=2

i− 1

2n−1
=
Q(Q− 1)

2n
.

Now we introduce the standard UF-CMA security notion for nonce-based
MAC-schemes and obtain the UF-CMA-security bound for the MGM2-MAC
scheme.

Definition 5. For a MAC-scheme MAC the advantage of a UF-CMA-
adversary A is defined as follows:

AdvUF-CMA
MAC (A) = Pr

[
ExpUF-CMA

MAC (A)→ 1
]
,

where experiment ExpUF-CMA
MAC (A) is defined below:

ExpUF-CMA
MAC (A)

K
$←− MAC.Gen( )

sent← ∅
win← false

ATag,V erify( )

return win

Oracle Tag(N,M)

if (N,M) ∈ sent :
return ⊥

T ← MAC.Tag(K,N,M)

sent← sent ∪ {(N,M)}
return T

Oracle V erify(N,M, T )

res← MAC.Vf(K,N,M, T )

if res ∧ ((N,M) /∈ sent) :

win← true

return res

Using Proposition 7.3 [7] and Lemma 1 we obtain the following result.

Corollary 1. For any UF-CMA-adversary A, making at most QT queries
to the Tag oracle and at most QV queries to the V erify oracle:

AdvUF-CMA
MGM2-MAC[r,s](A) 6 Q(Q− 1)

2n
+
QV

2s
,

where Q = QT +QV .
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5.1.2 Security of MGM2 with random function

Lemma 2. For any MRAE-int-adversary A, making at most QE queries
to the Encrypt oracle and at most QD queries to the Decrypt oracle, there
exists a UF-CMA-adversary B, making at most QE queries to the Tag oracle
and at most QD queries to the V erify oracle, such that

AdvMRAE-int
MGM2[Func(n),r,s](A) 6 AdvUF-CMA

MGM2-MAC[r,s](B)

Proof. Let construct an adversary B, that uses the adversary A as a black
box. The adversary B (see Figure 4) intercepts the queries of the adversary A
and process them by itself using its own oracles. For encryption/decryption
B implements lazy sampling for ρ′′. For tag generation/tag verification the
adversary B implements the padding procedure and send the appropriate
query to its oracles.

BTag,V erifyA

ρ′′ U←− Func(n) // lazy sampling

return ASEncrypt,SDecrypt( )

SEncrypt(N,A, P )

h← |A|n, q ← |P |n

. . . . . . . . . . . Encryption . . . . . . . . . . .

for i = 1 . . . q do :

Γi ← ρ′′(N‖00‖strn−r−2(i− 1))

C ← P ⊕msb|P |(Γ1 ‖ . . . ‖ Γq)

. . . . . . . . . . . . Padding . . . . . . . . . . . .

a← n|A|n − |A|
c← n|C|n − |C|
len← strn/2(|A|) ‖ strn/2(|C|)
M ← A‖0a‖C‖0c‖len

. . . . . . . . .Tag Genetation . . . . . . . . .

T ← Tag(N,M)

return (C, T )

Oracle SDecrypt(N,A,C, T )

h← |A|n, q ← |C|n

. . . . . . . . . . . . Padding . . . . . . . . . . . .

a← n|A|n − |A|
c← n|C|n − |C|
len← strn/2(|A|) ‖ strn/2(|C|)
M ← A‖0a‖C‖0c‖len

. . . . . . . . .Tag Verification. . . . . . . . .

if V erify(N,M, T ) = false :

return ⊥

. . . . . . . . . . . Decryption . . . . . . . . . . .

for i = 1 . . . q do :

Γi ← ρ′′(N‖00‖strn−r−2(i− 1))

P ← C ⊕msb|C|(Γ1 ‖ . . . ‖ Γq)

return P

Figure 4: Adversary B

Note that the adversary B simulates for A exactly the experiment
ExpMRAE-int

MGM2[Func(n),r,s]. Indeed, since for MGM2[Func(n), r, s] the inputs to the
random function in case of 1) tag generation, 2) computing values Hi and
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3) computing values Γi are different (because of fixed bits in inputs), using
one random function is indistinguishable from using three independent ran-
dom functions ρ, ρ′, ρ′′ for these three cases. Also, note that messages M ,
formed by B, satisfy conditions for message set of MGM2-MAC[r, s].

If the adversary A forges, then the adversary B also forges in
ExpUF-CMA

MGM2-MAC[r,s]. Indeed, if A makes non-trivial valid query (N,A,C, T )
to the Decrypt oracle, then the adversary makes B corresponding non-trivial
query (N,M = A‖0a‖C‖0c‖len, T ) to the V erify oracle.

5.2 Confidentiality

Theorem 2. For any CPA-res-adversary A, making at most Q1 queries to
the O1 oracle and at most Q2 queries to the O2 oracle, where the total block-
length of associated data in all queries is at most σA and the total block-length
of plaintext and ciphertexts in all queries is at most σP ,

AdvCPA-res
MGM2[Perm(n),r,s](A) 6 σ2

2n+1
+
Q(Q− 1)

2n−1
, (3)

where Q = Q1 +Q2 and σ = 2σP + σA + 2Q.

Proof. Firstly, we apply PRP-PRF switching lemma [12] to replace Perm(n)
by Func(n) (this gives us the term σ2

2n+1 in the bound), and then we obtain
the CPA-res-security bound for MGM2[Func(n), r, s].

The security bound for MGM2[Func(n), r, s] is obtained in the same way
as in the proof of Theorem 1. Indeed, ciphertexts C, received from the O1

oracle, are absolutely indistinguishable from uniform random strings since
the inputs to the uniform random function ρ used to produce Γi are unique.
The indistinguishability of the tags T , received from the O1 oracle, from
uniform random strings is estimated by constructing two PRF-adversaries
for MGM2-MAC that uses CPA-res-adversary as a black box. Therefore,
AdvCPA-res

MGM2[Func(n),r,s](A) 6 Q(Q−1)
2n−1 .

6 Conclusion

In the current paper we introduce the modification of the MGM mode
— the MGM2 mode. For this mode we obtain the security bounds for non-
standard notions MRAE-int and CPA-res, allowing the adversary to repeat
nonces. In comparison with the original mode, the security proof appears to
be rather simple and short.
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In the future work we are going to develop a SIV-construction (see [15])
of the MGM2 mode to achieve MRAE-conf-security. Also we are going to
incorporate re-keying mechanisms in the MGM2 mode to achive new security
properties like leakage-resilience and increase key lifetime.
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Abstract

The notion of incremental cryptography was introduced by Bellare, Goldwasser
and Goldreich in 1994 and becomes more and more relevant in the big data world.
Incremental mechanisms allow to quickly update the result of the algorithm for a
modified data, rather than having to re-compute it from scratch. A significant flaw
of the existing incremental schemes, specifically incremental MACs, is that they lose
incremental property in case of key update. In the current paper we propose new
incremental re-keying friendly MAC scheme, called IQRA, based on quadratic mul-
tivariate polynomial and PRF. We define the way how to use the IQRA scheme with
re-keying mechanism based on KDF and introduce SUF-CSMA notion to analyze the
security of this composition. We provide the security bound for the proposed scheme
and improve it for the special case when a block cipher is used as the underlying
PRF.

Keywords: incremental cryptography, incremental MAC, re-keying, IQRA scheme, provable
security

1 Introduction

Incremental cryptography is a powerful tool for working with dynamically
changing data. The idea of incremental constructions is to provide efficient
updates compared to classical algorithms. Traditionally, the result of a cryp-
tographic operation is re-computed from scratch after each message modifi-
cation regardless of the number of modifications. Incremental schemes allow
to update the result in a time proportional to the number of modified blocks
(usually insert, delete and replace operations are considered). This concept
was introduced by Bellare, Goldreich and Goldwasser in 1994 [12] and has
evolved since then, leading to creation of many cryptographic primitives such
as encryption schemes [13, 6, 7], signatures [12, 26, 32], MACs [13, 26, 33, 24],
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hash functions [27, 15, 31], PRFs [5] and authenticated encryption construc-
tions [21, 6, 36].

In the current paper we focus on incremental MAC schemes. Originally
proposed for the virus protection [12], they have much wider range of ap-
plication now: from sensor networks [28, 31] to securing storage in mobile
cloud computing [22]. A prime example is incremental MAC usage in the
full disk encryption constructions. Usually the disk space is represented as a
set of sectors processed separately via read and write operations. Comput-
ing the standard MAC over all disk content to ensure data integrity is too
much time-consuming since MAC should be re-generated after each sector
modification. One of the solutions proposed in [23] is to use a regular MAC
scheme to compute a local tag for each sector and an incremental MAC to
ensure the authenticity of the local tags. Then for each sector modification
the corresponding local tag is re-computed from scratch and the global tag
is updated quickly according to the local tag.

Clearly incremental MAC schemes are especially important when dealing
with big data (e.g. up to 240 modifications could be done for each sector dur-
ing disk lifetime). At the same time processing large amount of data goes hand
in hand with key lifetime control. The restrictions on the maximal amount of
data processed with one key come either from combinatorial properties of the
used construction (most block cipher based modes of operation are secure up
to the birthday paradox bound [10]), or from side-channel attacks [38]. The
methods for increasing the lifetime of symmetric keys are introduced in [37]
and are discussed in detail in [1, 2, 3]. The most obvious way to overcome
the limitations is to change key regularly. The problem is that idea of incre-
mentality runs counter to the re-keying approach by default. Indeed, when
the key lifetime limitation is reached at time of the update operation and the
key is renewed, the tag should be re-computed from scratch with the new
key and thus we can no longer talk about update time proportional to the
number of modifications.

Related Works. There is a variety of incremental MAC schemes proposed
in the literature: XOR-MACs [14], PMAC [20], GMAC [34], PWC [35],
ZMAC [29]. All of them lose their incremental property in case of key chang-
ing. The core problem is that the same key is used for processing all blocks
and thus all interim results refered to separate blocks should be re-computed
as a consequence of key changing. As well, the iHtE (incremental Hash-then-
Encrypt) construction proposed in [5] for building incremental PRF (and thus
incremental MAC) does not take into account the necessity of key lifetime
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control. Thus, the designing of incremental re-keying friendly MAC scheme
is the relevant task.

The security notions for incremental MACs were introduced in [12] at
the idea level and were formally defined in [23]. Moreover, [5] introduces
incremental unforgeability notion (iUF) that is some mix of notions defined
in [23]. The relation among known notions is discussed in [23].

Our Contribution. In the current paper we propose new incremental MAC
scheme compatible with re-keying techniques. Our scheme is nonce-based,
uses quadratic multivariate polynomial and PRF as the underlying primitives
and supports replace operation. We call it IQRA (Incremental Quadratic
Re-keying friendly Authentication) scheme. The main idea behind the IQRA
design is to separate the keys using for different purposes (for processing
each block and nonce). Thus it is possible to change each key independently
if necessary without violating the incrementality.

We propose the way how to use the IQRA scheme with external re-keying
mechanism realized with KDF function. We also introduce SUF-CSMA
(Strong Unforgeability under Chosen Settings and Message Attack) notion
to examine the IQRA security with the proposed key derivation technique.
This model allows the adversary to control not only nonce and message, but
also the parameters for key derivation. We show that despite the absence
of Update oracle access, the proposed model is the extension of the basic
security model for incremental MAC schemes defined in [12].

Finally, we provide the security bound for composition of the IQRA and
KDF schemes in the SUF-CSMA model in the general case and in the special
case when block cipher is used as the underlying PRF.

Organization of the paper. The remainder of the paper is organized as fol-
lows. In Section 2 basic definitions and notations are introduced. Section 3
introduces the IQRA scheme and describes how it can be combined with re-
keying mechanisms. In Section 4 we introduce SUF-CSMA notion and define
basic security notions for the used primitives. Section 5 is devoted to the
security analysis of the proposed scheme. We draw our conclusions in Sec-
tion 6. Detailed proofs of our results are relegated to the appendices because
of space limitations.
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2 Basic notations and definitions

For any set A, by As we denote the set of s-component strings with
elements from A. By {0, 1}∗ we denote the set of all bit strings of finite
length including the empty string. For bit strings a and b we denote by a‖b
their concatenation. For bit string a ∈ {0, 1}n and b ∈ {0, 1}n we denote
by a · b a string which is the result of their multiplication in GF (2n) (here
strings encode polynomials in the standard way). For nonnegative integers u
and x let stru(x) be u-bit representation of x with the least significant bit
on the right. For integer u > 0 by L(u) we denote minimal bit length that is
multiple of byte needed for u representation: L(u) = 8 ·

⌈
log2(u)

8

⌉
. We denote

as 0xb a bit representation of the hex number b.
For any set A and B, define Perm(A) as the set of all bijective mappings

on A (permutations on A) and Func(A,B) as the set of all mappings from A
to B. A block cipher E with a block size n and a key size k is the permutation
family

{
E(K, ·) ∈ Perm({0, 1}n) | K ∈ {0, 1}k

}
, where K is a key.

If the value x is chosen from a set S uniformly at random, then we denote
x
U←− S. If the variable x gets the value val then we denote x ← val. If the

variable x gets the result of a probabilistic algorithm A we denote x $←− A.
The event when A returned value val as a result is denoted by A→ val.

We define security properties using the notion of «experiment» played be-
tween a challenger and an adversary. This approach is introduced in [17] and
is thoroughly discussed in [4]. The adversary and challenger are modelled
using consistent interactive probabilistic algorithms. The challenger simu-
lates the functioning of the analysed cryptographic scheme for the adversary
and may provide him access to one or more oracles. Notation AO1,O2,... → 1
means that the adversary A, after interacting with oracles O1,O2, . . ., out-
puts 1. The parameters of an adversary A are its computational resources
(for a fixed model of computation and a method of encoding) and oracles
query complexity. The query complexity usually includes the number and
the length of queries. Denote by AdvMS (A) the measure of the success rate of
the adversary A in realizing a certain threat, defined by the security notion
M for the cryptographic scheme S. The formal definition of this measure will
be given in each specific case.

L. Akhmetzyanova, E. Alekseev, A. Babueva, L. Nikiforova, and S. Smyshlyaev 38



IQRA: Incremental Quadratic Re-keying friendly Authentication scheme

3 IQRA scheme description

We follow the line of papers oriented on incremental MACs [25, 23, 5] by
using the corresponding term «document» instead of «message».

When designing the scheme, we focus on the applications with the fixed
length data (e. g. full disk encryption mechanisms). Therefore, we define the
update algorithm only for replace operation. We believe that slight modifica-
tions are required to support more modification operations such as appending
of a block to a document, but we do not analyze it in the current paper and
leave this for further research.

Nonce-based IQRA (Incremental Quadratic Re-keying friendly Authen-
tication) scheme is specified as follows:

IQRA = (F,BS,DS,KS,NS,TS,Tag,Replace),

where

– F : {0, 1}k × {0, 1}n → {0, 1}n — underlying PRF;

– a block space BS = {0, 1}n and a document space DS = BSw, meaning
a document has the form D = (D0, . . . , Dw−1) and Di ∈ BS for all
i ∈ {0, . . . , w − 1};

– a key space KS = FKS × BKSw, where a finalization key space FKS =
{0, 1}k and a block key space BKS = {0, 1}n; we will denote key as a
pair of finalization key Key ∈ FKS and vector of block keys K ∈ BKSw,
such that K = (K0, . . . , Kw−1), Ki ∈ BKS for all i ∈ {0, . . . , w − 1};

– a nonce space NS and a tag space TS are equal to {0, 1}n;

– a tagging algorithm Tag, that takes a key (Key,K) ∈ KS, a nonce
N ∈ NS and document D ∈ DS and deterministically returns a tag
T ∈ TS: T ← Tag(Key,K, N,D);

– a tag updating algorithm Replace, that takes current and new final-
ization keys Key,Key′ ∈ FKS, current and new block keys for i-
th block Ki, K

′
i ∈ BKS, current and new nonce values N,N ′ ∈ NS,

current and new block values for i-th block Di, D
′
i ∈ BS and a cur-

rent tag T and deterministically returns an updated tag T ′ ∈ TS:
T ′ ← Replace(Key,Key′, Ki, K

′
i, N,N

′, Di, D
′
i, T ).

Algorithms IQRA.Tag and IQRA.Replace are defined as follows:

L. Akhmetzyanova, E. Alekseev, A. Babueva, L. Nikiforova, and S. Smyshlyaev 39



IQRA: Incremental Quadratic Re-keying friendly Authentication scheme

IQRA.Tag(Key,K, N,D)

1 : T ← (D0 ⊕K0) ·K0 ⊕ . . .⊕ (Dw−1 ⊕Kw−1) ·Kw−1 ⊕ F(Key,N)

2 : return T

IQRA.Replace(Key,Key′, Ki, K
′
i, N,N

′, Di, D
′
i, T )

1 : T ′ ← T ⊕ (Di ⊕Ki) ·Ki ⊕ (D′i ⊕K ′i) ·K ′i ⊕ F(Key,N)⊕ F(Key′, N ′)

2 : return T ′

We do not define IQRA.Verify algorithm since it can be implemented
via Tag invocation and comparing the result with the candidate tag. An
arbitrary PRF could be used as F such as HMAC [9] or block cipher. We
will denote the IQRA scheme based on particular function F as IQRAF.

If block key is not changed (i.e. K ′i = Ki), Replace algorithm can be
simplified. In this case it requires only one field multiplication instead of two
because (Di⊕Ki) ·Ki⊕ (D′i⊕K ′i) ·K ′i can be calculated as (Di⊕D′i) ·Ki.

Let us discuss how the IQRA definition relates to the standard incre-
mental family interface defined in [23, 5]. The core difference is the complex
structure of the key space. To save henceforth the incrementality in case of key
update, we separate the keys used for different purposes. Specifically, we iden-
tified two types of keys: keys for each block processing K = (K0, . . . , Kw−1)
and finalization key Key used for generating the mask value from nonce.
Such separation allows to control the lifetime of each key, and thus update
it independently from other keys right during the Replace algorithm work.
The Replace interface supports such opportunity by taking as inputs not only
current finalization key and key for the modifiable block, but also new key
values. Current and new values could either coincide, or differ, as appropriate.

Other differences are not so principal and are justified by the interface
simplification. Tag and Replace algorithms do not take as input a document
identifier, since we consider our scheme only in the single-document setting.
Moreover, the Replace algorithm needs only current value for modifiable
block to update the tag and do not require the whole current document and
the number of the modifiable block as inputs.

In the full disk encryption constructions blocks may be equal to the local
tags of each sector. In this case the IQRA scheme provides the authenticity
of the local tags.

Key derivation. The IQRA scheme uses (w + 1) keys by design, however
usually only one master key is available. We propose the way how to derive
these keys from one Kmaster ∈ {0, 1}κ using the standard KDF function that
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maps {0, 1}κ × {0, 1}∗ × N to {0, 1}∗. Namely,

Key = KDF(Kmaster, 0x00‖seed, k),

Ki = KDF(Kmaster, 0x01‖strL(w)(i)‖Si, n), i = 0 . . . w − 1.

Here seed and S = (S0, . . . , Sw−1) are key derivation parameters. If the
key update should be performed, we could simply choose the new value for
seed or Si parameter and compute the corresponding key value with KDF.
Such key update mechanism is the instantiation of the external re-keying
approach [37, 2]. Note that providing incremental properties requires Kmaster

not to be changed during life-cycle of the IQRA scheme. Therefore, KDF
parameters should be chosen in a such way that there would be no need
to change Kmaster value either from combinatorial restrictions or from side-
channel attacks.

We will denote the IQRA scheme with keys derived with such algorithm
as [IQRA,KDF] scheme (see Figure 1).

Kmaster

KDF

K0 K1
... Kw-1 Key

· · · D0 D1 Dw-1 N

T⊕ ⊕ ... ⊕ 

   input       output

IQRA.Tag

F⊕ ⊕ ⊕ 

Figure 1: [IQRA,KDF] scheme

4 Security notions

4.1 Standard security notions

In this section we formally define basic security notions for cryptographic
mechanisms used in the [IQRAF,KDF] scheme.
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Definition 1. For function F : {0, 1}k × {0, 1}n → {0, 1}n :

AdvPRF
F (A) = Pr

[
ExpPRF-1

F (A)→ 1
]
− Pr

[
ExpPRF-0

F (A)→ 1
]
,

where the experiments ExpPRF-b
F (A), b ∈ {0, 1}, are defined in the following

way:

ExpPRF-b
F (A)

1 : if b = 1 :

2 : K
U←− {0, 1}k

3 : else :

4 : ρ
U←− Func({0, 1}n, {0, 1}n)

5 : b′ $←− AF b
( )

6 : return b′

Oracle F b(m)

1 : if b = 1 :

2 : return F(K,m)

3 : else :

4 : return ρ(m)

The PRP security notion is defined in the same way as PRF except that
the uniform random function ρ is replaced by a uniform random permutation.

Definition 2. For a variable-length output function KDF : {0, 1}κ×{0, 1}∗×
N→ {0, 1}∗ :

AdvPRF∗
KDF (A) = Pr

[
ExpPRF∗-1

KDF (A)→ 1
]
− Pr

[
ExpPRF∗-0

KDF (A)→ 1
]
,

where the experiments ExpPRF∗-b
KDF (A), b ∈ {0, 1}, are defined in the following

way:

ExpPRF∗-b
KDF (A)

1 : if b = 1 :

2 : K
U←− {0, 1}κ

3 : Set← ∅

4 : b′ $←− AKDF b
( )

5 : return b′

Oracle KDF b(s, l)

1 : if b = 1 :

2 : return KDF(K, s, l)

3 : else :

4 : if (s, l, ·) ∈ Set then
5 : return Set(s, l)

6 : else

7 : d
U←− {0, 1}l

8 : Set← Set ∪ {(s, l, d)}
9 : return d

4.2 SUF-CSMA notion

We introduce SUF-CSMA notion (Strong Unforgeability under Chosen
Settings and Message Attack) to analyze the security of [IQRAF,KDF]
scheme. It’s a natural extension of standard SUF-CMA notion for nonce-
based MACs [11] obtained by adding KDF calls.

L. Akhmetzyanova, E. Alekseev, A. Babueva, L. Nikiforova, and S. Smyshlyaev 42



IQRA: Incremental Quadratic Re-keying friendly Authentication scheme

Definition 3. For [IQRAF,KDF] scheme

AdvSUF-CSMA
[IQRAF,KDF](A) = Pr

[
ExpSUF-CSMA

[IQRAF,KDF](A)→ 1
]
,

where the experiment ExpSUF-CSMA
[IQRAF,KDF](A) is defined in the following way:

ExpSUF-CSMA
[IQRAF,KDF](A)

1 : Kmaster
U←− {0, 1}κ

2 : GAMMA,STATES← ∅, win← 0

3 : ATag,Verify( )

4 : return win

Verify(seed, S, N,D, T )

1 : Key ← KDF(Kmaster, 0x00‖seed, k)

2 : for i = 0 . . . w − 1 do

3 : Ki ← KDF(Kmaster, 0x01‖strL(w)(i)‖Si, n)

4 : K← (K0, . . . ,Kw−1)

5 : T ′ ← IQRA.Tag(Key,K, N,D)

6 : st← (seed,S, N,D, T )

7 : if ((T ′ = T ) ∧ (st /∈ STATES)) then

8 : win← 1

9 : return (T ′ = T )

Tag(seed, S, N,D)

1 : if ((seed,N) ∈ GAMMA) then

2 : return ⊥
3 : GAMMA← GAMMA ∪ {(seed,N)}
4 : Key ← KDF(Kmaster, 0x00‖seed, k)

5 : for i = 0 . . . w − 1 do

6 : Ki ← KDF(Kmaster, 0x01‖strL(w)(i)‖Si, n)

7 : K← (K0, . . . ,Kw−1)

8 : T ← IQRA.Tag(Key,K, N,D)

9 : st← (seed,S, N,D, T )

10 : STATES← STATES ∪ {st}
11 : return T

As usual, an adversary is given the access to Tag and Verify oracles,
however it may control not only message and nonce, but also the parameters
for key derivation. To win the adversary must make successful (the tag is
correct) and non-trivial (the document was not previously tagged with the
same parameters) query to Verify oracle.

Unlike standard models for nonce-based schemes we require (seed,N)
pair to be unique in the queries to Tag oracle. At the same time, (seed,N)
values in Verify queries may overlap with other queries. The uniqueness of
(seed,N) pairs can be provided in practice, for example, by storing them
in the secure memory. Note that SUF-CMA model is a special case of
SUF-CSMA model in which seed and S parameters are fixed.

Note that the modified IQRA scheme with the multilinear function in-
stead of the quadratic multivariate polynomial is not SUF-CSMA-secure.
Indeed, if the tag is calculated as D0 ·K0 ⊕ . . .⊕Dw−1 ·Kw−1 ⊕ F(Key,N)
and someDi is equal to zero block then the tag is independent of the Si value.
Therefore, an adversary can submit a valid forgery with the same document
and tag, but with the different Si value.
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Incremental security. Traditionally security definitions for incremental
MACs provide adversary with the access to Update oracle, because updated
tags may differ from scratch-ones and allow forgery [13, 25, 23, 5]. How-
ever, for the Proposition 1 [5] states that sometimes update queries can be
dropped if the function satisfies strong correctness. Strong correctness means
that tags returned by the update algorithm are the same as if the updated
document had instead been tagged directly, from scratch, via the tagging
algorithm. Authors of [5] formulate their result for security model, where
Update queries have to be made to the last copy of the document.

We extend this result for the case when Update queries have to be made
for the authentic documents and tags (where MAC.Verify accepts). Specifi-
cally, we claim that for the [IQRAF,KDF] scheme the proposed SUF-CSMA
model is equivalent to iSUF-CSMA model defined similarly up to allowing
the adversary access to the Replace oracle as defined in Figure 2.

Replace(seed′, S ′i, N
′, D′i, seed, S, N,D, T )

// Check the authenticity of the query

1 : Key ← KDF(Kmaster, 0x00‖seed, k)

2 : for i = 0 . . . w − 1 do

3 : Ki ← KDF(Kmaster, 0x01‖strL(w)(i)‖Si, n)

4 : K← (K0, . . . ,Kw−1)

5 : T ∗ ← IQRA.Tag(Key,K, N,D)

6 : if (T ∗ 6= T ) then return ⊥
// Check uniqueness of (seed′, N ′) pair

7 : if ((seed′, N ′) ∈ GAMMA) then return ⊥
8 : GAMMA← GAMMA ∪ {(seed′, N ′)}
// Update tag

9 : Key′ ← KDF(Kmaster, 0x00‖seed′, k)

10 : K ′i ← KDF(Kmaster, 0x01‖strL(w)(i)‖S′i, n)

11 : T ′ ← IQRA.Replace(Key,Key′,Ki,K
′
i, N,N

′, Di, D
′
i, T )

12 : S′ ← (S0, . . . , Si−1, S
′
i, Si+1, . . . , Sw−1)

13 : D′ ← (D0, . . . , Di−1, D
′
i, Di+1, . . . , Dw−1)

14 : st← (seed′,S′, N ′,D′, T ′)

15 : STATES← STATES ∪ {st}
16 : return T ′

Figure 2: The Replace oracle in the iSUF-CSMA notion

We consider Replace instead more general Update oracle, since the IQRA
scheme is incremental regarding only replace operation. Replace operation
can be applied only to authentic (seed, S, N,D, T ) set that is guaranteed by
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checks in lines 1-6. The requirement of uniqueness of (seed′, N ′) pair remains
for queries to the Replace oracle (see lines 7-8).

Lemma 1. Let A be an adversary in the iSUF-CSMA model for
[IQRA,KDF] scheme, making at most qtag queries to Tag oracle, qrep queries
to Replace oracle and qver queries to Verify oracle. Then there exists an ad-
versary B with the same time complexity for [IQRA,KDF] scheme in the
SUF-CSMA model that makes at most (qtag + qrep) queries to Tag oracle and
(qrep + qver) queries to Verify oracle, such that:

AdviSUF-CSMA
[IQRA,KDF](A) 6 AdvSUF-CSMA

[IQRA,KDF](B).

We provide the formal proof of this lemma in Appendix B.1. The proof
is based on the fact that the IQRA scheme is strongly correct and thus, the
Replace oracle can be simulated via Tag and Verify oracles.

Lemma 1 allows us to analyze the security of [IQRA,KDF] scheme in the
standard setting and easily move the results to the incremental setting.

Relation to other notions. It is easy to see that iSUF-CSMA model is
the extension of the IUF-BS model [23] up to KDF embedding and associ-
ated adversary control of key derivation parameters. Moreover, these models
are exactly the same assuming seed and S parameters fixed in the queries.
Thus, the security in SUF-CSMAmodel implies the security in IUF-BS model
and the results of 5.1.3 [23] can be applied directly to identify the place of
SUF-CSMA model among known security notions for incremental MACs.

5 Security bounds

In this section we provide the security bound for the [IQRA,KDF] scheme
in the SUF-CSMA model.

Theorem 1. Let A be an adversary in the SUF-CSMA model for the
[IQRAF,KDF] scheme, making at most qtag and qver queries to the Tag and
Verify oracles respectively. Let assume that the number of distinct seed val-
ues in A queries is at most d and the number of queries with the same seed
value is at most r. Then there exists an adversary B that breaks KDF scheme
in PRF∗ model, making at most (w + 1)(qtag + qver) queries, and adversary
C that breaks F in PRF model, making at most r queries, such that:

AdvSUF-CSMA
[IQRAF,KDF](A) 6 AdvPRF∗

KDF (B) + d · AdvPRF
F (C) +

qver
2n−1

.

L. Akhmetzyanova, E. Alekseev, A. Babueva, L. Nikiforova, and S. Smyshlyaev 45



IQRA: Incremental Quadratic Re-keying friendly Authentication scheme

Furthermore, the additional computational resources of B and C are at most
2c · (qtag + qver) · TIQRA, where TIQRA is computational resources needed to
calculate IQRA.Tag, c is a constant that depends only on a model of com-
putation and a method of encoding.

The idea behind the proof is as follows. We sequentially replace KDF and
F functions with uniform random functions and then estimate the forgery
probability for such idealized scheme. The full proof can be found in Ap-
pendix B.2.

Let us discuss the obtained bound. On the one hand, it does not depend
on the amount of data processed using the same block keys K0, . . . , Kw−1.
Specifically, the scheme remains secure in the SUF-CSMA model even when S
parameter is fixed (i.e. tag is always computed with the same K0, . . . , Kw−1).
However, the requirement to change block keys may follow from side-channel
attack restrictions.

On the other hand, the obtained bound demonstrates the benefits from

Key updating. AdvPRF
F (C) value is usually of order

r2

2n
, where r is the number

of queries made by C. If the same amount of data is processed using the
same Key, then r is equal to

qtag + qver
d

in the worst case. Thus, the term

d · AdvPRF
F (C) is of order

(qtag + qver)
2

d · 2n and decreases with d growth. As a
result, the best bound is achieved if each tag is computed with the new Key.

Applying Theorem 1 straightforward to the case when block cipher E is
used as the underlying PRF leads to appearance d · AdvPRF

E (C) term in the

bound. This term is equal to d · AdvPRP
E (C) +

dr(r − 1)

2n+1
according to the

PRP/PRF switching lemma [16] and thus the bound degenerates as r is of
order 2n/2. However, this bound can be improved using Bernstein results [18].

Corollary 1. Let A be an adversary in the SUF-CSMA model for the
[IQRAE,KDF] scheme, making at most qtag and qver queries to the Tag and
Verify oracles respectively. Let assume that the number of distinct seed val-
ues in A queries is at most d and the number of distinct nonces queried
with each seed value is exactly r1, . . . , rd, r = max16i6d ri. Then there exists
an adversary B that breaks KDF scheme in PRF∗ model, making at most
(w + 1)(qtag + qver) queries, and adversary C that breaks E in PRP model,
making at most r queries, such that:

AdvSUF-CSMA
[IQRAE,KDF](A) 6 AdvPRF∗

KDF (B) + d ·AdvPRP
E (C) + δn(r1) · . . . · δn(rd) ·

qver
2n−1

,
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where δn(q) =
(
1− q−1

2n

)−q/2. Furthermore, the additional computational re-
sources of B and C are at most 2c · (qtag + qver) · TIQRA, where TIQRA is
computational resources needed to calculate IQRA.Tag, c is a constant that
depends only on a model of computation and a method of encoding.

The proof of the Corollary is similar to the Theorem 1 proof except that
the block cipher is firstly replaced with uniform random permutation and
the transition to uniform random function is done using the extension of the
Bernshtein bound [18], Theorem 2.1, on case of multiple oracle access. The
full proof can be found in Appendix B.3.

In some cases the following observation can be useful:

δn(r1) · δn(r2) · · · · · δn(rd) 6 δn(r1 + r2 + . . .+ rd) 6 δn(qtag + qver).

Let’s make sure that the obtained bound is better than the one derived
from Theorem 1. This is most evident in the case when number of queries is
beyond the birthday bound. Let n = 128, d = 2, r =

qtag + qver
2

= 268. Then

the
dr(r − 1)

2n+1
term in the Theorem 1 bound degenerates while in fact the

scheme is still secure: δ128(2
69) 6 513, so

δn(r1)δn(r2)
qver
2n−1

6 δn(qtag + qver)
qver
2n−1

= δ128(2
69)
qver
2127

6 qver
2117

.

Let us also show that the Corollary bound is sensitive to the Key update.
Suppose that n = 64, qtag + qver = 264 and consider two extreme cases.

If re-keying is not performed, i.e. d = 1, then r1 = 264 in the worst case.
The δn(r1) value is equal to

(
1− 264 − 1

264

)−263

=

(
1

264

)−263

� 264

and thus, the bound totally degenerates.
If re-keying is performed with e.g. d = 263, r1 = · · · = rd = 2, by the

Corollary 1 the scheme remains secure:

δ64(2)263 · qver
263

=

(
1− 1

264

)−263

· qver
263

6 qver
262

.

6 Conclusion

This paper introduces the IQRA scheme that is new incremental re-
keying friendly MAC scheme. We propose the way, how to combine the IQRA
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scheme with external re-keying mechanism, and introduce SUF-CSMA secu-
rity model for its analysis. The obtained security bound allow us to estimate
the security of the [IQRA,KDF] scheme by the security of the used crypto-
graphic primitives (PRF and KDF).

The direction for further research is the analysis of [IQRA,KDF] scheme
in the stronger security notions: either incremental, where an adversary has
a capability to apply replace operation to the non-authentic tag [23], or stan-
dard, that takes into account the adversary capability to perform side-channel
attacks. Moreover, as mentioned above, we are going to examine incremen-
tality of [IQRA,KDF] scheme regarding other modification operations.
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A Additional security notions

Let us define mu-PRF and mu-PRP security notions with parameter d
which will be used in the follow-up proofs.

Definition 4. For a function F : {0, 1}k × {0, 1}n → {0, 1}n

Advmu-PRF
F (A) = Pr

[
Expmu-PRF-1

F (A)→ 1
]
− Pr

[
Expmu-PRF-0

F (A)→ 1
]
,

where experiments Expmu-PRF-b
F (A), b ∈ {0, 1}, are defined in the following

way:

Expmu-PRF-b
F (A)

1 : for i = 1 . . . d do

2 : if b = 1 then

3 : Keyi
U←− {0, 1}k

4 : else

5 : ρi
U←− Func({0, 1}n, {0, 1}n)

6 : b′ $←− AF b
( )

7 : return b′

Oracle F b(i,m)

1 : if b = 1 then

2 : return F(Keyi,m)

3 : else

4 : return ρi(m)

The mu-PRP security notion is defined in the same way as mu-PRF
except that the random functions ρi are replaced by random permutations.

The following relation between mu-PRF and PRF security notions takes
place [8]. The relation between mu-PRP and PRP notions is exactly the
same.

Lemma 2. Let D be an adversary for F scheme in the mu-PRF model
with parameter d, making at most q queries to the F b oracle with at most
r different m values for fixed i value. Then there exists an adversary C for
F scheme in the PRF model that makes at most r queries to its own oracle,
such that:

Advmu-PRF
F (D) 6 d · AdvPRF

F (C).
Furthermore, C needs at most c · (dk+ q · (TF + 2n log q)) additional compu-
tational resources, where TF is computational resources needed to calculate
function F, c is a constant that depends only on a model of computation and
a method of encoding.
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This lemma is presented in [8] (lemma 3.3), but with the difference that
adversary C in [8] makes at most q queries. See the next sentence in proof
of lemma 3.3: «In the worst case D1 still has to make q1 = q2 queries to its
oracle g (although on the average it is q2

m)». Here we provide more accurate
estimation of the number of queries made by C bounded it by the maximal
number of D queries with the same i value.

B Security proofs

B.1 Lemma 1 proof

Proof. We fix A – the adversary that makes forgery for the [IQRA,KDF]
scheme in the iSUF-CSMA model. The adversary A has the access to the
oracles Tag, Replace and Verify making at most qtag, qrep and qver queries
respectively. Let construct an adversary B that breaks [IQRA,KDF] scheme
in the SUF-CSMA model and uses adversary A as a «black box». B has
access to its own oracles Tag∗ and Verify∗.

The adversary B works at follows. It runs A and simulates Tag and Verify
oracles just translating the queries to its own oracles. It simulates Replace
oracle by the following procedure.

SimReplace(seed′, S ′i, N
′, D′i, seed, S, N,D, T )

1 : res← Verify∗(seed, S, N,D, T )

2 : if (res = 0) then return ⊥
3 : S′ ← (S0, . . . , Si−1, S

′
i, Si+1, . . . , Sw−1)

4 : D′ ← (D0, . . . , Di−1, D
′
i, Di+1, . . . , Dw−1)

5 : T ′ ← Tag∗(seed′,S′, N ′,D′)
6 : return T ′

SimReplace works exactly the same as original Replace oracle since the
IQRA scheme is strongly correct: replace operation leads to the same result
as if the tag was computed directly, from scratch.

By construction the adversary B makes at most (qtag + qrep) queries to
Tag∗ oracle and at most (qver + qrep) queries to Verify∗ oracle. Let estimate
the probability of B success.
B wins if at least one of two events takes place: A makes query to Verify

oracle that is correct and non-trivial (event1) or A makes query to Replace
oracle such that (seed, S, N,D, T ) set forms non-trivial forgery (event2). Fur-
thermore, the probability of event1 is equal to Pr

[
ExpiSUF-CSMA

[IQRA,KDF](A)→ 1
]
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by definition of iSUF-CSMA model. Thus

Pr
[
ExpSUF-CSMA

[IQRA,KDF](B)→ 1
]

= Pr[event1 ∨ event2 ] ≥

≥ Pr[event1 ] = Pr
[
ExpiSUF-CSMA

[IQRA,KDF](A)→ 1
]
.

B.2 Theorem 1 proof

Proof. Let Exp0 denote the original security experiment as defined in the
SUF-CSMA security model definition (see Definition 3). We fix A – the
adversary that makes forgery for the [IQRA,KDF] scheme in the SUF-CSMA
model. The adversary has the access to the oracles Tag and Verify. We assume
that adversary can make at most qtag queries to the oracle Tag and qver queries
to the oracle Verify.

Our goal is to upper-bound Pr
[
ExpSUF-CSMA

IQRA (A)→ 1
]

=
Pr
[
Exp0(A)→ 1

]
.

Construction of adversary B. Exp1 is the modification of the Exp0 obtained
by implementing function KDF as a uniform random function using «lazy
sampling» (see Figure 3). Here and after we denote the difference between
experiments by color in pseudocode.

The idea is to «open» new pairs (seed,Key) and triplets (i, Si, Ki) as
soon as the adversary makes the corresponding queries. We store (seed,Key)
pairs in Π1 set and (i, Si, Ki) triplets in Π2 set. We can choose and store
these values independently since there are distinct prefixes 0x00 and 0x01
for Key and Ki derivation. Moreover, for each block we choose block keys
independently from each over, because strL(w)(i) guarantees that KDF inputs
for different block numbers do not intersect.

If (α, β) ∈ Π1, we denote β as Π1(α), we write (α, ·) ∈ Π1 shorthand for
the condition that there exists β such that (α, β) ∈ Π1. If (α, γ, β) ∈ Π2,
we denote β as Π2(α, γ), we write (α, γ, ·) ∈ Π2 shorthand for the condition
that there exists β such that (α, γ, β) ∈ Π2.

Let estimate the difference between Exp0 and Exp1. We construct the
adversary B that breaks the KDF in PRF∗ security model. The adversary B
has the access to its own oracle KDF b, b ∈ {0, 1}. B invokes the adversary
A as a subroutine and simulates Tag and Verify oracles for A as in Exp0

replacing the KDF calls by calls to his own oracle KDF b. The adversary B
returns 1 to its own challenger, if adversary A makes a successful forgery. If
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b = 1 then B implements for A exactly Exp0. If b = 0 then B implements
exactly Exp1. Thus,

Pr
[
Exp0(A)→ 1

]
− Pr

[
Exp1(A)→ 1

]
=

= Pr
[
ExpPRF∗-1

KDF (B)→ 1
]
− Pr

[
ExpPRF∗-0

KDF (B)→ 1
]

= AdvPRF∗
KDF (B).

Processing each A query leads to (w + 1) query to KDF b oracle. Thus,
the adversary B makes at most (w + 1)(qtag + qver) queries to its own ora-
cle. By construction, B needs O((qtag+qver)TIQRA) additional computational
resources for simulating Tag and Verify work for A. Here TIQRA is computa-
tional resources needed to calculate function IQRA.Tag.

Exp1(A)

1 : Π1,Π2 ← ∅
2 : GAMMA,STATES← ∅, win← 0

3 : ATag,Verify( )

4 : return win

Verify(seed, S, N,D, T )

1 : if ((seed, ·) ∈ Π1) then

2 : Key ← Π1(seed)

3 : else

4 : Key
U←− {0, 1}k, Π1 ← Π1 ∪ {(seed,Key)}

5 : for i = 0 . . . w − 1 do

6 : if ((i, Si, ·) ∈ Π2) then

7 : Ki ← Π2(i, Si)

8 : else

9 : Ki
U←− {0, 1}n, Π2 ← Π2 ∪ {(i, Si,Ki)}

10 : K← (K0, . . . ,Kw−1)

11 : T ′ ← IQRA.Tag(Key,K, N,D)

12 : st← (seed,S, N,D, T )

13 : if ((T ′ = T ) ∧ (st /∈ STATES)) then

14 : win← 1

15 : return (T ′ = T )

Tag(seed, S, N,D)

1 : if ((seed,N) ∈ GAMMA) then

2 : return ⊥
3 : GAMMA← GAMMA ∪ {(seed,N)}
4 : if ((seed, ·) ∈ Π1) then

5 : Key ← Π1(seed)

6 : else

7 : Key
U←− {0, 1}k, Π1 ← Π1 ∪ {(seed,Key)}

8 : for i = 0 . . . w − 1 do

9 : if ((i, Si, ·) ∈ Π2) then

10 : Ki ← Π2(i, Si)

11 : else

12 : Ki
U←− {0, 1}n, Π2 ← Π2 ∪ {(i, Si,Ki)}

13 : K← (K0, . . . ,Kw−1)

14 : T ← IQRA.Tag(Key,K, N,D)

15 : st← (seed,S, N,D, T )

16 : STATES← STATES ∪ {st}
17 : return T

Figure 3: The Exp1 for the adversary A.

Construction of adversary C. Consider the experiment Exp1′ (see Figure
4). It is the modification of the Exp1 in the following way: d Key values are
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sampled during experiment initializing phase and Tag and Verify oracles just
use them one by one responding to the queries. The Π1 set in Exp1′ contains
the pairs (seed, ctr), where ctr is an index of Key that corresponds to the
value seed. By theorem condition, maximal number of distinct seed values
in A queries is at most d, therefore such modification will be inobservable
for A:

Pr
[
Exp1′(A)→ 1

]
= Pr

[
Exp1(A)→ 1

]
.

Exp1′(A)

1 : Π1,Π2 ← ∅
2 : GAMMA,STATES← ∅, win← 0

3 : ctr ← 0

4 : for i = 1...d : do

5 : Keyi
U←− {0, 1}k

6 : ATag,Verify( )

7 : return win

Verify(seed, S, N,D, T )

1 : if ((seed, ·) ∈ Π1) then

2 : Key ← KeyΠ1(seed)

3 : else

4 : ctr ← ctr + 1

5 : Key ← Keyctr

6 : Π1 ← Π1 ∪ {(seed, ctr)}
7 : for i = 0 . . . w − 1 do

8 : if ((i, Si, ·) ∈ Π2) then

9 : Ki ← Π2(i, Si)

10 : else

11 : Ki
U←− {0, 1}n, Π2 ← Π2 ∪ {(i, Si,Ki)}

12 : K← (K0, . . . ,Kw−1)

13 : T ′ ← IQRA.Tag(Key,K, N,D)

14 : st← (seed,S, N,D, T )

15 : if ((T ′ = T ) ∧ (st /∈ STATES)) then

16 : win← 1

17 : return (T ′ = T )

Tag(seed, S, N,D)

1 : if ((seed,N) ∈ GAMMA) then

2 : return ⊥
3 : GAMMA← GAMMA ∪ {(seed,N)}
4 : if ((seed, ·) ∈ Π1) then

5 : Key ← KeyΠ1(seed)

6 : else

7 : ctr ← ctr + 1

8 : Key ← Keyctr

9 : Π1 ← Π1 ∪ {(seed, ctr)}
10 : for i = 0 . . . w − 1 do

11 : if ((i, Si, ·) ∈ Π2) then

12 : Ki ← Π2(i, Si)

13 : else

14 : Ki
U←− {0, 1}n, Π2 ← Π2 ∪ {(i, Si,Ki)}

15 : K← (K0, . . . ,Kw−1)

16 : T ← IQRA.Tag(Key,K, N,D)

17 : st← (seed,S, N,D, T )

18 : STATES← {st}
19 : return tag

Figure 4: The Exp1′ for the adversary A.

Exp2 (see Figure 5) is modification of the Exp1′ in the following way. We
replace function F with different finalization keys Keyi by the set of uniform
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random functions ρi. Just like the keysKeyi in Exp1′, d functions ρi in Exp2

refered to distinct seed values are sampled during experiment initializing
phase and Tag and Verify oracles just use them one by one responding to the
queries.

Let estimate the difference between Exp1′ and Exp2. We construct an
adversary D that breaks F in the mu-PRF model with parameter d. The
adversary D has the access to its own oracle F b, b ∈ {0, 1}. D invokes the
adversary A as a subroutine and simulates Tag and Verify oracles for A
as in Exp1′ replacing F calls by calls to his own oracle F b with seed serial
number Π1(seed) and N as the arguments. The adversary D returns 1 to its
own challenger, if adversary A makes a successful forgery. If b = 1 then D
implements exactly Exp1′ for A. If b = 0 then D implements exactly Exp2.
Thus,

Pr
[
Exp1′(A)→ 1

]
− Pr

[
Exp2(A)→ 1

]
=

= Pr
[
Expmu-PRF-1

F (D)→ 1
]
−Pr

[
Expmu-PRF-0

F (D)→ 1
]

= Advmu-PRF
F (D).

By construction, the adversary D makes at most (qtag + qver) queries
to its own F b oracle, moreover the number of queries with the same i =
Π1(seed) value is at most r. Adversary D needs at most O((qtag+qver)TIQRA)
additional computional resources for simulating Tag and Verify work for A.
We apply Lemma 2 to estimate the Advmu-PRF

F (D). By this lemma there exists
an adversary C for function F in PRF model, such that

Advmu-PRF
F (D) 6 d · AdvPRF

F (C),
where d is the number of distinct seed values across A queries. Furthermore,
adversary C makes at most r queries to his own oracle and needs at most
O(dk + (qtag + qver) · (TF + 2n log(qtag + qver))) additional computational
resources compared to D, where TF is computational resources needed to
calculate function F, that can be upper bounded by O((qtag + qver)TIQRA).
So the time complexity of C is at most T +O((qtag + qver) · 2TIQRA).

Summing up,

Pr
[
Exp1′(A)→ 1

]
− Pr

[
Exp2(A)→ 1

]
6 d · AdvPRF

F (C).

Probability of winning in Exp2. Let estimate the probability of A success in
Exp2.

Firstly, let consider qver = 1 case. This means that A has only one
attempt to make a forgery. We denote the z-th query to Tag oracle as
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Exp2(A)

1 : Π1,Π2 ← ∅
2 : GAMMA,STATES← ∅, win← 0

3 : ctr ← 0

4 : for i = 1...d do :

5 : ρi
U←− Func({0, 1}n; {0, 1}n)

6 : ATag,Verify( )

7 : return win

Verify(seed, S, N,D, T )

1 : if ((seed, ·) ∈ Π1) then

2 : ρ← ρΠ1(seed)

3 : else

4 : ctr ← ctr + 1

5 : ρ← ρctr

6 : Π1 ← Π1 ∪ {(seed, ctr)}
7 : for i = 0 . . . w − 1 do

8 : if ((i, Si, ·) ∈ Π2) then

9 : Ki ← Π2(i, Si)

10 : else

11 : Ki
U←− {0, 1}n, Π2 ← Π2 ∪ {(i, Si,Ki)}

12 : T ′ ← (D0 ⊕K0) ·K0 ⊕ . . .⊕
13 : ⊕(Dw−1 ⊕Kw−1) ·Kw−1 ⊕ ρ(nonce)

14 : st← (seed,S, N,D, T )

15 : if ((T ′ = T ) ∧ (st /∈ STATES)) then

16 : win← 1

17 : return (T ′ = T )

Tag(seed, S, N,D)

1 : if ((seed,N) ∈ GAMMA) then

2 : return ⊥
3 : GAMMA← GAMMA ∪ {(seed,N)}
4 : if ((seed, ·) ∈ Π1) then

5 : ρ← ρΠ1(seed)

6 : else

7 : ctr ← ctr + 1

8 : ρ← ρctr

9 : Π1 ← Π1 ∪ {(seed, ctr)}
10 : for i = 0 . . . w − 1 do

11 : if ((i, Si, ·) ∈ Π2) then

12 : Ki ← Π2(i‖Si)
13 : else

14 : Ki
U←− {0, 1}n, Π2 ← Π2 ∪ {(i, Si,Ki)}

15 : T ← (D0 ⊕K0) ·K0 ⊕ . . .⊕
16 : ⊕(Dw−1 ⊕Kw−1) ·Kw−1 ⊕ ρ(nonce)

17 : st← (seed,S, N,D, T )

18 : STATES← {st}
19 : return T

Figure 5: The Exp2 for the adversary A

(seedz, Sz, N z,Dz). The Tag oracle returns the value Tz ∈ {0, 1}n as an
answer to the z-th query.

The adversary A is deterministic. Consequently, its actions are deter-
mined by answers from Tag oracle, i.e. by random variables T̃1, . . . , T̃qtag . If
the values of these random variables are fixed by T1, . . . , Tqtag , then the all A
queries are fixed including the forgery (seed∗, N∗, S∗,D∗, T ∗).

Let denote the vector of random variables whose values correspond to
Sz = (Sz0 , . . . , S

z
w−1) values (or S∗ = (S∗0 , . . . , S

∗
w−1)) as K̃z = (K̃z

0 , . . . , K̃
z
w−1)

(K̃∗ = (K̃∗0 , . . . , K̃
∗
w−1) respectively). Note, that random variables K̃j

i and K̃
p
i

are independent by [IQRA,KDF] definition for fixed different queries j и p
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if Sji 6= Spi . If S
j
i = Spi , random variables K̃j

i and K̃p
i are dependent and

Pr

[
K̃j
i = K̃p

i

]
= 1. Similarly, random variables K̃∗i and K̃j

i are equal if

Sji = S∗i and independent if Sji 6= S∗i . Thus,

Pr
[
Exp2(A)→ 1

]
=

∑

T1,...,Tqtag

Pr
[
{Exp2(A)→ 1} ∩ {T̃i = Ti}qtagi=1

]
=

=
∑

T1,...,Tqtag

∑

K1,...,Kqtag ,K∗

Pr
[
{Exp2(A)→ 1} ∩ {T̃i = Ti}qtagi=1 ∩

{
K̃i=Ki,

K̃∗=K∗

}qtag
i=1

]
.

The event {Exp2(A)→ 1} takes place if

ρ∗(N ∗) = (D∗0 ⊕ K̃∗0) · K̃∗0 ⊕ . . .⊕ (D∗w−1 ⊕ K̃∗w−1) · K̃∗w−1 ⊕ T ∗︸ ︷︷ ︸
=c̃∗

,

where ρ∗ — uniform random function corresponding to seed∗. If the values
K∗,D∗, T ∗ are fixed, then the value of random variable c̃∗ is also fixed: c̃∗ = c∗.

The event {T̃i = Ti} for i-th query, 1 6 i 6 qtag, takes place if

ρi(N i) = (Di
0 ⊕ K̃ i

0) · K̃ i
0 ⊕ . . .⊕ (Di

w−1 ⊕ K̃ i
w−1) · K̃ i

w−1 ⊕ T i︸ ︷︷ ︸
=c̃i

,

where ρi — uniform random function corresponding to seedi. If the values
Ki,Di, T i are fixed, then the value of random variable c̃i is also fixed: c̃i = ci.
Note, that random variables ρi(N i), 1 6 i 6 qtag, are independent, because
the (seed,N) pairs are unique across Tag oracle queries. Therefore, the re-
quired probability can be represented as:

Pr
[
Exp2(A)→ 1

]
=

∑

T1,...,Tqtag

∑

K1,...,Kqtag ,K∗

Pr
[
{ρ∗(nonce∗) = c∗} ∩ {ρi(noncei) = ci}qtagi=1 ∩

{
K̃i=Ki,

K̃∗=K∗

}qtag
i=1

]
.

As the values Ki,K∗, 1 6 i 6 qtag, and the random functions ρ are selected
independently, we have that:

Pr
[
{Exp2(A)→ 1}

]
=

∑

T1,...,Tqtag

∑

K1,...,Kqtag ,K∗

Pr
[{

K̃i=Ki,

K̃∗=K∗

}qtag
i=1

]
·

· Pr
[
{ρ∗(N ∗) = c∗} ∩ {ρi(N i) = ci}qtagi=1

]
.

Let estimate the probability p := Pr
[
{ρ∗(N ∗) = c∗} ∩ {ρi(N i) = ci}qtagi=1

]
.

There are two possible cases:
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1. there exists query z, 1 6 z 6 qtag, such that seed∗ = seedz, N∗ = N z.
Let denote this case as case;

2. (seed∗, N∗) pair was not used in the queries to Tag oracle. Let denote
this case as case.

The first case. If the case takes place, the number z is fixed uniquely because
of the uniqueness of (seed,N) pair.

Then the value ρ∗(N ∗) is equal to some value ρz(N z). Thus,

p =

{
Pr
[
{ρi(N i) = ci}qtagi=1

]
, if c∗ = cz;

0, otherwise.

The probability Pr
[
{ρi(N i) = ci}qtagi=1

]
is equal to the probability to select set

of uniform random functions, such that qtag certain inputs correspond to the

certain outputs. This probability is equal to
1

2nqtag
.

The second case. If the case takes place, the value of uniform random
function ρ∗(N ∗) is selected independently, so the probability p is equal to
Pr[ρ∗(N ∗) = c∗ ] · Pr

[
{ρi(N i) = ci}qtagi=1

]
. Similarly to the first case, this is

equal to
1

2n
· 1

2nqtag
=

1

2n(qtag+1)
for arbitrary values ci, c∗.

Thus, we have that

Pr
[
Exp2(A)→ 1

]
=

=
∑

T1,...,Tqtag :
case

∑

K1,...,Kqtag ,K∗

Pr
[{

K̃i=Ki,

K̃∗=K∗

}qtag
i=1

]
· 1

2n(qtag+1)
+

+
∑

T1,...,Tqtag :
case

∑

K1,...,Kqtag ,K∗:
c∗=cz

Pr
[{

K̃i=Ki,

K̃∗=K∗

}qtag
i=1

]
· 1

2nqtag
=

=
∑

T1,...,Tqtag :
case

1

2n(qtag+1)

∑

K1,...,Kqtag ,K∗

Pr
[{

K̃i=Ki,

K̃∗=K∗

}qtag
i=1

]

︸ ︷︷ ︸
=1

+

+
∑

T1,...,Tqtag :
case

1

2nqtag

∑

K1,...,Kqtag ,K∗:
c∗=cz

Pr
[{

K̃i=Ki,

K̃∗=K∗

}qtag
i=1

]
=

=
∑

T1,...,Tqtag :
case

1

2n(qtag+1)
+

∑

T1,...,Tqtag :
case

1

2nqtag
Pr
[
c̃∗ = c̃z

]
.
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Let estimate the probability Pr
[
c̃∗ = c̃z

]
. Event {c̃∗ = c̃z} takes place if

(D∗0 ⊕ K̃∗0) · K̃∗0 ⊕ . . .⊕ (D∗w−1 ⊕ K̃∗w−1) · K̃∗w−1⊕
⊕ (Dz

0 ⊕ K̃z
0) · K̃z

0 ⊕ . . .⊕ (Dz
w−1 ⊕ K̃z

w−1) · K̃z
w−1 = Tz ⊕ T ∗.

The probability Pr
[
c̃∗ = c̃z

]
is defined by random variables K̃z

0 , . . . , K̃
z
w−1

and K̃∗0 , . . . , K̃∗w−1. If the values T1, . . . , Tqtag are fixed, then the set of blocks
with Szi = S∗i is fixed, let denote their number asm, 0 6 m 6 w. Let consider
two possible cases.

At first, let m = w. Then K̃∗i = K̃z
i , i ∈ {0, . . . , w − 1}. Thus, the event

{c̃∗ = c̃z} takes place if the following equation becomes true:

(D∗0 ⊕Dz
0) · K̃∗0 ⊕ . . .⊕ (D∗w−1 ⊕Dz

w−1) · K̃∗w−1 = Tz ⊕ T ∗.
Let us show that there exists at least one i, such that D∗i ⊕ Dz

i 6= 0.
Condition m = w implies Sz = S∗. The values seed∗, N∗ are also equal to
seedz, N z by definition of case. If D∗i = Dz

i for all i, 0 6 i 6 w − 1, then
D∗ = Dz. Then the equation above becomes true only if Tz = T ∗. But this
contradicts with the condition that forgery must be not trivial. Thus, there
exists at least one i, such that D∗i 6= Dz

i .
Then number of solutions of the equation above can be calculated in the

following way. Let choose i, such that D∗i ⊕Dz
i 6= 0. Let fix all K∗j , j 6= i, by

arbitrary values and recover K∗i explicitly turning the equation above into
true equality. Thus, the number of solutions is equal to the number of all
possible sets K∗0 , . . . , K∗i−1, K

∗
i+1, . . . , K

∗
w−1, that is 2n(w−1). Therefore,

Pr
[
c̃∗ = c̃z

]
=

=
#{K∗0 , . . . , K∗w−1 : (D∗0 ⊕Dz

0) ·K∗0 ⊕ . . .⊕ (D∗w−1 ⊕Dz
w−1) ·K∗w−1 = Tz ⊕ T ∗}

2nw

=
2n(w−1)

2nw
=

1

2n
.

At second, let m < w. Without loss of generality let assume that for
the first m blocks Szi = S∗i . Then the corresponding random variables are
dependent, namely Kz

0 = K∗0 , . . . , K
z
m−1 = K∗m−1. Thus, the event {c̃∗ = c̃z}

takes place if the following equation becomes true:

α0K̃ ′0 ⊕ . . .⊕ αm−1K̃ ′m−1 ⊕ K̃ ′m · K̃ ′m ⊕ αmK̃ ′m ⊕ . . .⊕
⊕ ˜K ′2w−m−1 · ˜K ′2w−m−1 ⊕ α2w−m−1

˜K ′2w−m−1 = Tz ⊕ T ∗

where
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– αi = Dz
i ⊕D∗i , K̃ ′i = K̃z

i = K̃∗i для 0 6 i 6 m− 1,

– αi = Dz
i , K̃

′
i = K̃z

i для m 6 i 6 w − 1,

– αi = D∗i−w+m, K̃
′
i = K̃∗i−w+m для w 6 i 6 2w −m− 1.

This is a quadratic equation. The number of solutions of this equation
can be calculated in the following way. Let choose some i, m 6 i 6 2w −
m − 1, and fix all K ′j, j 6= i, by arbitrary values. Then the equation turns
into quadratic equation for K̃ ′i random variable that has at most two roots.
Thus, the number of solutions is obtained from 2 possible variants for K ′i and
number of all possible sets K ′0, . . . , K ′i−1, K

′
i+1, . . . , K

′
w−1, that is 2n(w−1)+1.

Therefore,

Pr
[
c̃∗ = c̃z

]
6 2 · 2n(w−1)

2nw
=

2

2n
.

Summing up the estimates in two cases, we have that for all possible m

Pr
[
c̃∗ = c̃z

]
6 2

2n
. Finally, we have

Pr
[
Exp2(A)→ 1

]
6

∑

T1,...,Tqtag :
case

1

2n(qtag+1)
+

∑

T1,...,Tqtag :
case

1

2nqtag
· 2
2n

6
∑

T1,...,Tqtag

2

2n(qtag+1)
.

The number of possible sets T1, . . . , Tqtag is 2nqtag . Thus,

Pr
[
Exp2(A)→ 1

]
6 2 · 2nqtag

2n(qtag+1)
=

1

2n−1
.

Let consider qver > 1 case. Applying Theorem 5.1 [18] and assuming
n = (seed ‖ S ‖ N), we get

Pr
[
Exp2(A)→ 1

]
6 qver

2n−1
.

Final result. Summarizing all the obtained bounds, we get a theorem state-
ment:

AdvSUF-CMA
[IQRAF,KDF](A) = Pr

[
Exp0(A)→ 1

]
=(

Pr
[
Exp0(A)→ 1

]
− Pr

[
Exp1(A)→ 1

])
+

+
(

Pr
[
Exp1(A)→ 1

]
− Pr

[
Exp1′(A)→ 1

])
+

+
(

Pr
[
Exp1′(A)→ 1

]
− Pr

[
Exp2(A)→ 1

])
+ Pr

[
Exp2(A)→ 1

]
6

6 AdvPRF∗
KDF (B) + d · AdvPRF

F (C) +
qver
2n−1

.
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B.3 Corollary 1 proof

Before proving the corollary let us prove the extension of the Bernshtein
bound (Theorem 2.1 [18]) for the case of multiple oracle access.

Lemma 3. Let π1, . . . , πd be uniform random permutations over the set
{0, 1}n. Let ρ1, . . . , ρd be uniform random functions from {0, 1}n to {0, 1}n.
Let M be an algorithm that performs exactly q1, . . . , qd distinct queries to
the corresponding oracles, qi 6 2n. Then

Pr[Mπ1,...,πd → 1] 6 δn(q1) · . . . · δn(qd) Pr[Mρ1,...,ρd → 1] ,

where δn(q) =
(
1− q−1

2n

)−q/2.
Lemma proof. According to Theorem 4.2 [19], the uniform random permu-
tation over the set {0, 1}n has maximum q-interpolation probability at most
δn(q) for each 0 6 q 6 2n. This means that for the uniform random permu-
tation π:

Pr[(π(s1), . . . , π(sq)) = (t1, . . . , tq)] 6 δn(q)

2nq

for all (t1, . . . , tq) ∈ {0, 1}nq and all (s1, . . . , sq) ∈ {0, 1}nq with s1, . . . , sq
distinct.

Let denote as t̃i, 1 6 i 6 d, the vector of the random variables
whose values correspond to the responses obtained by M from i-th ora-
cle: ti = (ti1, . . . , t

i
qi

), ti ∈ {0, 1}n. Everything thatM does is determined by
its random tape independent ofM’s input and by responses t1, . . . , td toM
distinct queries to each oracle.

Let denote as α(t1, . . . , td) the conditional probability thatM returns 1
given that the responses toM distinct queries to each oracle are t1, . . . , td:

α(t1, . . . , td) = Pr
[
M→ 1

∣∣∣ {t̃i = ti}di=1

]

Therefore,

Pr[Mπ1,...,πd → 1] =
∑

t1=(t11,...,t
1
q1

),

...
td=(td1,...,t

d
qd

)

α(t1, . . . , td) Pr
[
{t̃i = ti}di=1

]
6

6
∑

t1=(t11,...,t
1
q1

),

...
td=(td1,...,t

d
qd

)

α(t1, . . . , td) · δn(q1) · . . . · δn(qd)
2n(q1+...+qd)

=

= δn(q1) · . . . · δn(qd) Pr[Mρ1,...,ρd → 1] .
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Now we are ready to prove Corollary 1.

Corollary proof. We rely on the proof of the Theorem 1. The first steps of
the proof are exactly the same: we define Exp0, Exp1 and Exp1′ similarly to
the one defined in Theorem 1, assuming block cipher E is used as F. Further
we are moving from block cipher to the set of uniform random functions
not directly as in Theorem 1 proof, but through the set of uniform random
permutations. We construct the auxiliary experiment to obtain the better
security bound.

Let Exp2 be the same experiment as Exp2 in Theorem 1 proof, except
that uniform random permutations π1, . . . , πd are selected instead of uniform
random functions ρ1, . . . , ρd. Similarly to the Theorem 1 proof, we construct
adversaries D and C for block cipher E in the mu-PRP and PRP models
respectively to estimate the difference between Exp1′ and Exp2:

Pr
[
Exp1′(A)→ 1

]
− Pr

[
Exp2(A)→ 1

]
=

= Pr
[
Expmu-PRP-1

E (D)→ 1
]
− Pr

[
Expmu-PRP-0

E (D)→ 1
]

=

= Advmu-PRP
E (D) ≤ d · AdvPRP

E (C).

Let Exp3 be the modification of the Exp2 obtained by replacing the uni-
form random permutations π1 . . . πd by uniform random functions ρ1, . . . , ρd.
Note, that such Exp3 is exactly the same as Exp2 in Theorem 1 proof. Thus,
Pr
[
Exp3(A)→ 1

]
6 qver

2n−1
.

Let construct an adversaryM to estimate the difference between Exp2

and Exp3. Let M invokes A as a subroutine and implements Exp3 for A
replacing uniform random functions calls by queries to its own oracles. Let
assume thatM has access to d oracles. These oracles can either implement
π1, . . . , πd, or ρ1, . . . , ρd. The number ofM queries to each oracle is exactly
the same as the number of queries made by A with the corresponding seed
value and distinct nonce values. The adversaryM returns 1, if adversary A
wins. Thus,

Pr
[
Exp2(A)→ 1

]
= Pr[Mπ1,...,πd → 1] ,

Pr
[
Exp3(A)→ 1

]
= Pr[Mρ1,...,ρd → 1] .

According to Lemma 3,

Pr[Mπ1,...,πd → 1] 6 δn(r1) · . . . · δn(rd) Pr[Mρ1,...,ρd → 1] ,
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where δn(q) =
(
1− q−1

2n

)−q/2 and r1, . . . , rd are the number of queries made
by A with each seed value and distinct nonce values. Therefore,

Pr
[
Exp2(A)→ 1

]
6 δn(r1) · . . . · δn(rd) Pr

[
Exp3(A)→ 1

]
6

6 δn(r1) · . . . · δn(rd) ·
qver
2n−1

.

Summing up, we obtain the following bound:

AdvSUF-CMA
[IQRAE,KDF](A) = Pr

[
Exp0(A)→ 1

]
=(

Pr
[
Exp0(A)→ 1

]
− Pr

[
Exp1(A)→ 1

])
+

+
(

Pr
[
Exp1(A)→ 1

]
− Pr

[
Exp1′(A)→ 1

])
+

+
(

Pr
[
Exp1′(A)→ 1

]
− Pr

[
Exp2(A)→ 1

])
+ Pr

[
Exp2(A)→ 1

]
6

6 AdvPRF∗
KDF (B) + d · AdvPRP

E (C) + δn(r1) · . . . · δn(rd) ·
qver
2n−1

.
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Abstract

Most of the attacks on block ciphers depend on the analysis of large amounts of
data encrypted under the same key. In this paper is presented COM-CTR+D, a new
mode of operation for block ciphers to extend the lifetime of keys, taking advantage
of the properties of external and internal re-keying mechanisms. In addition, we
carry out the security analysis of the mode of operation COM-CTR+D and we
discuss aspects related to the implementation details of the ECB-CTR+D mode of
operation for the Advanced Encryption Standard (AES).

Keywords: encryption mode, re-keying mechanism, key lifetime cycle, advanced encryption
standard.

1 Introduction

Cryptographic protocols rarely use the key shared between parties in the
encryption process. Key derivation is a common procedure used to avoid
cryptanalysis, where the keys derived from the master key are used in the
different processes or components of the system. It has been shown that this
way has proven valid to increase the security in the encryption process [10],
although, in the last years, other techniques have emerged as alternatives that
differ depending on the environment in which they are used, but effectively
extend the lifetime of keys. Such methods are known as re-keying mechanisms
and they are divided into three groups: external re-keying [10, 12], internal
re-keying [5, 6] and fresh re-keying [19].

1.1 Our contribution

In this paper we introduce a new mode of operation for block ciphers
called COM-CTR+D to extend the lifetime of keys. The COM function of
the new mode refers to one of the following confidentiality encryption modes
of block ciphers: ECB, CBC, OFB, CFB [11] or CTR [24], while the pseudo-
random transformation used to update the section keys is determined by
the CTR encryption mode [24]. The difference of this method over similar
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mechanisms provided in literature survey is that the lifetime of a section key
relies in the security of the underlying COM encryption mode. We show that
the use of the CTR mode as pseudo-random function to update the section
keys guarantees its non-repetition and we also provide the probabilistic se-
curity bound for COM-CTR+D encryption mode. Finally, we analyze the
implementation of ECB-CTR+D with the standard AES [14].

2 Internal and external re-keying approaches

The authors in [6] introduced the formal concept of Internal and Exter-
nal re-keying approaches and discuss their features, advantages and disadvan-
tages. The first one was presented like a generalization of a key diversification
scheme [10] and the second one like advanced technique of the mechanism to
increase the key lifetime called «CryptoPro Key Meshing» (CPKM) [22].

2.1 Internal re-keying

The internal re-keying approach modifies a base mode of operation in
such a way that each message is processed starting from the same key, which
is changed using certain key update technique during the processing of the
current message, so that it is integrated into the base mode of operation
and changes its internal structure. One of the main concepts of internal re-
keying is a «section», defined like a string consisting in all message blocks
processed with the same key, also called a «section key». The parameter of
this modes is the section size, chosen optionally since it affects the operating
properties and limits the amount of messages. Examples of re-keying internal
mechanism can be seen in [1, 5, 6, 16, 21, 22].

These methods are recommended to be used in protocols that process
large single messages since the maximum gain in increasing the key lifetime
is achieved by increasing the length of a message, while it provides almost no
increase in the number of messages that can be processed with one key [6].
The general procedure of the internal re-keying mechanism is show below.
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Figure 1: Internal re-keying. The value q indicate the number of processed messages and
each message is processed starting from the first derived key K1. This key is changed each
time a data section of fixed length l has been processed. The lifetime L of the key K
defines the total length of data processed whit this key.

Now we present some background about the internal re-keying mechanism
CTR-ACPKM which helps to understand the later definition of our mode.

2.1.1 Internal re-keying CTR-ACPKM mode

This mode of operation is defined in [1] like the advanced CPKM mode
proposed in [22] and works as can be seen in figure 2 for a given plaintext P
of m blocks of size n.

Figure 2: Internal re-keying CTR-ACPKM mode

Here the first section of each message is processed starting with the same
key (the first section key) and each section is continued to be processed
using the subroutine СTR (the base mode) under the respective section key,

D. Almeida, A. Freyre, and A. Alfonso 66



The re-keying mechanism COM-CTR+D

where the key update technique after processing all the N blocks of a section
consists in the transformation ACPKM defined as follows:

K i+1 = ACPKM(K i) = msbk(Eki(D1))‖ . . . ‖Eki(Ds)) (1)

where s = dk/ne and D1, · · · , Ds ∈ {0, 1}n are arbitrary pairwise different
constants, so that the (n/2)-th bit (counting from the right) of each of these
constants is equal to 1. Note that the internal state of the CTR-ACPKMN

mode, the counter, is not reset for each new section and the condition on the
D1, D2, . . . .Ds constants allows to prevent collisions of block cipher permu-
tation inputs in cases of key transformation and message processing.

In [1] it is demonstrated the following theorem [5, Theorem 3.1].

Theorem 1. Let N be the parameter of CTR-ACPKMN mode. Then for
any adversary A with time complexity at most t that makes queries, where
the maximum message length is at most m(m ≤ 2n/2−1) blocks and the total
message length is at most σ blocks, there exists an adversary B such that

Advind−cpnaCTR−ACPKMN
(A) ≤ l ·Advprp−cpaE (B) +

(σ1 + s)2 + ..+ (σl−1 + s)2 + (σl)
2

2n+1

where s = dk/ne, l = dm/Ne, σj is the total data block length processed
under the section key Kj and σj ≤ 2n−1, σ1 + . . . + σl = σ. The adversary
B makes at most σ1 + s queries. Furthermore, the time complexity of B is
at most t+ cn(σ+ ls), where c is a constant that depends only on the model
of computation and the method of encoding.

2.2 External re-keying

In this approach a key, derived according to certain key update technique,
is intended to process the fixed amount of separate messages after which the
key should be updated and is proposed to be performed each time a given
amount of messages is processed. However, the key lifetime is defined by the
total length of the processed messages and not by their amount.

External re-keying is recommended for usage in protocols that process
quite small messages since the maximum gain in increasing the key lifetime
is achieved by increasing the number of messages.

Doubtless advantage of external re-keying is the possibility to explicitly
use the obtained security bounds for the base mode to quantify security of
the corresponding externally re-keyed mode [6]. In [10] are given the bound
of this mechanism accord to key derivation generator used and quantify the
security as a function of the security of the primitives used. The general
procedure of the internal re-keying mechanism [6] is show below.
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Figure 3: External re-keying. The notation Mi,j denote that have been encrypted the j-th
message whit the key Ki.

3 The mode of operation COM-CTR+D

In our proposal the message is processed starting with a first section key
depending on the initialization vector IV through the CTR mode, which is
updated once processed a certain number of blocks N (one section). Given
the value of the parameter N, COM-CTR+DN process the input plaintext
as follows.

The plaintext X, of m blocks of size n, splits into L = dm/Ne sections
(denoted as X = X1||X2||...||XL, where X i ∈ {0, 1}nN for 1 ≤ i ≤ L − 1
and XL ∈ {0, 1}r, r 6 nN) which will be processed under the initial key.
The section X1 is encrypted using the confidentiality mode COM and the
section key K1. Then, the i-th section of message X is processed using the
confidentiality mode with section keyK i, which is calculated for all 1 ≤ i ≤ L

by the pseudo-random transformation CTRi as follows:

K i = CTRi(ctri) (2)
= EK(ctri)

where ctri = IV + i is no other than addition of the initialization vector and
the n-bit integer i. Finally, the ciphertext Y = Y 1||Y 2||...||Y L generated by
COM-CTR+DN mode of operation is computed in the following way:

Y i = COMKi(X i, Ai) (3)
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Here, Y i denotes the i-th section of ciphertext, Ai are the initial values
of section i for the COM mode that may be dependent on the values of the
previous section, and K i is obtained through equation 2. For some confiden-
tiality modes COM, like ECB, the values of Ai are not necessary. In appendix
1, we present the encryption schemes of COM-CTR+D for mentioned con-
fidentiality modes. Note that the internal state of COM-CTR+DN , i.e. the
value of ctri, is updated for each new section to prevent collisions. Figure 4
shows the design of COM-CTR+DN re-keying mechanism.

Figure 4: General scheme of COM-CTR+DN mode of operation.

Here we left some important considerations with respect to the COM-
CTR+D re-keyed mechanism. Firstly, the re-keyed mechanism should re-
inforce the security of the base mode COM and its use must increase the
lifetime of the master key. In addition, the section size is not greater than
the lifetime of the section key which is bounded by the security of the base
mode of operation. Furthermore, the behavior of any section key does not
compromise the remaining section keys nor the sections of plaintext of the
message. Finally, as long as the master key is not changed, the initial counter
of the CTR mode for a new message start from the next value of the final
ctri of the last encrypted message, as stated in [24].

It is important to notice that several cryptographic algorithms can be
used as underlaying block cipher of the proposed mode COM-CTR+D taking
into account that the sizes of the initialization vector, initial key, section key
and plaintext blocks are not restricted. For example, we can use Rijndael
algorithm [13] in the transformation CTRi with 256 bits of key and plaintext
sizes, which results in 256 bits of section key and the Magma algorithm [15]
with the COM mode.

Next, we introduce the security bounds for the COM-CTR+D re-keying
scheme.
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3.1 Probabilistic security of COM-CTR+D

The probabilistic security analysis of our mode of operation is conducted
according [23], where the following conditions are assumed:

C1 Given N = u + v plaintext blocks processed under the same key such
that x1, x2, ..., xu and x′1, x′2, ..., x′v are respectively known and unknown
by an adversary.

C2 For a known block xi, 1 6 i 6 u, we have that y′j = yi for an unknown
block x′j, 1 6 j 6 v.

In this case, we find the amount of messages that can be encrypted with
the same key through the simulation of a phenomenon A for the previous
conditions, and we estimate the probability to obtain additional information
about the unknown parts of the plaintext from a known ciphertext and some
known parts of the plaintext. With conditions C1 and C2, the authors of [23]
present the probabilistic security bounds for the five confidentiality modes
ECB, CBC, OFB, CFB and CTR, which can be used in place of the COM
function in our proposal. The next theorem is the result of continuing this
line of work.

Theorem 2. Given the probabilistic security bounds NmaxCOM and NmaxCTR

for the confidentiality mode COM and the CTR mode respectively, under
conditions C1 and C2, the maximum amount of data that can be safely
processed by COM-CTR+DN satisfies the following inequality

NmaxCOM−CTR+DN
6 NmaxCTR · NmaxCOM = 2

n
2 +1
√

ln(π2n) · NmaxCOM (4)

where π is the adversary’s success probability.

The proof of this theorem is straightforward, since for each section key
generated through the CTR mode, the maximum amount of data that can be
safety processed by the confidentiality mode COM is upper bounded by the
probabilistic security bound NmaxCOM . For the confidentiality modes ECB,
CBC, OFB, CFB and CTR the respective values of NmaxCOM can be seen
in [23].

Remark 1. If the section size N equals the maximum number of blocks Nmax

that can be processed by the confidentiality mode COM, then COM-CTR+DN

satisfies the equality in theorem 2.

Remark 2. If the section size is N=1 the maximum number of blocks that
can be processed by COM-CTR+D1 with the same key equals the probabilistic
bound for the CTR mode.
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3.2 Probable security of COM-CTR+D mode

The foundations of the encryption mode COM-CTR+D rest in the choice
of the confidentiality mode COM, therefore the properties of our proposal
are highly dependent on the base mode, extending the lifetime of the cipher
key and increasing the combinatorial properties of the block cipher. In our
particular case, such properties are increased in the order of the probabilistic
security bound for the CTR mode.

However, the scheme of the COM-CTR+D mechanism satisfies, but it is
not restricted to the conditions presented in [10] related to external methods
for key lifetime extension. For the cases where the conditions presented in
[10] are satisfied, we built a re-keying method on the basis of a confidentiality
mode, whose process works as an external mechanism. Such mechanism is the
result of relate a generator, a base scheme and the key lifetime [10]. Hence, for
any symmetric encryption scheme with well defined key generation, encryp-
tion and decryption algorithms SE = (Ke, E ,D) and G = (Kg,N ), a stateful
generator with block size k, being k the size of the key associated to the base
mode and l > 0 the sub-key lifetime, we can associate an extended encryp-
tion scheme SE [SE ,G, l] = (K, E ,D). Furthermore, from the definitions of
parallel generator and external mechanism and Corollary 1. proposed in [10],
we can set the security bounds of mode COM-CTR+D for these cases trough
theorem 3.

Theorem 3. Given COM and CTR, the base encryption mode and parallel
generator respectively, and NCOM > 0 the section key lifetime, if COM −
CTR +D = [COM,CTR,NCOM ] is the associated re-keying scheme then

Advind−cpaCOM−CTR+D(t, n·NCOM ,m) ≤ AdvprfCTR,n(t)+n·Advind−cpaCOM (t, NCOM ,m)

where t denotes the execution time, NCOM is the number of allowed questions
to the oracle in the form of m-bit messages pairs, and n < NmaxCTR is the
number of output blocks of the generator.

3.3 Security analysis for the confidentiality mode ECB

Within our proposal, one can link the CTR mode to any confidentiality
mode as discussed earlier. Therefore, we present the analysis of the ECB-
CTR+D mode of operation which is the combination of the confidentiality
modes ECB and CTR, both selected due their simplicity w.r.t implemen-
tation and the proven security of CTR mode. In addition, this chaining of
confidentiality modes guaranties the non-propagation of errors in the decryp-
tion process, parallel programming capabilities and simple design scheme,
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guaranteeing the extension of the lifetime of the key employed in the encryp-
tion/decryption process. Figure 5 shows the design of ECB-CTR+D mode
of operation.

Figure 5: ECB-CTR+D general scheme.

In the security analysis conducted later, we assume that the section size
N is equal to 1, i.e, each section contains a single block of data, which is
consistent with the re-keying mechanism ECB-CTR+D1 of figure 6.

Figure 6: ECB-CTR+D1 mode of operation.

As mentioned, the section key generated by the transformation CTRi is
used to encrypt one block of the m-block message X with block size n, in
accordance to the security bound for mode ECB, recalling that the trans-
formation CTRi ensures that for a given key K all the section keys K i are
different and therefore the outputs of EKi are all different.

Taking into account the probabilistic security bound of theorem 2 for this
particular case one has that ECB-CTR+D1 reach the bound 2

n
2 +1
√

ln(π2n)
since NmaxECB = 1 [23]. Hence, the security bound of ECB-CTR+D1 is equal
to the probabilistic bound of the CTR mode.
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3.4 Performance analysis of ECB-CTR+D with AES

This section resumes the analysis of several experiments aimed to measure
the average time of processing one megabyte of data in an ASUS personal
computer with Intel®Core™i7-4790 @ 3.6 GHz (8 cores) processor and 16
GB of RAM using the standard AES [14] as underlying block cipher for both
ECB and CTR components of the proposed mode of operation ECB-CTR+D.

We execute 30 independent runs for each possible master key size noticing
that the section key size is restricted to 128 bits due to the output size of AES.
Moreover, the probabilistic bound of the confidentiality mode ECB restrict
the section size to one block of data (128 bits). However, we present the
performance of ECB-CTR+D with respect to two additional section sizes, 2
blocks (256 bits) and 8 blocks (1024 bits) respectively.

Mode Master Key Size Section Size Execution Time CPU Cycles
(bits) (blocks) (micro seconds)

ECB 128 - 42187.5 1.13 · 108

ECB-CTR+D 1 90104.2 2.41 · 108

ECB-CTR+D 128 2 66666.7 1.78 · 108

ECB-CTR+D 8 48953.3 1.3 · 108

ECB-CTR+D 1 192625 5.11 · 108

ECB-CTR+D 192 2 131250 3.47 · 108

ECB-CTR+D 8 84895.8 2.27 · 108

ECB-CTR+D 1 214062.5 5.68 · 108

ECB-CTR+D 256 2 144791.7 3.78 · 108

ECB-CTR+D 8 87500 2.32 · 108

Table 1: Performance of AES with mode of operation ECB-CTR+D.

As shown in table 1, the greater the section the closer the performance
of ECB-CTR+D to the base mode ECB. The major drawback w.r.t the time
that the algorithm took to process the whole input data lies in the generation
of the section keys, due the constant re-schedule of keys that must be carried
out to process each new section.
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4 Conclusion

In this paper we present a prospective mode of operation COM-CTR+D
to extend the lifetime of symmetric keys, under the assumption that the
underlying block cipher is secure itself. Under this condition we show that
the security of COM-CTR+D is higher than the security of the base mode
COM, which can be any of the confidentiality modes of operations.

The construction of the re-keying mode COM-CTR+D is similar to that
of the mode CTR-ACPKM, however, the section keys used for encrypting
are different for each message contrary to CTR-ACPKM, which ensures that
the encryption of the same plaintext result into different ciphertext for some
instances of COM-CTR+D.

Our proposal can be used as external re-keyed encryption scheme con-
sidering the base mode security restrictions. Although in [10] and [12] it is
recommended the use of a PRF function for the external case, in both cases,
internal and external, a PRF function can be used for the key derivation of
COM-CTR+D and still its proven security remains.

Finally, we recommend the use of this mode of operation whit dynamic
block cipher algorithms for applications that require high security, in such a
way that the internal transformations of the underlying block cipher depend
on the section keys.
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Appendix 1: Values of A for different base modes

Figure 7: For the re-keyed mode of operation OFB-CTR+D the initial value of the section
i+1 is calculated as Ai+1 = EN

Ki(Ai)

Figure 8: For the re-keyed mode of operation CBC-CTR+D the initial value of the section
i+1 is calculated as Ai+1 = Y i

N = EKi(X i
N ⊕ Y i

N−1)
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Figure 9: For the re-keyed mode of operation CFB-CTR+D the initial value of the section
i+1 is calculated as Ai+1 = Y i

N = X i
N ⊕ EKi(Y i

N−1)

Figure 10: For the re-keyed mode of operation CTR-CTR+D the initial value of the
section i+1 is calculated as Ai+1 = ctri+1,1 where ctri+1,1 denote the initial counter of the
(i+1)-th section of CTR mode.
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Abstract

This article gives a survey on the format-preserving encryption, proposed al-
gorithms, and attacks on them. Additionally, we propose a new format-preserving
encryption scheme based on quasigroup operations.

Keywords: format-preserving encryption, quasigroup, provable security.

Introduction

Format-preserving encryption (FPE) is an encryption algorithm with the
following property: the resulting ciphertext format must be the same as the
format of plaintext. For instance, if we encrypt 9-digit individual insurance
account number (SNILS), the result must be 9-digit ciphertext. In this case,
the cipher must look like a random permutation on the given (usually small)
domain. The small size of the domain makes it hard to provide both strong
security properties in the presence of an adversary (which can usually obtain
all ciphertexts of all points in the domain due to its size) and keep the
resulting algorithm efficient as possible. Many attempts were made to build
an FPE scheme using standardized solutions (such as AES) and well-studied
principles (Feistel networks). The current state of the art is unsatisfactory:
all proposed solutions for standardization in NIST and ISO/IEC are broken
in some sense.

In this paper, we give a survey of suggested algorithms and attacks for
FPE. Also, we propose a new approach for FPE based on quasigroups oper-
ation.

The structure of the paper is the following: in Section 1, we give a for-
mal definition of format-preserving encryption, tweakable block cipher, and
quasigroups. Section 2 is devoted to proposed algorithms for FPE. In sec-
tion 3, we consider cryptanalysis of suggested solutions. In section 4, a new
approach to the FPE algorithms is presented.
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1 Preliminaries

1.1 Problem statement

The very first question is: why do we need format-preserving encryption
(FPE) at all, and why is it not enough to use existing primitives such as
block ciphers?

The request to preserve the format may be appropriate in the following
situations:

1. Database structure may be incompatible with encrypted messages. If
we want to keep the data encrypted, we either need to restructure the
database or use FPE;

2. Some applications may require the data to be in a pre-defined format.
In this case, we can rewrite an application from scratch or again use
FPE;

Why do usual block ciphers not solve the problem? Block cipher acts as
a permutation on the fixed length binary strings (for instance, {0, 1}128 for
«Kuznyechik»). Even if the domain Dom is embedded in {0, 1}n, the result of
encrypting m ∈ Dom is very unlikely to fall in the same subset: Ek(m) 6∈ Dom
due to its relatively small size in the real-world situations and applications.

As an example, we can consider the case of credit card number (CCN):

Example 1. CCN consist of the following numbers: 6 digits — bank number,
6 digits — account number, 3 digits — checksum, and all digits, except for
account number (i.e., 9 out of 15), are publicly available. In this case the
domain Dom = {0, . . . 9}6.

Small domain size is dangerous. Due to a large number of possible input
blocks for the usual block cipher (264 or 2128), it seems appropriate to ignore
the type of attack when an adversary is able to collect the whole codebook
(i.e. all pairs of the type [m,Ek(m)]). In example 1 we have |Dom| ≈ 220,
which is perfectly feasible number to mount the dictionary attack.

Example 2 (Dictionary attack). CCNs from various banks can have the
same account number. Using the bijective property of the cipher, we can be
sure that the matching ciphertext blocks correspond to matching plaintext
(see Table 1).
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Bank number Account number Checksum
012345 Ek(000111) 123

l same
987654 Ek(000111) 456

Table 1: Bank account database

1.2 Tweakable block ciphers and FPE

As shown earlier (Example 2), the small size of the domain is a severe
threat. In order to prevent this sort of attacks a tweakable block cipher
primitive can be used ([1]):

Definition 1. Tweakable block cipher (TBC) is a pair of algorithms:

E, D : Keys× Twk× Dom→ Dom,

such that Dt
k(E

t
k(m)) = m, where t ∈ Twk is a tweak (a block cipher param-

eter), k ∈ Keys is a key, m ∈ Dom is a message.

Usually, the set of keys, tweaks, and messages for TBC are of the standard
form {0, 1}n for some n. The main idea of the construction is that Et

k(·) are
«weakly dependent» different permutations for different t ∈ Twk.

Some properties of a tweak can be pointed out:

– Tweak acts like IV/nonce in the usual modes of encryption;

– The main goal of the tweak is to expand the set of possible permutations;

– Tweak may not be secret;

The property of «weak dependence» can be formalized in provable secu-
rity framework (see [6, 7] for more details on provable security paradigm) as
follows. Consider the experiments:

Algorithm 1 Experiment Left
1: function Init
2: for t ∈ Twk do
3: πt ←R Perm(Dom)
4: function O(t,m)
5: return πt(m)

6: function Fin(b′)
7: return b′

Algorithm 2 Experiment Right
1: function Init
2: k ←$ Keys
3: function O(t,m)
4: return Et

k(m)

5: function Fin(b′)
6: return b′
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Let AdvTPRPE (A) be the advantage of the adversary A in the distinguish-
ing attack, i.e.:

AdvTPRPE (A) = P[Right(A)→ 1]− P[Left(A)→ 1].

The probability P[·] :

1. is taken over random choise of permutations πt ←R Perm(Dom) for dif-
ferent t and random coins of A (if any) — in case of Left experiment;

2. is taken over random choise of key k ←$ Keys and random coins of A
(if any) — in case of Right experiment;

Note that the adversary queries are of the form (t,m), i.e., t is not secret
and under adversary control.

Example 3 (TBC). If F is the usual PRP-strong block cipher, then the
following construction is TBC:

Et
k(m) := Fk(t⊕ Fk(m)).

The paper [1] gives the following estimation:

AdvTPRPE (qt, qe, t) ≤ AdvPRPF (2qtqe, qtqe + t) +O

(
(qtqe)

2

2n

)
,

where qt is the number different tweaks used by A, qe is the (maximal) number
of encryption operations per tweak, n is the length of the block (i.e. the
domain is of the form Dom = {0, 1}n).

1.3 Format-preserving encryption

Definition 2. Format-preserving encryption is a tweakable block cipher with
an arbitrary set Dom.

The main difference between TBC and FPE is that the domain Dom is
usually of the standard form for TBC (i.e. Dom = {0, 1}128), but in case of
FPE we are interested in «atypical» domains, such as Dom = {0, . . . , 9}6 for
CCN. Also it is possible for FPE scheme to have an empty tweak space, i.e.
Twk = ∅. Disk encryption with the block size of 512 bits can be viewed as
FPE scheme as well ([12]) with Dom = {0, 1}512. More formal treatment of
FPE is given in [12, 13].

The quest to develop a good FPE scheme for all sizes of domains seems
hard at the moment. There are subtle issues involved in the case of small-size
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domains: for instance, the adversary can run a full search on the small space.
As a consequence, the cryptographic strength of the scheme strongly depends
on the size of the domain.

First attempts to develop an encryption algorithm for arbitrary domain
are described in [10, 11]. Three papers [15, 16, 17] proposed standardized solu-
tions for FPE algorithms. In 2016 NIST recommendations were issued based
on these proposals. After the publication, a series of papers with significant
advances in cryptanalytic techniques were published ([24, 25, 26, 27, 28]),
which lead to theoretical and even practical threats for proposed algorithms.
The current state of the art is rather unsatisfactory: for domains with the
size between ∼ 220 to ∼ 264 there is no good provably secure and efficient al-
gorithm. For «tiny» domains, as well as for «huge» one, there exists provably
secure schemes (see [13]).

1.4 Quasigroups

Definition 3 ([29]). Quasigroup is a set Q with a binary operation on it
◦ : Q×Q→ Q, which obeys the following property: for each a, b ∈ Q there
exist unique x, y ∈ Q such that:

a ◦ x = b, y ◦ a = b.

In other words, operations of left and right multiplication

La : Q→ Q, La(x) = a ◦ x

Ra : Q→ Q, Ra(y) = y ◦ a
are bijections on Q.

Some applications of quasigroup theory to cryptography can be found in
[30, 31].

We use the following measure of quasigroup complexity. Given some
quasigroup Q, we want to measure how close the composition of quasigroup
operations (for instance, left multiplications) to the random permutation on
Q. To formalize this notion, we introduce the following Experiments (the λ
parameter is analogous to security parameter in classical cryptography):
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Algorithm 3 Experiment Left
1: function Init(λ)
2: π ←R Perm(Q)

3: function O(m)
4: return π(m)

5: function Fin(b′)
6: return b′

Algorithm 4 Experiment Right
1: function Init(λ)
2: k1, . . . , kλ ←R Q

3: function O(m)
4: return k1 ◦ (k2 ◦ (. . . (kλ ◦m) . . .)

5: function Fin(b′)
6: return b′

Again we introduce adversary A, who tries to distinguish between ran-
dom permutation and «structured» permutation. Let AdvPRPQ (A) be the
advantage of adversary A in the distinguishing attack, i.e.:

AdvPRPQ (A) = P[Right(A)→ 1]− P[Left(A)→ 1].

Let InSec(t, q) be the maximal advantage AdvPRPQ over all adversaries
A, whose running time does not exceed t and who uses no more than q oracle
queries. We want this quantity to be as small as possible for the given t and q.
The quantity directly depends on the structure of the quasigroup Q. The
inappropriate choice of quasigroup (i.e., Q = ZN) can make the problem
trivial to solve.

Why this problem can be hard at all? The reason for that is that there
exists a class of groups (called polynomially complete quasigroups), for which
the problem of deciding whether or not an equation over such a quasigroup
has a solution is NP-complete [32].

Definition 4. Quasigroup Q of size k is called functionally (polynomially)
complete if the system of functions consisting of binary operation ◦ and all
constants x ∈ Q (considered as functions of arity 0) with the operation of
superposition generate all possible functions over Q, i.e.

[{◦} ∪ {x ∈ Q}] = Pk.

Polynomially complete qusigroups are actively studied [33, 34, 35]. There
exists an algorithm (polynomial in the size of the quasigroup) that checks
whether the quasigroup is polynomially complete [35]. The NP-completeness
of decision problem ([32]) is an evidence in favor of hardness of problem 1.4 in
the worst case. However, the problem is not (yet) studied in the average-case
scenario, and it is not clear enough what the value of parameter λ should be,
as well as whether the problem is hard in average case. As it is pointed out
in the conclusion 5, this is one of the main vectors of future research.
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2 Proposed FPE algorithms

This section gives an overview of algorithms suggested for NIST stan-
dardization (FF1-FF3), one of the ISO standardisation candidates FEA-2
and general techniques (cycle walking, prefix encryption) helpful in design-
ing FPE algorithms. We do not cover wide-block/disk encryption schemes
with the size of the domain larger than the block size of modern ciphers.
Schemes based on principles other than Feistel networks are also not touched
upon [38, 37, 36, 39].

2.1 FF1, FF3

The structure of both algorithms is the same: the semi-balanced Feistel
network over the group Dom = ZM × ZN , where M ≈ N (see [22] for more
details).

The algorithm takes the key k ∈ Keys, the element to be encrypted
(A,B) ∈ Dom, and the tweak t ∈ Twk (usually tweak space Twk is of the
form {0, 1}tlen). One round of the encryption process transforms the pair via
the following rule:

(A,B)→ (B,A�Q),

where Q ∈ ZM is derived by the following rule:

Q = PRFk(B, t, i, params),

where i is the round number, params is some (non-secret) information, PRF
is a pseudorandom function (see [5] for the definition of PRF). We omit some
technical details here; see [22] for a full description of algorithms.

It was suggested that 10 rounds of Feistel network are enough for FF1
security and 8 rounds for FF3. The original paper ([15]) did not provide the
full security proof of the scheme. The arguments in favor of the proposed
schemes include Patarin papers on the (classical) Feistel networks (see [2],
[3], [4]) and paper on the Feistel networks over groups ZM × ZN [12].

Also, a wrong choice of tweak mixing in the PRF function was made in
the FF3 scheme, which leads to some specific attacks on the scheme. Slight
modifications were proposed to mitigate these attacks.

2.2 FF2

Along with the two algorithms mentioned above (FF1, FF3), a third one
(FF2) was initially proposed for standardization at NIST. Unfortunately,
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a design flaw leads to a theoretical attack on FF2. In this subsection, we
briefly describe the main idea of the algorithm FF2 (VAES3, [17]) and the
corresponding attack ([23]).

The algorihm FF2 consists of two steps. The input to the algorithm is
three parameters: k ∈ Keys, t ∈ Twk,m ∈ Dom.

1. Derive the secret key for the given tweak:

sk = Ek(t) ∈ {0, 1}128;

2. Encrypt the message with obtained key

c = Feistelsk(m);

The main problem of the algorithm is that the key length |sk| = 128 is
too short to guarantee the strong security bound.

Assume that we have n ciphertexts of the form:

cj = FeistelEk(tj)(m),

then we can try different keys skj ∈ {0, 1}128 and obtain

c′j = Feistelskj(m).

If some c′j is the same as ci for some i, then with high probability we will
have skj = Ek(tj), i.e., we can recover the derived key for the given tweak tj
without knowing the value of master-key k.

If the number of ciphertexts n = 2u, then the collision is expected to
occur after 2128−u steps. Even though the attack is somewhat hypothetical,
it was decided to finalize standard NIST SP 800-38G without FF2 (but see
also more recent work on FF2 [18]).

2.3 FEA-2 algorithm

In paper [21], a new family of tweakable block ciphers was proposed,
based on Feistel networks. Some remarkable features of the proposition are
the following:

1. In contrast with the previous algorithms (FF1 — FF3), this proposition
suggest to embed tweak at the primitive layer, i.e., tweak is used in each
encryption round.

2. Unlike simple block ciphers, FEA-2 provide the ability to encrypt mes-
sages of various lenghts, Dom = {0, 1}n, where n ∈ {8, 9, . . . 128}.
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3. The number of rounds in Feistel network depends on the block size and
starts with 18.

4. The key lenght is not fixed: klen ∈ {128, 192, 256}.

5. Encryption on the domain Dom = {1, . . . , N} is done via embedding
Dom ⊆ {0, 1}n combined with the cycle walking idea (see subsection 2.5
for details).

The article ([21]) is devoted to the consideration of applications of var-
ious cryptanalytic techniques to the FEA-2 algorithm. Linear and differen-
tial analysis, as well as related-key attacks, were investigated. Additionally,
threats specific to Feistel networks over small domains were analyzed. The
authors claimed that for the domains of size greater than 28 the proposed
attacks require at least 264 encryptions on different parameters t ∈ Twk.

One round of the proposed scheme is depicted below (taken from the
original paper [21]):

Fig 1: one round of FEA-2

The following notation is used:

– Xa || Xb — left and right blocks of the message;

– Ta || Tb — left and right blocks of the tweak;

– RKa || RKb — left and right blocks of the round key;

It is assumed that |Ta| = |Xb|, |Ta|+ |Tb| = 128 = |RKa| = |RKb|).

2.4 Prefix encryption

If the domain Dom is small enough, then we can use the following idea:
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1. We will compute the number list:

S = (Ek(0), . . . , Ek(N − 1));

2. To encrypt the messagem ∈ ZN we will mapm to the position of Ek(m)
in the sorted list.

This method is provably secure but requires O(N) encryption operations
at the initial step and O(N) memory to store the table.

2.5 Cycle walking

If the domain Dom has the property that |Dom|2n ≤ 1 is close to 1 for some
standard block size n (for instance, n = 64 or n = 128), then the following
approach works:

1. For m ∈ Dom compute c← Ek(m).

2. If c ∈ Dom, then m maps to c.

3. If c 6∈ Dom, then c← Ek(c) and go to step 2.

It can be shown that the algorithm is provably secure ([11]). The expected
number of encryption operations (before one obtains c ∈ Dom) is determined
by the quantity 2n

|Dom| .

2.6 FNR and DTP algorithms

Cisco company proposed FNR algorithm (see [19]), based on the Feis-
tel cipher with two additional permutations. Protegrity company suggested
DTP algorithm ([20]). In [26] it was shown that:

– FNR is slightly worse than FF1 and FF3;

– DTP has serious weaknesses, which lead to a total break;

2.7 Techniques for tiny-size domains

The following methods for tiny-space domains with the size |Dom| = N
are mentioned in [13]:

1. Exhaustive permutation numbering: each key k is mapped to a number
between 1 and N !, the point x ∈ Dom is mapped to πk(x).
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2. Knuth-Fisher-Yates shuffle: to shuffle the array of numbers one has to
repeatedly choose an element from a decreasing prefix and moving it to
the end. The element x ∈ Dom = {1, . . . , N} is mapped into the position
of x in the shuffled array.

3. Prefix encryption method mentioned earlier 2.4

Each of the methods is provably secure, but encryption time (or set-up
time) is proportional to the size of the domain, hence the limitation on the
size.

3 Summary of cryptanalysis of proposed algorithms

This section summarizes cryptanalysis on FF1, FF3, and generic algo-
rithms based on Feistel networks.

Currently, there are two types of attacks on FPE algorithms:

– The first type of cryptanalytic attacks exploits the wrong design of tweak
mixing (specific for FF3). In these attacks, the adversary adaptively
chooses plaintexts to be encrypted on two selected t1, t2 ∈ Twk.

– The second type uses the intrinsic feature of Feistel network over small
domains. The general idea is that the proposed number of rounds is not
enough to hide the plaintext statistics: there is a slight bias after one
round of Feistel network, which can be boosted using different tweaks
t ∈ Twk for the same message. This asymmetry can be exploited to
mount the practical distinguishing attack (or even key recovery).

The specificity of attacks on FPE algorithms is that the number of re-
quired texts formally exceeds the domain size, but in fact only a minimal
(even constant) number of texts are required for each t ∈ Twk. This fact
was not reflected in the original adversary model [12]. All the proofs were
obtained in a weaker model, in which the adversary cannot make the number
of requests to the oracle that exceeds the domain size.

The following notation in table 3 is used:

n — bitsize of one part of the message m ∈ Dom, i.e. Dom = {0, 1}2n;

N = 2n — number of different parts of the message;

r — number of rounds in Feistel network;

K. Tsaregorodtsev 88



Format-Preserving Encryption: a Survey

The most recent attack ([28]) has a significant impact on FEA-type ci-
phers. The results are presented in table 2.

Algorithm Resourses Threat
FF1, klen = 128, r = 10 q = 260, t = 270 Distinguishing attack
FF3-1, klen = 128, r = 8 q = 280, t = 2100 Distinguishing attack
FEA-2, klen = 128, r = 18 q = 280, t = 284 Distinguishing attack
FEA-2, klen = 256, r = 24 q = 280, t = 284 Distinguishing attack
FEA-1, klen = 192, r = 14 q = 236, t = 2136 Key recovery
FEA-1, klen = 256, r = 16 q = 248, t = 2136 Key recovery
Generic Feistel network q = 2n(r−4), t = 2n(r−3) Distinguishing attack

Table 2: Recent attack on FPE algorithms [28]

Work Resources Threat Comments
2004,
[3]

qt = N r−2 encryptions
queries on different t ∈ Twk,
two messages per tweak
(qe = 2),
time complexity t ≈ qtqe

Distinguisher
generic
Feistel
network

Attack distinguishes Feistel net-
work output from a random
string

2015,
[23]

qt encryptions queries on
different t ∈ Twk for the
same m ∈ Dom,
qe = 1,
time complexity t ≈ 2128

q

Subkey re-
covery for
some tweak,
FF2

The attack is not adaptive, the
knowledge of m is required

2016,
[24]

qt = O(n · N r−2) encryp-
tions queries on different
t ∈ Twk,
3 messages per tweak
(qe = 3),
time complexity t ≈ qt

Message
recovery,
generic
Feistel
network

1. The adversary knows cipher-
texts of three different messages
(x, x′, x∗) under tweaks t1, . . . , tq,
and recovers the message x.
2. The message x′ is fully known
to the adversary but unrelated to
x.
3. x∗ and x share a common right
side; only the left side of x∗ is
known to the adversary.
4. The attack is not adaptive;
only the knowledge of plaintexts
is required.
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2017,
[25]

qe = O(N 11
6 ) encryp-

tion queries on two tweaks
t1, t2 ∈ Twk (qt = 2);
time complexity t = O(N5)

Entire code-
book recov-
ery for t1, t2
for FF3.

1. The adaptive choice of mes-
sages is required.
2. We assume that the adversary
can control the choice of t ∈ Twk.
The attack does not work if the
adversary does not have complete
control over t. Partial truncation
of the tweak can be applied (as
shown in the [25]) to prevent this
threat.

2018,
[26]

qt = O(N r−4(n ·N + p))
different tweaks,
Number of plaintexts per
tweak: qe = O(n ·N),
time complexity
t = O(n ·N r−2(n+ p))

Recovery
of multiple
messages
m1, . . . ,mp

generic
Feistel
network

1. The attack is not adaptive;
only the knowledge of plaintexts
is required.
2. It is assumed that the ad-
versary knows ciphertexts for τ
known plaintexts x1, . . . xτ and
for p messages (plaintexts) under
attack m1, . . .mp for q different
tweaks.
3. It is assumed that right halves
of x1, . . . , xτ comprise all possible
right halves of messages.
4. The correlation between
x1, . . . , xτ and m1, . . .mp is not
required.

2019,
[27]

qe = O(N 11
6 ) encryp-

tion queries on two tweaks
t1, t2 ∈ Twk, qt = 2;
time complexity
t = O(N 17

6 )

Entire code-
book recov-
ery for t1, t2
for FF3.

1. The attack is the strengthened
version of [25]
2. The adaptive choice of mes-
sages is required.
3. The attack does not work if the
adversary cannot obtain full con-
trol over t.

Table 3: Attacks on FPE algorithms

4 Quasigroup based FPE

In this section, we describe one possible approach to FPE. Due to the
cycle-walking technique, we can limit our consideration to domains of the
particular form Dom = {0, 1}n for some «small» n.

Let Q be the quasigroup over the set Dom. We will use the following
method: given the key k ∈ Keys and the tweak t ∈ Twk, we will first use some
keyed pseudorandom generator PRG (see [5, 8]) to produce a sequence of
«random-looking» and «independent» elements qi ∈ Q, i = 1, . . . , λ, where
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λ is the parameter of the scheme and is chosen based on the quasigroup
structure (it is selected in such a way that the distinguishing problem (as it
is stated in 1.4) is hard to solve).

Then we will encrypt our message m ∈ Msg using the quasigroup opera-
tion. Some possible variants might be:

m→ Lqλ(. . . Lq1(m) . . .) = qλ ◦ (. . . ◦ q2 ◦ (q1 ◦m) . . .), (1)

m→ Rqλ(. . . Rq1(m) . . .) = (. . . (m ◦ q1) ◦ q2 . . .) ◦ qλ, (2)

m→ Dqλ(. . . Dq1(m) . . .). (3)

In equation (3), we are using the following agreement: the operation Dqi

equals Lqi if i-th bit of output of some random generator (for instance, based
on values k and t) is equal to 0, and Rqi otherwise. In this case, equations (1)
and (2) are special cases of (3). We describe several possible variants of the
scheme because only left (or only right) multiplication might be vulnerable
to attacks.

Now we will describe the variant of scheme (1) in more detail. We will
present a series of Experiments, where Experiment 0 is the original cryptosys-
tem, and the final Experiment is (semantically) Left Experiment from 1.2.
Our goal is to show that (under assumptions on PRG and 1.4) the scheme is
secure in the TPRP model (as it is stated in Experiment 1.2).

Theorem 1. Let qt be the maximal number of different tweaks, qe be the max-
imal number of encryption queries per tweak, t is the number of operations
(running time). Then:

InSecTPRP (t, qt, qe) ≤

≤ InSecPRG(qt, t+ λqtqe) + qtInSec
PRP
Q (qe, t+ (1 + λ2)qeqt).

Proof. Denote by Lqλ...q1(m) the following operation:

Lqλ...q1(m) = qλ ◦ (. . . ◦ q2 ◦ (q1 ◦m) . . .).

The first experiment Exp0 is the original cryptoalgorithm. The transition
from Exp0 to Exp1 is done via replacement of PRG by random choice of
qi ∈ Q. The last transition from Exp1 to Exp2 is done by replacing operation
Lqλ...q1(m) with operation πt(m).
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Algorithm 5 Exp0

1: function Init
2: k ←R Keys
3: qs = {}
4: function O(t,m)
5: if t 6∈ qs.keys then
6: q1, . . . , qλ ←R PRGk(t)
7: qs[t] = (q1, . . . , qλ)

8: q1, . . . , qλ ← qs[t]
9: res← Lqλ...q1(m)

10: return res
11: function Fin(b′)
12: return b′

Algorithm 6 Exp1

1: function Init
2: k ←R Keys
3: qs = {}
4: function O(t,m)
5: if t 6∈ qs.keys then
6: q1, . . . , qλ ←R Q
7: qs[t] = (q1, . . . , qλ)

8: q1, . . . , qλ ← qs[t]
9: res← Lqλ...q1(m)

10: return res
11: function Fin(b′)
12: return b′

Algorithm 7 Exp2

1: function Init
2: qs = {}
3: function O(t,m)
4: if t 6∈ qs.keys then
5: πt ←R SQ
6: qs[t] = πt

7: πt ← qs[t]
8: res← πt(m)
9: return res

10: function Fin(b′)
11: return b′

For any adversary A, we can write the following equality:

AdvTPRPQ (A) = P[Exp0(A)→ 1]− P[Exp2(A)→ 1] =

=
(
P[Exp0(A)→ 1]− P[Exp1(A)→ 1]

)
+

+
(
P[Exp1(A)→ 1]− P[Exp2(A)→ 1]

)
.

Then we can bound from above each of the brackets.
The first difference is small due to the fact that PRG is a good pseu-

dorandom generator. Namely, if A can distinguish between Exp0 and Exp1

with high probability, then it can be used to attack pseudorandomness of
PRG. We can create an adversary B, who runs A as a subroutine. When
A asks for encryption of m under fresh tweak t, B is calling his oracle on
the input t and gets values q1, . . . , qλ. He saves it in the memory, computes
res← Lqλ...q1(m) and gives it to A. At the end of the experiment B outputs
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the resulting bit of A. The running time of B is the running time of A plus
the time needed for simulation: tB ≤ tA+λqeqt (we assume here for simplicity
that operation a ◦ b can be done in one step). The number of oracle queries
qB = qt. Thus, we obtain the following estimate:

(
P[Exp0(A)→ 1]− P[Exp1(A)→ 1]

)
≤ InsecPRG(qt, t+ λqtqe)

The second transition can be done via standard hybrid argument tech-
nique ([9]). We have at most qt queries for the fresh (q1, . . . , qλ), and for each
tuple (q1, . . . , qλ) we ask no more than qe encryption queries. We will replace
all queries of encrypting m on i-th tweak ti (i.e. all Lqλ...q1(m), qi are chosen
uniformly from Q) by π(m) (where π is chosen uniformly from SQ).

If there is an adversary A, who can distinguish this replacement, then we
can use A to construct B, who will attack PRP-property of Lqλ...q1(·):

(mt1
1 , t1) (m

t2
1 , t2) . . . (m

ti−1

1 , ti−1) (mti
1 , ti) (m

ti+1

1 , ti+1) . . . (m
tqt
1 , tqt)... ... ...

Simulated via choosing Oracle Simulated via choosing
(q1, . . . , qλ)←R Q queries πt ←R SQ

Running time ≤ λ2qeqt qB ≤ qe Running time ≤ qeqt

The running time of B is the time of A plus the time to simulate all other
environment (except for the queries on tweak ti):

tB ≤ tA + λ2qeqt + qeqt

(we assume here for simplicity that operation a ◦ b and random choice of
element q ←R Q can be done in one step). The number of oracle queries
qB ≤ qe. Thus, we obtain the following estimate:

P[Exp1(A)→ 1]− P[Exp2(A)→ 1] ≤ qt · InSecPRPQ (qe, t+ (1 + λ2)qeqt).

Сombining both estimates we get the statement of the theorem.

We stress out that currently there are no concrete estimates of the hard-
ness of the problem 1.4, hence no concrete bounds on InSecTPRP (t, qt, qe).

5 Conclusion

This article gives a survey on the FPE, suggested algorithms (FF1-FF3,
FEA-2), and attacks on them. We propose a new cryptoalgorithm based on
quasigroup operations.

Further areas of research may include:
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1. Consideration of specific classes of quasigroups as a basis for proposed
cryptosystem (with an emphasis on the polynomially complete quasi-
groups);

2. Estimating the hardness of problem formulated in 1.4 based on existing
results on NP-completeness of problem of deciding whether the equation
has the solution over polynomially complete quasigroup [32];

3. Implementing the cryptosystem over specific quasigroups and estimating
statistical properties of resulting algorithms;
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Abstract

The work is dedicated to the theoretical substantiation of a directed search for
8-bit permutations with given cryptographic properties: differential uniformity and
nonlinearity. The statements about the partition into equivalence classes of the set
of vector Boolean functions derived using generalized construction are formulated
and proved. The statements that allow one to reject functions from equivalence
classes either by a high differential uniformity or since they are not permutations
are justified. The results of this work can be used to construct permutations with
specified cryptographic properties, ensuring the resistance of encryption algorithms
against the linear and differential methods of cryptographic analysis.

Keywords: Boolean function, permutation, differential uniformity.

Introduction

Vector Boolean functions (S-boxes) are one of the main primitives of
modern symmetric ciphers that provide Shannon’s confusion [1]. S-boxes
must have cryptographic properties that guarantee the impossibility of using
differential and linear methods of cryptographic analysis. Thus, S-boxes with
high nonlinearity can ensure the cipher resistance to linear cryptographic
analysis, since they can not be effectively replaced by a linear analog of
the same or less dimension. Moreover, S-boxes with the minimum possible
differential uniformity are used for constructing cryptographic algorithms
that are resistant to differential analysis.

Construction of n ≥ 8 bits permutations with given cryptographic prop-
erties is a difficult and urgent task, which is confirmed by a large number of
the latest scientific publications and reports at all-Russian and international
conferences (e.g. [2, 3, 4, 5, 6, 7, 8, 9, 10]) dedicated to this theme. The
known approaches to constructing permutations can be divided into explicit
algebraic methods, pseudo-random generation, and heuristic algorithms (see,
e.g., an overview in [2]).
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The idea of a combination of the above approaches seems promising, in
particular, the use of functional circuits to derive permutations using func-
tions of lower dimension (see, e.g., an overview in [9]). Moreover, such schemes
usually have some parameters, the appropriate choice of which can improve
the cryptographic properties of constructed permutations.

Thus, in the work [4] a new construction of 8-bit S-boxes with nonlinearity
up to 108, differential uniformity 6 or 8, algebraic degree 7, and algebraic
immunity 3 is proposed. It utilizes an inversion in the field F24 and two
arbitrary permutations of the space V4.

In articles [5, 6] new schemes based on the well-known Feistel and Lai-
Massey structures for generating permutations of dimension n = 2k, k > 2
are presented. The proposed constructions use inversion in the field F2k , an
arbitrary k-bit non-bijective function (which has no pre-image for 0), and
any k-bit permutation. New 8-bit permutations without fixed points, which
have the same strong combination of cryptographic properties as in [4] are
introduced.

In the paper [7] new classes of 8-bit permutations based on the butterfly
structure are proposed. It is shown that there are at least 36 new construc-
tions for permutations that have the nonlinearity 108, differential uniformity
6, algebraic degree 7, and graph algebraic immunity 3.

The papers [9, 10] extend the methods of constructing permutations from
[7] to the case of an arbitrary vector space V2m and theoretically substanti-
ate the experimental results obtained in [7]. TU -decomposition described in
[11, 12] is used as a functional circuit. Necessary and, in some cases, sufficient
conditions for the resulting permutation to have given nonlinearity, algebraic
degree, and differential uniformity are proved. Also, new generalized con-
struction of vector functions is described. It utilizes monomial permutations
as the basic constituent elements. In the case m = 4, 768 tuples of parame-
ters of the generalized construction were experimentally found, using which,
with the correct choice of auxiliary 4-bit permutations, 8-bit permutations
with nonlinearity 108, differential uniformity 6, and algebraic degree 7 can
be obtained.

The purpose of this work is the theoretical substantiation of a directed
search for 8-bit permutations with given cryptographic properties: differential
uniformity and nonlinearity, among vector Boolean functions obtained using
a generalized construction that admits TU -decomposition.

This paper is structured as follows. Section 1 contains the main defini-
tions and notations used in the work. In Section 2 we consider a generalized
construction of (2m, 2m)-function and show that this construction admits
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TU -decomposition. In Section 3 we introduce an equivalence relation on the
set of all vector Boolean functions defined by generalized construction. Each
equivalence class is determined by a tuple of exponents of monomial permu-
tations. In Section 4, we prove several statements that allow us to reject the
equivalence classes of 8-bit S-boxes that do not contain permutations with
a low differential uniformity. Non-rejected classes can be used to generate
6-uniform 8-bit permutations with 108 nonlinearity.

1 Definitions and Notations

Let Vn be n-dimensional vector space over the field of two elements F2,
V ×n = Vn \ {0}. The finite field of 2n elements is denoted by F2n, where
F2n = F2[x]/g(x), g(x) is an irreducible polynomial of degree n over the
field F2. We denote by Z/2n the ring of the integers modulo 2n. There is a
bijective mapping Z/2n → Vn that associates an element of the ring Z/2n
with its binary representation, and a bijective mapping Vn → F2n that assigns
a binary string to an element of the field F2n. The operations of addition
and multiplication in the field F2n are denoted by the signs “+” and “·”,
respectively.

It is well known [15] that there are only three irreducible polynomials of
degree 4 over the field F2. For definiteness, we will further work in the field
F24 = F2[x]/x4 + x+ 1.

Concatenation of the vectors a ∈ Vn, b ∈ Vm is denoted by a‖b ∈ Vn+m.
The dot product of two vectors a, b ∈ Vn is an element of the field F2, cal-
culated by the formula 〈a, b〉 = an−1bn−1 + . . . + a0b0 where addition and
multiplication are carried out in the field F2. Note that the direct product of
vector spaces Vm × Vm can be associated with V2m.

Definition 1. The vector Boolean (n,m)–function is a mapping Vn → Vm.
Permutation over Vn is a bijective (n, n)–function.

The symmetric group of all permutations of the space Vn is denoted by S(Vn).
Monomial permutations of the field F2m are permutations of the form xd,

where d is a positive integer such that gcd(d, 2m − 1) = 1. In this case, only
the values d < 2m− 1 can be considered. In particular, for m = 4, monomial
permutations are obtained for d ∈ {1, 2, 4, 7, 8, 11, 13, 14}. Moreover, linear
monomial permutations of the field F24 are xd for d ∈ {1, 2, 4, 8} [15].
Definition 2. Let F be (n,m)-function, 1 ≤ t ≤ min(n,m), x1, y1 ∈ Vt,
x2 ∈ Vn−t, y2 ∈ Vm−t, x = x1‖x2, and y = y1‖y2. Let T (x1, x2) be (n, t)-
function such that when fixing an arbitrary x2 the function T be a bijection
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with respect to the variable x1, and U be (n,m − t)-function. Then if the
function F is represented as:

F (x) = F (x1‖x2) = (T (x1, x2), U(x2, T (x1, x2))), (1)

then such a representation of the function F will be called TU -decomposition
[12].

Definition 3. The differential uniformity of (n,m)-function F is defined as

δF = max
a∈V ×n , b∈Vm

δF (a, b),

where δF (a, b) = |{x ∈ Vn |F (x+ a) + F (x) = b}|.
The use of functions with a lower differential uniformity in the synthesis of
cryptographic algorithms makes it possible to guarantee resistance against
the differential method of cryptographic analysis.

Definition 4. The nonlinearity NF of the (n,m)-function F is a value cal-
culated by the formula

NF = 2n−1 − 1

2
max

a∈Vn,b∈V ×m

∣∣∣∣∣
∑

x∈Vn
(−1)〈a,x〉+〈b,F (x)〉

∣∣∣∣∣ .

The use of functions with greater nonlinearity in the synthesis of crypto-
graphic algorithms makes it possible to guarantee resistance against the lin-
ear method of cryptographic analysis.

2 Generalized construction of (2m, 2m)-functions

Let (2m, 2m)-function F (x1, x2) = y1‖y2, where x1, x2, y1, y2 ∈ Vm, be
given by the following generalized construction, first introduced in [8],

y1 = G1(x1, x2) =

{
xα1 · xβ2 , x2 6= 0,
π̂1(x1), x2 = 0,

y2 = G2(x1, x2) =

{
xγ1 · xδ2, x1 6= 0,
π̂2(x2), x1 = 0.

(2)

Hereinafter, one should go from the vectors of the space Vm to the correspond-
ing elements of the field F2m and perform exponentiation and multiplication
in the field F2m. Moreover, in (2), π̂1, π̂2 are permutations over Vm. Without
loss of generality, we assume that the following equalities hold

π̂1(0) = 0, π̂2(0) = 0. (3)
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The parameters of the function (2) are the tuple of indexes (α, β, γ, δ) of
monomial permutations and permutations π̂1, π̂2.

For the system (2) to specify a bijective mapping under the condition (3),
it is sufficient that the system

{
G1(x1, x2) = b1,

G2(x1, x2) = b2,

has solutions for arbitrary b1, b2 ∈ Vm.

Statement 1. The construction (2) admits TU -decomposition (1).

Proof. Indeed, put T (x1, x2) = G1(x1, x2), note that for a fixed arbitrary
x2 the function T is a bijection with respect to the variable x1, then

U(x2, T (x1, x2)) =





(T (x1, x2))
λ · xµ2 , x2 6= 0, x1 6= 0,

π̂2(x2), x1 = 0,

0, x2 = 0,

where αλ = γ mod 2m − 1, µ = δ − βλ mod 2m − 1. �
Note that the GOST 34.12-2018 (Kuznyechik) permutation and the only

known (up to CCZ-equivalence) 2-uniform permutation of the space Vn for
even n also allow the TU -decomposition. The study of constructions that
allow TU -decomposition seems to be important.

We can assume that δF > 8 is a large value of the differential uniformity
for the case 2m = 8 since 8-bit permutation with δF = 8 can be obtained by
pseudo-random search [2, 16, 17].

3 On equivalence in the class of functions derived using
a generalized construction

In this section, we propose the principle of partitioning the set of functions
derived using a generalized construction into disjoint equivalence classes. The
corresponding statement is proved. It is shown how to obtain the entire equiv-
alence class from one of its representatives.

Let us present a lemma from the work [10, Lemma 1] for the case of
functions that are obtained using the construction (2).

Lemma 1. Let (2m, 2m)-function F be obtained using the construction (2),
and a1, a2, b1, b2 ∈ Vm, then δF (a1‖a2, b1‖b2) is greater than or equal to the
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number of solutions to the system of equations
{

(x1 + a1)
α · (x2 + a2)

β + xα1 · xβ2 = b1,

(x1 + a1)
γ · (x2 + a2)

δ + xγ1 · xδ2 = b2,
(4)

with the following constraints on the values of the variables x1 and x2

x2 6= 0, x2 6= a2, x1 6= 0, x1 6= a1. (5)

Proof of the lemma is obvious since under the constraints (5) the equa-
tions defining the function have the form (4). �

The following statement is a generalization of the corresponding state-
ment from the work [10].

Statement 2. The system (4) with a tuple of parameters (α, β, γ, δ), where
xα, xβ, xγ, and xδ define monomial permutations, has the maximum num-
ber of solutions (x1, x2), x1, x2 ∈ F2m, satisfying the conditions (5), for
a1, a2, b1, b2 ∈ F2m (a1 and a2 do not vanish simultaneously), that is co-
incide with the maximum number of solutions of systems of the form (4)
under constraints (5) with the following tuples of parameters

(α · d1, β · d1, γ · d2, δ · d2) mod 2m − 1,

(α · d1, β · d2, γ · d1, δ · d2) mod 2m − 1,

(γ, δ, α, β), (β, α, δ, γ), (δ, γ, β, α),

where xd1, xd2 define linear permutations.

Proof. Let us consider the following system
{

(x1 + a1)
d1·α · (x2 + a2)

d1·β + xd1·α1 · xd1·β2 = bd11 ,

(x1 + a1)
d2·γ · (x2 + a2)

d2·δ + xd2·γ1 · xd2·δ2 = bd22 ,
(6)

where a1, a2, b1, b2 ∈ F2m and a1, a2 do not vanish simultaneously. Note that,
because of xd1 and xd2 are the bijective mappings, if b1 and b2 take all values
from the field F2m, then bd11 , bd22 also take all values from this field. Taking
into account the linearity of the mappings xd1 and xd2, we write the system
(6) in the form

{
((x1 + a1)

α · (x2 + a2)
β + xα1 · xβ2 )d1 = bd11 ,

((x1 + a1)
γ · (x2 + a2)

δ + xγ1 · xδ2)d2 = bd22 .

Again, due to the bijectivity of the functions xd1 and xd2, this system is
equivalent to the system (4). Thus, a system with a tuple of parameters
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(α · d1, β · d1, γ · d2, δ · d2) mod 2m − 1 has the maximum number of
solutions that satisfy the conditions (5), which coincides with the maximum
number of solutions of the system (4).

Further, consider the following system{
(x1 + a1)

d1·α · (x2 + a2)
d2·β + xd1·α1 · xd2·β2 = b1,

(x1 + a1)
d1·γ · (x2 + a2)

d2·δ + xd1·γ1 · xd2·δ2 = b2,
(7)

where a1, a2, b1, b2 ∈ F2m and a1, a2 do not vanish simultaneously. Taking
into account the linearity of the mappings xd1 and xd2, we write the system
(7) in the form

{
(xd11 + ad11 )α · (xd22 + ad22 )β + (xd11 )α · (xd22 )β = b1,

(xd11 + ad11 )γ · (xd22 + ad22 )δ + (xd11 )γ · (xd22 )δ = b2.

Making the replacement xd11 = y1, xd22 = y2, ad11 = a1, and ad22 = a2, we get a
system of the form (4){

(y1 + a1)
α · (y2 + a2)

β + yα1 · yβ2 = b1,

(y1 + a1)
γ · (y2 + a2)

δ + yγ1 · yδ2 = b2.

That is why, a system with a tuple of parameters (α · d1, β · d2, γ · d1, δ ·
d2) mod 2m − 1 has the maximum number of solutions that satisfy the
conditions (5), which coincides with the maximum number of solutions of
the system (4).

The systems of the form (4) with tuples of parameters (α, β, γ, δ),
(γ, δ, α, β), (β, α, δ, γ), and (δ, γ, β, α) coincide up to a change in the order
of writing equations or renaming variables. �

Further, throughout this section, we will consider the case m = 4.
Remark 1. Note that the sets {1, 2, 4, 8} and {7, 11, 13, 14} are closed under
multiplication by d ∈ {1, 2, 4, 8} modulo 15. Then, by virtue of Statement 2,
we obtain that 84 = 212 = 4096 of all possible parameter tuples (α, β, γ, δ)
of the functions from the family (2) are split into disjoint equivalence classes
with the same maximum number of solutions of the system (4) under the
constraints (5) in each class. A distinct equivalence class can be obtained
from one of its representatives (α, β, γ, δ), by composing different tuples from
the following ones

(α · d1 · d3, β · d1 · d4, γ · d2 · d3, δ · d2 · d4) mod 2m − 1, (8a)
(γ · d1 · d3, δ · d1 · d4, α · d2 · d3, β · d2 · d4) mod 2m − 1, (8b)
(β · d1 · d3, α · d1 · d4, δ · d2 · d3, γ · d2 · d4) mod 2m − 1, (8c)
(δ · d1 · d3, γ · d1 · d4, β · d2 · d3, α · d2 · d4) mod 2m − 1, (8d)
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where m = 4, d1, d2, d3, d4 ∈ {1, 2, 4, 8}.

Statement 3. There are 64 different tuples of the form

(d1 · d3, d1 · d4, d2 · d3, d2 · d4) mod 2m − 1, (9)

where m = 4, d1, d2, d3, d4 ∈ {1, 2, 4, 8}.

Proof. At the beginning, let us put d1 · d3 = 1, this is possible in four
cases: d1 = d3 = 1, or d1 = d3 = 4, or d1 = 2, d3 = 8, or d1 = 8, d3 = 2. Note
that in the first case tuples of the form (1, d4, d2, d2 · d4) mod 2m − 1 are
specified. Taking into account that d2, d4 ∈ {1, 2, 4, 8}, we get 16 different
tuples. In the remaining three cases, the values d1 and d3 generate tuples
that coincide with these 16 already considered ones. Similarly, we obtain 16
different tuples for the cases d1 · d3 = 2, d1 · d3 = 4, d1 · d3 = 8. This implies
the validity of the statement. �

Thus, by virtue of Statement 2, the set of (8, 8)-functions derived using
the generalized construction (2) is divided into equivalence classes in con-
formity with the tuples of parameters (α, β, γ, δ) with the same maximum
number of solutions to (4), (5) for functions from the same class. Moreover,
due to Lemma 1, functions from the same class have the same lower bound
for differential uniformity. The auxiliary Statement 3 that is proven in this
section we will use to calculate the cardinality of each equivalence class.

4 Justification of criteria for rejection of vector Boolean
functions derived using a generalized construction

In this section, we have proved statements that allow us to reject functions
given by the construction (2), either by the high differential uniformity or
by the fact that they are not permutations. Moreover, by the virtue of the
statements substantiated in the previous and present sections, the conclusion
about all functions from the equivalence class is based on the analysis of only
one of its representatives.

4.1 On differential uniformity

This paragraph is devoted to rejection of (2m, 2m)-functions (2), in the
case of m = 4, by differential uniformity 2m − 2 = 14 and higher. Moreover,
some of the statements below are also true in the general view (without
restriction m = 4), which will be noted in their wording.
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Proposition 1. Let F be a (2m, 2m)-function given by the construction (2).
If xα, xγ define linear permutations, then δF ≥ 2m − 2.

Proof. We seek x1 6= 0, x2 6= 0. Consider the case a2 = 0, then the
system of equations (4) can be written in the form

{
xβ2 ((x1 + a1)

α + xα1 ) = b1,

xδ2((x1 + a1)
γ + xγ1) = b2.

Since the permutations xα and xγ are linear, we obtain
{
xβ2 (xα1 + aα1 + xα1 ) = b1,

xδ2(x
γ
1 + aγ1 + xγ1) = b2,
{
xβ2 · aα1 = b1,

xδ2 · aγ1 = b2.
(10)

Further, we fix arbitrarily a1, b1 ∈ F2m, a1 6= 0, b1 6= 0. Because of the
bijectivity of the mapping xβ from the first equation of the system (10)
we find unique x2 6= 0 and substitute it into the second equation, thereby
defining b2. Thus, for fixed permissible values of a1, b1, b2, the system (10)
is compatible with respect to x2, while x1 can take any admissible values.
Therefore, taking into account the constraints x1 6= 0, x1 6= a1, we obtain
that the number of solutions of the system is at least 2m−2. Using Lemma 1,
we get that δF ≥ 2m − 2. �

Remark 2. By virtue of Proposition 1 and Statement 2 in the case m = 4
we have 2 · 42 · 82− 44 = 1792 tuples of parameters (α, β, γ, δ) corresponding
to (8, 8)-functions from the family (2) with a large differential uniformity.

Proposition 2. Let F be a (2m, 2m)-function given by the construction (2).
If α = β = γ = δ, then δF ≥ 2m − 2.

Proof. We seek x1 6= 0, x2 6= 0. Let a2 = 0, b1 = b2 = 1, then the system
of equations (4) is reduced to one equation

xα2 ((x1 + a1)
α + xα1 ) = 1. (11)

Since the mapping xα is bijective, if x2 takes all 2m − 1 values from the
multiplicative group of the field F2m, then the inverse element to xα2 , which
we denote c, also takes all values from the multiplicative group. Thus, the
equation (11) can be written as

(x1 + a1)
α + xα1 = c, (12)
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where c ∈ F2m\{0}. It is known [18, Sec. 4] that the total number of solutions
to the equation (12) is equal to 2m, where a1 6= 0 is a fixed value and c takes
all 2m − 1 values from the multiplicative group of the field F2m . Therefore,
taking into account the constraints x1 6= 0, x1 6= a1 (5), the number of
solutions of the original system is no less than 2m − 2. By virtue of the
Lemma 1 the same estimation is true for δF . �
Remark 3. By virtue of Proposition 2 and Statements 2,3 in the case m = 4
we have 64 tuples of parameters (α, β, γ, δ) that were not previously consid-
ered in Proposition 1. These tuples define (8, 8)-functions from the family
(2) with a large differential uniformity. The representative of this equiva-
lence class is (7, 7, 7, 7).

Proposition 3. Let F be a (8, 8)-function given by the construction (2). If
α = 11, β = γ = 1, δ = 13, then δF ≥ 14.

Proof. Let a1 = a2 = x ∈ F24, b1 = 0, b2 = x3 +1 ∈ F24, then the system
of equations (4) can be written in the form

{
(x1 + x)11 · (x2 + x) + x11

1 · x2 = 0,

(x1 + x) · (x2 + x)13 + x1 · x13
2 = x3 + 1.

(13)

From the first equation in (13) it follows that x1 6= 0, x2 6= 0, x1 6= x = a1,
x2 6= x = a2, in addition, (x1 + x)11 · (x2 + x) = x11

1 · x2, therefore

(x1 + x) · (x2 + x)11 = x1 · x11
2 . (14)

Substituting the expression for the left-hand side from (14) into the second
equation of the system (13), we obtain the chain of equations

x1 · x11
2 · (x2 + x)2 + x1 · x13

2 = x3 + 1⇔ x1 · x11
2 · (x2

2 + x2 + x2
2) = x3 + 1⇔

⇔ x1 · x11
2 · x2 = x3 + 1⇔ x1 · x11

2 = (x3 + 1) · x13 ⇔ x1 · x11
2 = x12.

Hence, taking into account the conditions x1 6= x, x2 6= x, we get 14 solutions
(x1, x2). By Lemma 1, we obtain that δF ≥ 14. �
Remark 4. For the representative (α, β, γ, δ) = (11, 1, 1, 13) all different
tuples of its equivalence class can be obtained by the formulas (8a) and (8b),
since the formulas (8c) and (8d) will give the same tuples. Indeed, the tuple
of parameters (13, 1, 1, 11) in (8d) is obtained from (11, 1, 1, 13) in (8a) for
d1 = 2, d2 = d3 = 4, d4 = 8, the tuple (1, 11, 13, 1) in (8c) is produced from
(1, 13, 11, 1) in (8b) for d1 = 2, d2 = d4 = 1, d3 = 8. Hence, by virtue of
Proposition 3 and Statements 2,3 we get 128 tuples of parameters (α, β, γ, δ)
corresponding to (8, 8)-functions from the family (2) with a large differential
uniformity.
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Proposition 4. Let F be a (8, 8)-function given by the construction (2). If
α = 7, β = γ = 1, δ = 7, then δF ≥ 14.

Proof. Let a1 = a2 = a ∈ F24, a 6= 0, b1 = b2 = b ∈ F24, b 6= 0,
x1 = x2 6= 0, then the system of equations (4) can be written in the form

{
(x1 + a)7 · (x1 + a) + x7

1 · x1 = b,

(x1 + a) · (x1 + a)7 + x1 · x7
1 = b,

(15)

The system (15) is reduced to equation (x1 + a)8 + x8
1 = b, or

a8 = b. (16)

Let us choose a, b ∈ F24 satisfying the equality (16). Then, taking into account
the conditions (5) we get 14 solutions (x1, x1). By Lemma 1, we obtain that
δF ≥ 14. �
Remark 5. For the representative (α, β, γ, δ) = (7, 1, 1, 7) all different tu-
ples of its equivalence class can be obtained by the formulas (8a) and (8b),
since the tuples (β, α, δ, γ) and (δ, γ, β, α) in the formulas (8c) and (8d) are
identical to tuples (γ, δ, α, β) and (α, β, γ, δ) in (8b) and (8a) respectively.
Hence, by virtue of Proposition 4 and Statements 2,3 we have 128 tuples of
parameters (α, β, γ, δ) corresponding to (8, 8)-functions from the family (2)
with a large differential uniformity.

4.2 On the functions that are not permutations

This section is devoted to rejecting such (2m, 2m)-functions (2), which
can not be used to construct a permutation. The possibility of rejecting the
entire equivalence class by one of its representatives, which is not a bijection
for any values of auxiliary permutations π̂1, π̂2, is justified. Further, in the
case m = 4, a proposition to discard representatives of seven equivalence
classes by the indicated condition is proved.

Statement 4. Let F be a (2m, 2m)-function given by the construction (2)
with a tuple of parameters (α, β, γ, δ), where xα, xβ, xγ, and xδ define mono-
mial permutations. If F is not a bijection for any values of the permutations
π̂i(xi), i ∈ {0, 1}, then any (2m, 2m)-function from the family (2) with the
following tuples of parameters

(α · d1, β · d1, γ · d2, δ · d2) mod 2m − 1,

(α · d1, β · d2, γ · d1, δ · d2) mod 2m − 1,

(γ, δ, α, β), (β, α, δ, γ), (δ, γ, β, α),
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where xd1, xd2 define a linear permutation, is also not a bijection for any
values of the permutations π̂i(xi), i ∈ {0, 1}.

Proof. By the wording of the statement, the (2m, 2m)-function F from
the family (2) with parameters (α, β, γ, δ) is not a bijection for any val-
ues of the permutations π̂i(xi), i ∈ {0, 1}, that is, there are such values
x1, x2, x̃1, x̃2 ∈ F2m, x1, x2, x̃1, x̃2 6= 0, moreover, x1 6= x̃1 or x2 6= x̃2, that
the following equalities hold

y1 = G1(x1, x2) = xα1 · xβ2 = x̃α1 · x̃β2 = G1(x̃1, x̃2) = ỹ1,

y2 = G2(x1, x2) = xγ1 · xδ2 = x̃γ1 · x̃δ2 = G2(x̃1, x̃2) = ỹ2.

Then for the same values of x1, x2, x̃1, x̃2 for the tuples (α · d1, β · d1, γ ·
d2, δ · d2) mod 2m − 1 we have G1(x1, x2) = xd1α1 · xd1β2 = (xα1 · xβ2 )d1 =
(x̃α1 · x̃β2 )d1 = x̃d1α1 · x̃d1β2 = G1(x̃1, x̃2), and similarly, G2(x1, x2) = G2(x̃1, x̃2).

Based on the bijectivity of the mappings xd1, xd2, which define linear
permutations, for the tuples (α · d1, β · d2, γ · d1, δ · d2) mod 2m − 1 we
uniquely find values v1, v2, ṽ1, ṽ2 ∈ F2m, v1, v2, ṽ1, ṽ2 6= 0, such that vd11 = x1,
vd22 = x2, ṽd11 = x̃1, ṽd22 = x̃2. Then G1(v1, v2) = vd1α1 · vd2β2 = xα1 · xβ2 =
x̃α1 · x̃β2 = ṽd1α1 · ṽd2β2 = G1(ṽ1, ṽ2), and similarly, G2(v1, v2) = G2(ṽ1, ṽ2).

For tuples of parameters (γ, δ, α, β), (β, α, δ, γ), (δ, γ, β, α) the equal val-
ues y1 = ỹ1 and y2 = ỹ2 are obtained by the corresponding transposition of
arguments x1, x2, x̃1, x̃2. �

Proposition 5. (8, 8)-function F given by the construction (2) with the
parameters (α, β, γ, δ) from the list below 1) (7, 7, 7, 13), 2) (1, 7, 7, 7),
3) (4, 7, 7, 7), 4) (7, 7, 2, 2), 5) (1, 1, 7, 13), 6) (2, 7, 7, 7), 7) (7, 2, 2, 7), is
not a bijection for any values of the permutations π̂i(xi), i ∈ {0, 1}.

Proof. For the construction (2) with each of the seven specified tuples
of parameters from the wording of the proposition, it suffices to indicate the
values x1, x2, x̃1, x̃2 ∈ F24, x1, x2, x̃1, x̃2 6= 0, moreover, x1 6= x̃1 or x2 6= x̃2,
such that y1 = G1(x1, x2) = xα1 · xβ2 = x̃α1 · x̃β2 = G1(x̃1, x̃2) = ỹ1 and
y2 = G2(x1, x2) = xγ1 · xδ2 = x̃γ1 · x̃δ2 = G2(x̃1, x̃2) = ỹ2.

1. Let x1 = x ∈ F24, x2 = x3 + x2 = x6 ∈ F24, x̃1 = x̃2 = x3 + x2 + x =
x11 ∈ F24. Then y1 = x7

1 ·x7
2 = x7 ·(x6)7 = x4, y2 = x7

1 ·x13
2 = x7 ·(x6)13 = x10,

ỹ1 = x̃7
1 · x̃7

2 = (x11)7 · (x11)7 = x4, ỹ2 = x̃7
1 · x̃13

2 = (x11)7 · (x11)13 = x10.
For the other tuples, the proof can be carried out similarly; therefore, we

present only appropriate values x1, x2, x̃1, x̃2.
2. x1 = 1, x2 = x2 + x, x̃1 = x3 + x2 + x, x̃2 = x2 + x+ 1;
3. x1 = x3 + x2 + x, x2 = x, x̃1 = x, x̃2 = x3 + x2 + x;
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4. x1 = x2 = 1, x̃1 = x3 + x2 + x+ 1, x̃2 = x3;
5. x1 = x, x2 = x3, x̃1 = x3 + x2 + x, x̃2 = x2 + 1;
6. x1 = 1, x2 = x3 + x, x̃1 = x̃2 = x3 + x2 + x+ 1;
7. x1 = 1, x2 = x3 + x2, x̃1 = x3 + x2 + x+ 1, x̃2 = x3 + x. �

Corollary 1. (8, 8)-functions F from the family (2) with parameters
(α, β, γ, δ) from the equivalence classes generated by the tuples of param-
eters indicated in the Proposition 5, are not bijections for any values of the
permutations π̂i(xi), i ∈ {0, 1}.

Taking into account the Corollary 1, we reject all tuples of parameters
from the equivalence classes with representatives specified in the Proposi-
tion 5.
Remark 6. For the representative (α, β, γ, δ) = (7, 7, 7, 13) all different tu-
ples of its equivalence class can be obtained by the formula (8a), since the
formulas (8b), (8c), and (8d) will give the same tuples. Therefore, in the
equivalence class generated by the representative (7, 7, 7, 13), there are 64 tu-
ples of parameters. Further, the representatives of (4, 7, 7, 7), (1, 7, 7, 7) and
(2, 7, 7, 7) generate three classes with 256 tuples in each one (768 tuples in
total). Reasoning similarly to the Remark 5, we can show that the represen-
tatives of (1, 1, 7, 13), (7, 7, 2, 2) and (7, 2, 2, 7) generate equivalence classes
of 128 tuples in each one (384 tuples in total).

In Table 1 we show the representatives of the equivalence classes and the
reasons for rejection.
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№ The representative of the equiva-
lence class

The number
of elements

The reason for rejection

1 Generalized representative: 1792 δF ≥ 14, according to Statement 1
(α, β, γ, δ), where α, γ ∈ {1, 2, 4, 8}

2 (7,7,7,7) 64 δF ≥ 14, according to Statement 2

3 (11,1,1,13) 128 δF ≥ 14, according to Statement 3

4 (7,1,1,7) 128 δF ≥ 14, according to Statement 4

5 (7,7,7,13) 64
6 (1,7,7,7) 256
7 (4,7,7,7) 256 are not permutations,
8 (7,7,2,2) 128 according to Statement 5
9 (1,1,7,13) 128
10 (2,7,7,7) 256
11 (7,2,2,7) 128
12 (1,1,7,11) 256
13 (1,7,7,11) 256 are not rejected
14 (1,7,7,2) 128
15 (7,7,7,11) 128

Table 1: Summary table of the equivalence classes for m = 4.

Conclusion

The statements proved in this paper justify the rejection of 3328 tuples of
parameters (α, β, γ, δ) of (8, 8)-functions F defined by the construction (2)
due to the value δF ≥ 14 or because F is not a bijection. The 768 tuples
of parameters (α, β, γ, δ) remained unrejected, which are split by Statement
2 and Remark 1 into 4 equivalence classes with representatives (1, 1, 7, 11),
(1, 7, 7, 11) with 256 tuples in each class, (1, 7, 7, 2), (7, 7, 7, 11) with 128
tuples in each class (see table 1). In works [8, 10] it is indicated that using
these tuples of parameters with the correct choice of permutations π̂i(xi),
i ∈ {0, 1} 6-uniform permutations with nonlinearity 108 can be obtained.
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Abstract

The design of cryptographically strong S-Boxes is a wide studied field in sym-
metric cryptography. Several techniques to produce resilient substitutions have been
developed through the years having algebraic constructions the most interesting re-
sults. However the most representative solution of these constructions, the finite field
inversion, does not warranty total security against algebraic attacks, since the graph
algebraic immunity of such permutation is not optimal. In this paper is proposed a
combination of algebraic construction and heuristic method to produce a large set of
different 8-bit substitution boxes with optimal graph algebraic immunity, maximum
value of minimum algebraic degree and almost optimal values of nonlinearity and
differential uniformity for application to symmetric cryptographic schemes.

Keywords: Substitution boxes, cryptographic properties, heuristic method.

1 Introduction

The design of robust symmetric encryption algorithms is dependent of
its components, where substitution boxes often play the role of nonlinear
component of these encryption schemes. Hence, they are the target for nu-
merous attack which threaten the security and integrity of the data. Among
the most prominent attacks to S-Boxes figure linear, differential and alge-
braic cryptanalysis as well as side-channel attacks [1, 2, 3, 4, 5, 6, 7, 8]. In
consequence, cryptographic properties of S-Boxes attempt to measure the
resilience against such attacks. Section 2.2 is dedicated to explain briefly the
properties of balance, nonlinearity, differential uniformity, algebraic degree
and algebraic immunity. However, these are a fraction of all properties re-
lated to S-Boxes, which were not taken into account because they are not in
the scope of the present paper. Nonetheless, for the interested lecturer, here
is left a compilation of some other studied properties of S-Boxes: absolute
indicator and sum of squared indicator [9], strict avalanche criteria [10], bit
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independence criteria [11], SNR-DPA [12], transparency order [13], modified
transparency order [14], revisited tranparency order [15], confusion coefficient
variance [16], non-absolute indicator [17].

In literature survey, there exist three widely known methods to produce
substitution boxes. The first, pseudo-random generation, which include S-
Boxes generated through chaotic sequences [18, 19, 20, 21], produce permu-
tations with nonlinearity values up to 100 and differential uniformity equal
or greater than 8. The second method, monomial power functions over the
finite field F28, e.g. the finite field inversion used to construct the AES substi-
tution box [22], present the best known values of nonlinearity and differential
uniformity for any bijective substitution box (see Table 1). In addition, the
simple interpolation polynomial of substitution boxes obtained by such con-
structions allows efficient masking as a countermeasure to side-channel at-
tacks [23]. However, the monomial permutations on F28 present a major flaw,
the graph algebraic immunity of such S-Boxes is not optimal, i.e. a weakness
towards algebraic cryptanalysis. Finally, heuristic methods try to obtain sim-
ilar values of nonlinearity and differential uniformity as achieved by mono-
mial power functions, maintaining a random structure in the representation
of the S-Box, and often present optimal graph algebraic immunity. In addi-
tion, substitution boxes generated by heuristic methods present a complex
interpolation polynomial, therefore they are difficult to mask. Although the
aforementioned methods are commonly used to generate substitution boxes,
there is other mechanism to obtain good S-Boxes based on construct them
from smaller ones. The most representative papers in this area of research are
the works from Fomin [24] and de la Cruz [25]. In both papers, the authors
present an 8-bit permutation having nonlinearity 108, differential uniformity
6 and optimal values of algebraic degree and graph algebraic immunity. More-
over, such S-Boxes present the best nonlinearity and differential uniformity
known, up to date, for any 8-bit substitution box with minimum value of
algebraic degree equals to 7 and graph algebraic immunity equals to 3.

1.1 Contribution of this paper

The main contribution of this paper rest on the design of a new optimiza-
tion algorithm for efficient search of 4-bit substitution boxes which can be
part of construction schemes for generation of cryptographically strong 8-bit
permutations. Other contributions are made in the form of analysis on the
average values of significant properties of s-boxes produced by constructions
in [24, 25], as well as the proposal of a new butterfly structure based on
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Fomin’s A and B constructions from [24] and the consequent application of
the proposed optimization method to produce a quality set of 8-bit S-Boxes
for application in symmetric cryptographic algorithms.

2 Preliminaries

Let Vn the n-dimensional vector space over the finite field F2 with two
elements, 0 and 1. Hence, any binary vector x ∈ Vn is of the form {0, 1}n. We
denote F2n the finite field with 2n elements for some irreducible polynomial
λ(x) of degree n. Moreover, one can identify the vector space Vn with the field
F2n defining an isomorphism for a fixed basis (Section 2.1). We also refer to
substitution boxes as (n,m)-functions, S-Boxes or permutations (indicating
bijection).

2.1 Substitution boxes and their representations

An (n,m)-function f is a mapping from Vn into Vm, i.e., f : Vn → Vm.
When m = 1, f is called a Boolean function and if m > 1 the function f is
known as vectorial Boolean function or substitution box (S-Box).

Any substitution box S, can be defined as the vector S = (f1, f2, ..., fm)
where the Boolean functions fi : Vn → V1 are called the coordinate functions
of S. The set of all linear combinations of the coordinate functions is called
the component functions of S, which are usually involved for determining the
cryptographic properties of the substitution [26].

S-Boxes can be represented as a list of values (lookup table) with each
output value ranging from 0 to 2m − 1. Altogether, the S-Box can be repre-
sented as the binary matrix of 2n rows and m columns, where each column
represent one of the coordinate functions of the substitution, which is known
as truth table. In addition, when representing an n-bit S-Box, it may be con-
venient to identify the vector space Vn with the finite field with 2n elements,
F2n. Then, for any fixed basis of Vn defining an isomorphism between Vn
and F2n, the n-bit S-Box S can be represented as a univariate polynomial in
F2n[X] [26]:

S(X) =
2n−1∑

i=0

AiX
i, Ai ∈ F2n (1)

The result from Proposition 2.4 of [26] resolves that the values of A corre-
spond to the values of S. Moreover, this polynomial representation is unique,
since if not, there would exist two distinct polynomials of degree less than
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or equal to (2n − 1) taking the same value at 2n distinct points, which is
impossible. One should note that the univariate representation is dependent
on the basis chosen for identifying Vn and F2n.

Finally, we refer to the algebraic normal form (ANF) representation of
each component function of one substitution S, given that the algebraic de-
gree and the algebraic immunity of both, Boolean functions and s-boxes, is
related to this representation. Let f : Vn → V1 be an arbitrary n-variable
Boolean function. For some fixed i = 0, 1, ..., n − 1, f can be written as a
sum over F2 of distinct t -order products of its arguments, 0 ≤ t ≤ n−1; this
is called the algebraic normal form of f [25].

2.2 Properties

Let S : Vn → Vm be a substitution box, S is said to be balanced if each
value x ∈ Vm appears the same number of 2n−m times. When n = m, it is
usual that S is a bijective mapping from Vn to itself, i.e, that each output
appears exactly once. Such S-Boxes are permutations on Vn [27]. This paper
is restricted to the study of bijective 8 × 8 S-Boxes only. Although, general
definitions are given to all properties regardless the values of n and m.

2.2.1 Nonlinearity

The Walsh-Hadamard transform of one (n,m)-function S is defined
as [27]:

WS(x, y) =
∑

z∈Vn
(−1)〈y,S(z)〉⊕〈x,z〉 (2)

where x ∈ Vn, y ∈ V ∗m = Vm\{0} and 〈a, b〉 = ⊕ki=1aibi is the inner product of
the vectors a, b ∈ Vk. Here, ⊕ represents the addition modulo two or bitwise
eXclusive OR (XOR). The superset ΛS = {(x, y) : Vn × V ∗m|WS(x, y)} is
known as the Walsh-Hadamard spectrum of S.

The maximum absolute value of ΛS is known as the linearity of S and it
is denoted in this paper as LS. The other property related to the Walsh-
Hadamard spectrum of S-Boxes is called nonlinearity of the S-Box [27].
Nonlinearity is directly related to maximum absolute value of the Walsh-
Hadamard spectrum, i.e, LS. Hence, one can express nonlinearity as follows:

NS =
2n − LS

2
(3)

The maximum achievable nonlinearity for bijective S-Boxes cannot be
greater than the Sidelnikov-Chabaud-Vaudenay (SCV) bound [28]:

NS ≤ 2n−1 − 2
n−1
2 (4)
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n NS δS
3 2 2
4 4 4
5 12 2
6 24 2
7 56 2
8 112 4

Table 1: Best known values of nonlinearity and differential uniformity for bijective s-boxes
of dimensions from 3× 3 up to 8× 8.

and when equality holds in (4) we talk about of almost bent (AB) functions.
As for APN condition (see Section 2.2.2, [29]), AB functions only exists when
n is an odd number [27]. When n is even, the best value of nonlinearity is
obtained through power permutations and equals to [26, 27, 30]:

NS = 2n−1 − 2
n
2 (5)

Table 1 present the best know values of nonlinearity (also differential uni-
formity) for bijective substitution boxes of n-variables, n ∈ {3, 4, 5, 6, 7, 8}.

2.2.2 Differential uniformity

According to Nyberg [29, 31], for any function S : Vn → Vm and any
x ∈ Vn and y ∈ Vm one can define

δ(x, y) = #{z ∈ Vn : S(x+ z) + S(z) = y} (6)

Then the multi-set ∆S = {x ∈ Vn, b ∈ Vm : δ(x, y)} represents the
differential spectrum of S, and its maximum

δS = max
x 6=0,y

δ(x, y) (7)

is called the differential uniformity of S. For any bijective S-Box S the differ-
ential uniformity of S satisfies δS ≥ 2 [29]. The S-Boxes for which equality
holds are called almost perfect nonlinear (APN) functions. It is worth notic-
ing that the APN condition only exists for odd number of variables, and
when n = 6 [32]. In the case of even number of variables, the best known
differential uniformity value is 4 [26, 27, 29, 30].

2.2.3 Algebraic degree and algebraic immunity

Recall from Section 2.1 the representation of one s-box in the algebraic
normal form. The algebraic degree of a Boolean function f : Vn → V1 is the
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maximum order of the terms appearing in its algebraic normal form. Hence,
the algebraic degree of a substitution box S : Vn → Vm is the maximum al-
gebraic degree of its component functions [33], denoted as deg(S). Moreover,
one should note that the minimum degree of S, i.e., the smallest degree of
the component Boolean functions of S, must be as high as possible [25]. In
this paper we denote such degree as ρS. For balanced n-variable S-Boxes, the
following inequality holds for the algebraic degree of the same [25]:

1 ≤ ρS ≤ deg(S) ≤ n− 1 (8)

The annihilator of a Boolean function f : Vn → V1 is a Boolean function
g : Vn → V1 such that f ·g = 0 [25]. For any Boolean function f, the algebraic
immunity of f is the minimum value d such that f or f⊕1 has nonzero anni-
hilator of degree d. There are different definitions of the algebraic immunity
of S-Boxes [27]. Particularly, we focus on the graph algebraic immunity and
before introduce its definition, let review the concept of annihilating set. Let
be U ⊆ V2n, then the annihilating set of U is defined as [25]:

{p ∈ F2[z1, ...., z2n]|p(U) = 0} (9)

then, the algebraic immunity of U is:

AI(U) = min{deg p|0 6= p ∈ F2[z1, ...., z2n], p(U) = 0} (10)

Let S : Vn → Vm be an arbitrary S-Box, the graph algebraic immunity of
S is defined as [25]:

AIgr(S) = min{deg p|0 6= p ∈ F2[z1, ...., z2n], p(gr(S)) = 0} (11)

where gr(S) = {(x, S(x))|x ∈ Vn} ⊆ V2n. In [33], some bound on the values
of the algebraic immunity is given. The graph algebraic immunity of S is
upper bounded by the value d, which is the minimum positive integer that
satisfies:

d∑

i=0

2n!

(2n− i)! · i! > 2n (12)

3 Construction of 2k-bit permutations from k-bit per-
mutations and finite field multiplication in F2k

This section briefly resume the works from de la Cruz [25] and Fomin [24]
to construct cryptographically strong substitution boxes from smaller 4-bit
components.
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The early work from de la Cruz introduced a new method for generation
of 2k-bit bijective substitution boxes using k-bit components and finite field
multiplication in F2k [25]. In the particular case of generation of 8-bit substi-
tution boxes, de la Cruz propose to work over the finite field F24 using one of
the three existing irreducible polynomials, such that λ(x) = x4 + x+ 1 [25].
Moreover, the polynomial permutation Pd(x) = x2k−2 can be expressed as
Pd(x) = x14.

De la Cruz established a set of criteria to determine whether the obtained
substitution box can be considered for application in symmetric encryption
algorithms or not, based on the properties mentioned in the previous section.
In addition, one must verify the absence of fixed points in the generated
substitution once applied the construction H [25].

NS ≥ 100 δS ≤ 8 ρS = 7 AIgr(S) = 3

The largest experiment conducted by de la Cruz, involving 220 4-
bit permutations achieves substitution boxes having nonlinearity up to
108 and, at most, differentially 6-uniform. The best values of differen-
tial uniformity and nonlinearity (6, 108) were obtained for h1 = h2 =
{0, 1, e, 9, f, 5, c, 2, b, a, 4, 8, d, 6, 3, 7}. Nonetheless, de la Cruz shown that it
is not necessary that h1 = h2 to obtain s-boxes which satisfy the aforemen-
tioned criteria on their properties.

Later in 2019, Fomin propose several constructions with a butterfly
structure derivated from functions based on the constructions of Mairoma-
MacFarland [24]. Fomin discussed the results achieved through two different
schemes based in two A constructions and two B constructions [24].

These constructions receive four different 4-bit components hi and πi,
i = 1, 2. The permutations hi are selected from the search space of 4-bit
bijective S-Boxes, while permutations πi are result from monomial power
functions such that the final 8-bit substitution box have almost optimal non-
linearity and differential uniformity. Fomin studied the behavior of different
combinations of components for each construction concluding that there are
at least 36 different substitution boxes, having the same values of the best
S-Box reported in [25]. Additionally, the construction from [25] is general-
ized to a butterfly structure, partitioning the obtained 8-bit permutations
according the monomial power function employed as component(s) of the
construction [24].

For the purposes of this paper, we subject to analysis the constructions
H [25] and AA [24]. In the remaining of this section we briefly summarize
the average behavior of aforementioned properties for S-Boxes generated by
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On the Generation of Cryptographically Strong Substitution Boxes from Small Ones and...

these constructions.
Depending on the selection of the 4-bit components hi (also πi for con-

struction AA) we are in presence of different output scenarios for construc-
tions H and AA. The particular analysis of construction AA is a bit more
complex since there are four different outcomes according the values of hi
and πi:

h1 6= h2, π1 6= π2 h1 6= h2, π1 = π2 h1 = h2, π1 6= π2 h1 = h2, π1 = π2

With regards to the values of the 4-bit monomial permutations π1 and
π2 we assume the following criteria based on the analysis of results presented
by Fomin in [24]:

– If π1 6= π2 then π1(x) = x14 and π2(x) = x11

– If π1 = π2 then πi(x) = x14

Table 2 present the average values of nonlinearity, differential uniformity,
minimum algebraic degree and graph algebraic immunity of 100000 8-bit
substitution boxes generated by constructions H and AA. As one can see in
table 2, the average value of the referred properties indicate that the common
values for nonlinearity, differential uniformity, minimum degree and graph al-
gebraic immunity are 104, 8, 6 and 3 respectively. The amount of S-Boxes
having nonlinearity 106, regardless the configuration settings, is below 1000
on each case, which mean that less than 1% of the cases generate such subti-
tutions. Moreover, no substitution with nonlinearity value equals to 108 was
reported. Hence, the cases where substitution boxes have the best values of
nonlinearity and differential uniformity reported in [24, 25] are not frequently
produced by these constructions.

Construction Configuration NS δS ρS Γgr(S)
H h1 = h2 103.32 7.5 6.29 2.96

h1 6= h2 103.26 7.64 6.08 2.96
AA h1 6= h2, π1 6= π2 103.27 7.64 6.03 2.96

h1 6= h2, π1 = π2 103.26 7.64 6.03 2.96
h1 = h2, π1 6= π2 103.32 7.51 6.25 2.96
h1 = h2, π1 = π2 103.32 7.5 6.25 2.96

Table 2: Average values of properties for constructions H and AA.
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4 Optimization algorithms as the tool to obtain cryp-
tographically strong s-boxes

Evolutionary techniques have been successfully applied to the design of
S-Boxes for different purposes. Among the pioneer papers on this area of
research are the works from Millan et al. [34, 35] and Clark et al. [36, 37].
Through the years, the quality of result achieved by heuristic methods ap-
plied to evolution of S-Boxes has grown, improving the earlier results in this
field. We take as reference the works from Tesař [38], Kazymyrov et al. [39],
Picek et al. [16, 40, 41], Ivanov et al. [42, 43], Isa et al. and Ahmad et
al. [44, 45]. Moreover, in 2020, an extense number of research papers dedi-
cated to heuristic generation of S-Boxes with good criptographic properties,
or the analysis of existing trade off between some of their properties were
published [20, 21, 46, 47, 48, 49, 50]. The best result w.r.t nonlinearity and
differential uniformity of any optimization algorithm which receive pseudo-
random s-boxes as input input is the achieved, as far as the author knows, by
Ivanov et. al. in [42], where the authors affirm they produce thousands of S-
Boxes having differential uniformity 6 and nonlinearity 104. Better values of
nonlinearity and/or differential uniformity obtained by any optimization al-
gorithm is the result of seeding the algorithm with S-Boxes produced through
algebraic techniques like substitutions presented in [43].

4.1 An external parameter independent cost function

Heuristic algorithms are sensitive to the initial pool of solutions as well
the fitness function(s) used to lead the optimization process. In this section
we discuss a novel cost function related to nonlinearity of S-Boxes, which is
used in the experiments presented on this paper.

The works from Clark et al. [37] and Picek et al. [41], present different
cost functions related to the property of nonlinearity of S-Boxes. A detailed
analysis on these cost functions and their results are given in [37, 38, 41].
Furthermore, a comparison on their performance and the existing relation
to nonlinearity is analyzed in [50], where the authors propose a new cost
function for evolution of bijective substitution boxes which is independent to
any external parameter, unlike those presented in [37, 41].

Let W be the set of all absolute coefficients lower or equals to the SCV
bound [28], i.e., W = {0, 4, ...., 2n

2 +1} given that n = 2k for the purposes of
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this paper. Then, the function presented in [50] is defined as:

Cost(S) =
∑

y∈Vn

∑

x∈Vn

∏

z∈W
||WS(x, y)| − z| (13)

Propositions 1 and 2 of [50] warranties that minimizing Cost(S) will in-
crease the final nonlinearity of the analyzed s-box S. Further information
about this cost function is presented in [50].

4.2 Local search algorithm

Based on the results from minor experiments using the optimization algo-
rithm proposed in this section, we decided that permutations h1 and h2 are
equal. Moreover, in the particular case of construction AA, where the values
of the 4-bit monomial permutations π1 and π2 may differ, it is assumed, for
the sake of simplicity, that π1(x) = π2(x) = x14.

Let C ∈ {H,AA} the selected construction and let define the neighbor-
hood N(h) of any 4-bit permutation h as the S-Boxes result of swapping a
pair of output values corresponding to a pair of different inputs in h. The
cardinality of N(h), #N(h) =

(
16
2

)
= 120 different S-Boxes. Hence, on

each iteration of the local search algorithm, one must review 120 possible
solutions, and the best of them substitute the 4-bit permutation h used to
generate the 8-bit S-Box through construction C. For any 4-bit permutations
h, h′ ∈ N(h), one can say that h′ is better than h if:

– NSh < NSh′

– NSh < NSh′ and Cost(Sh) > Cost(Sh′)

where Sh and Sh′ refers to S-Boxes generated by construction C using h
and h′ as 4-bit component respectively. The remaining properties are used as
constrains in the optimization process, i.e., the resulting S-Boxes should have
differential uniformity at most 6, minimum algebraic degree value equals to
7 and graph algebraic immunity value of 3.

Algorithm 1 present the pseudo-code of the local search employed in this
paper for optimization of cryptographically strong 8-bit bijective S-Boxes.
The insert mutation [51] (algorithm 2) introduced at the end of the algorithm
prevent the method from infinite loops, because if no upgrade is found in the
neighborhood of the permutation h, then the algorithm has no other mecha-
nism to review a fresh set of 4-bit components in the next iteration, hence it
will fall on an infinite loop. It worth to remark that the algebraic structure
of the substitutions obtained through this technique is not altered since the
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algorithm is used to explore the space of the 4-bit components instead of
modifying the structure of the final 8-bit permutation, which represent an
advantage w.r.t other research papers that directly work over the represen-
tation of the substitution to be optimized [16, 38, 39, 41, 42, 43, 47, 49, 50].

input : A random 4-bit permutation h and the desired value of nonlinearity NG
output: An 8-bit permutation having high nonlinearity, low differential

uniformity and optimal algebraic degree and immunity.

Initialization
S ← Ch // Apply construction C using h as 4-bit component

while True do
upgrade = 0
if ρS = 7 and AIgr(S) = 3 and δS ≤ 6 and NS ≥ NG then

return Ch
end
else ; // search in the neighborhood of h a permutation that
improves the application of C as explained

foreach h′ ∈ N(h) do
S ′ ← Ch′
if NS < NS′ or (NS = NS′ and Cost(S ′) < Cost(S)) then

S ← S ′

h← h′

upgrade = 1
end

end
if upgrade = 0 then ; // Insert mutation on h

h← InsertMutation(h, 0, 15)
S ← Ch

end
end

end
Algorithm 1: Pseudo-code of the local search algorithm.

5 Experimental results

Algorithm 1 stop if we found any 8-bit permutation having nonlinear-
ity greater or equal to NG and differential uniformity, minimum degree and
graph algebraic immunity equal to the best results presented in [24, 25]. More
important, though, is obtain these results reviewing the minimum amount of
4-bit components.
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input : An array of elements A and indexes p1, p2 such that (p1 < p2)
output: The array A with value at index p2 inserted at index p1
tmp← A[p2]

for i ← p2 down to p1 + 1 do
A[i]← A[i− 1]

end
A[p1]← tmp
return A

Algorithm 2: Pseudo-code of the insert mutation algorithm.

The first round of experiments using algorithm 1 attempt to measure
the performance of the method using the constructions H and AA. Thus,
we set input parameter NG = 106. Given the low probability of generate
one s-box with nonlinearity equal to 108, differential uniformity 6, minimum
degree 7 and graph algebraic immunity 3 from random components, the pro-
posed algorithm is restricted to evaluate, at most, 120000 ≈ 217 solutions,
which can be translated is less than five hours of computation in an 8GB of
RAM Dell Latitude E7440 with Intel®Core™i7-4600U CPU @ 2.1 GHz. In
each round of experiments the local search algorithm was set to perform one
hundred individual executions, first to obtain S-Boxes with nonlinearity 106
and then to produce permutations having nonlinearity 108, also satisfying
the restrictions on the remaining properties.

For the case of nonlinearity 106, all one hundred executions produce S-
Boxes with desired nonlinearity. Moreover, the average solution evaluations
to fulfill the stop condition in these experiments is upper bounded by 350.
When input parameter NG equals to 108, the local search method produce
several S-Boxes with desired nonlinearity which were not taken into account
since the values of differential uniformity and/or graph algebraic immunity
does not satisfies the restriction imposed to stop the algorithm. However, in
all the executions, a permutation with identical properties to the best results
from [24, 25] was obtained. Moreover, all resulting substitution boxes are
different to each other, which extend the results presented by de la Cruz and
Fomin to a large set of 4-bit components and not restricted only to configura-
tions discussed in [24, 25]. The average number of solutions evaluated by the
local search algorithm is less than 4000 permutations in both cases, which
is lower in magnitude than the bound established to force the termination
of the algorithm. In addition, one can see in table 3 that there is a slight
advantage of using algorithm 1 over construction AA.
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Table 3: Average solution evaluations to obtain desired nonlinearity
Construction/NG 106 108

AA 329.05 3675.21
H 339.38 3999.31

Configuration NS δS ρS Γgr(S)
h1 6= h2, π1 6= π2 103.27 7.63 6.03 2.96
h1 6= h2, π1 = π2 103.27 7.63 6.03 2.96
h1 = h2, π1 6= π2 103.32 7.51 6.26 2.96
h1 = h2, π1 = π2 103.33 7.5 6.26 2.96

Table 4: Average values of properties for construction AB.

5.1 Construction based on mixed butterfly structure

The design of mixed butterfly structures based on the constructions pro-
posed by Fomin is left as research proposal in [24]. This section present a
simple butterfly structure based in the combination of one A and one B con-
struction. In AB structure, the value of y0 is conceived through construction
A. Then, the value of x0 is obtained through construction B depending, as
AA and BB constructions, on the value of parameter y0. The high level
scheme of butterfly structure AB is shown in figure 1.

Figure 1: Butterfly structure based on A and B constructions (AB)
.

Similarly to the analysis carried in Section 3, we subject to evaluation
the average values of the properties from S-boxes generated by construction
AB, presented in table 4. Here, we want to highlight the almost identical
behavior of construction AB w.r.t construction AA on each configuration
setting of the 4-bit components hi and πi. Moreover, all three constructions
present similar overall behavior, with a minor improvement when h1 = h2

and π1 = π2 in the particular cases of AA and AB.
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Figure 2: Convergence rate of the local search method.
.

We reproduce the experiments conducted earlier to measure the perfor-
mance of algorithm 1 for construction AB. As expected, the results of the
local search method are in the range of the achieved using constructions
H and AA. In the case of NG = 106, the algorithm repeatedly produce
substitutions with desired nonlinearity in an average of 337.82 solution eval-
uations. When NG = 108, the average evaluations to generate a S-Box with
desired cryptographic properties is approximately 3798 (3797.55) solutions.
The convergence of the local search method for constructions H, AA and
AB is presented in figure 2. Here, one can observe that the best perfor-
mance (in terms of solution evaluations) of algorithm 1 is reached using the
constructions based on a butterfly structure.

Although the proposed method manages to produce several S-Boxes with
identical values of nonlinearity, differential uniformity, algebraic degree and
graph algebraic immunity than the achieved in [24, 25], the algorithm was
not able to obtain any substitution box having optimal algebraic degree and
graph algebraic immunity which present better values of nonlinearity and/or
differential uniformity than the best reported in [24, 25]. Hence, it remains
as open question if such substitution box exist.
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6 Conclusions

In this paper we propose a novel optimization algorithm for efficient ex-
ploitation of the space of 4-bit bijective substitution boxes to serve as compo-
nents of the three constructions analyzed. Moreover, our algorithm present
major advantages with respect to other heuristic methods for evolution of
S-Boxes. First, the search space is highly reduced from 28! used in the opti-
mization of 8-bit substitution boxes to 24! which is the search space of the
4-bit component requested by constructions H, AA and AB (notice that
our proposal uses identical 4-bit components for hi and πi in case of con-
struction based on butterfly structure). In addition, the structure of the final
8-bit substitution box is never modified by the optimization method, hence
the result present a simple interpolation polynomial which may represent an
advantage towards efficient masking. Finally, a large set of S-Boxes having
good cryptographic properties can be quickly generated.
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[50] Freyre-Echevarŕıa A., Alanezi A., Mart́ınez-Dı́az I., Ahmad M., Abd El-Latif A. A., Koli-
vand H., Razaq A., “An External Parameter Independent Novel Cost Function for Evolving
Bijective Substitution-Boxes”, Symmetry, 12 11 (2020).

[51] Eiben A. E., Smith J. E., Introduction to evolutionary computing, Springer, 2003.

A. Freyre-Echevarŕıa 128
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Abstract

Involutions, i.e, permutations such that its inverse is itself have an particular
interest in Cryptography, because these components are used to decrease the cost
of the implementation of decryption process. In this paper we propose some ap-
proaches to construct involutions of dimension n+m by existing ones of dimension
n, specifying their coordinate functions, where m ∈ N and 1 6 m 6 n. For the pro-
posed constructions was calculated some cryptographic parameters as nonlinearity,
algebraic degree, differential uniformity, lineal structure and number of fixed points.

Keywords: Permutations, involutions, vectorial boolean functions, coordinate functions,
nonlinearity, algebraic degree, differential uniformity, lineal structure, fixed points.

1 Introduction

Substitutions on the finite field F2n = GF (2) [θ]/z (θ) have a significant
impact in many applications such as design of symmetric cryptographic prim-
itives, where z (θ) is an irreducible polynomial of degree n. Examples of this
are the so-called S-boxes, which are used to guarantee one of two essential
principles of these cryptographic primitives: the confusion of the input infor-
mation’s bits (see [1]). Exist a several works, where authors propose the con-
struction of several substitutions classes (for example, [2, 3, 4, 5, 6, 7, 8, 9]).

An special kind of permutations on F2n are the involutions, permutations
F : F2n → F2n for which the following condition holds

F (F (β)) = β,

for any β ∈ F2n. In many papers are proposed new methods for constructing
permutations of these kinds (for example, [10, 12, 13]), which play a signif-
icant role in the design of cryptographic primitives that require the inverse
transformations for the decryption of the information, such as SP-networks
and others. Involutions find applications in coding theory (for example, [11])
and for constructing bent-functions (for example, [12, 13]). They have been
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used frequently in block cipher designs, eg., AES [14], Anubis [15], Khazad
[16] and PRINCE [17].

Let Vn = {0, 1}n, n ∈ N be the set of all binary vectors x(n) =
(x1, . . . , xn) of dimension n. It is well known that exist a bijective mapping
between Vn and F2n, defined by the correspondence

(x1, x2 . . . , xn)↔ [x1 · θn−1 + x2 · θn−2 + . . .+ xn]. (1)

Using this mapping in what follows we make no difference between the ele-
ments of Vn and F2n.

For a vectorial boolean function F : Vn → Vn the system of functions
fi : Vn → {0, 1}, i ∈ 1, n such that for any x(n) ∈ Vn

F
(
x(n)
)

=
(
f1

(
x(n)
)
, . . . , fn

(
x(n)
))

,

is called coordinate functions of the function F . In this case we will write
F = (f1, . . . , fn) : Vn → Vn. It is evident that F = (f1, . . . , fn) : Vn → Vn is
an involution if and only if for any x(n) ∈ Vn, i ∈ 1, n

fi

(
F
(
x(n)
))

= xi. (2)

The construction of substitutions by their coordinate functions is a diffi-
cult task. Methods for constructing substitutions specifying their coordinate
functions are proposed in the works [18, 19]. In this work we propose new
methods for constructing involutions on Vn specifying their coordinate func-
tions. In the section 2 our approaches are described. Some cryptographic
properties of our construction are proved in the section 3. Results, obtained
with the help of computational calculations are showed in the section 4. The
conclusion of this work is given in the section 5.

2 Constructing involutions of dimension n + m by ex-
isting ones of dimension n

Let be F = (f1, . . . , fn) : Vn → Vn be a permutation, then the construc-
tion of the vectorial boolean function G = (g1, . . . , gn+m) : Vn+m → Vn+m is
defined as follows:

gi

(
x(n+m)

)
=

{
fi
(
x(n)
)
, i ∈ 1, n,

ϕi−n
(
x(i)
)
, i ∈ n+ 1, n+m,

(3)

where ϕj : Vn+j → {0, 1} for any j ∈ 1,m are arbitrary boolean functions.
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Theorem 1. The vectorial boolean function G = (g1, . . . , gn+m) : Vn+m →
Vn+m defined by the rule (3) is a permutation if and only if the boolean
functions ϕi−n is linear on xi for any i ∈ n+ 1, n+m.

Proof. Let ϕi−n
(
x(i)
)
be linear on xi for any i ∈ n+ 1, n+m, respectively.

We need to prove that the vectorial boolean function G = (g1, . . . , gn+m) :
Vn+m → Vn+m defined by the rule (3) is a permutation, i.e. for any

a(n+m) ∈ Vn+m\{0n+m} the boolean function
n+m⊕
j=1

ajgj(x
(n+m)) is balanced,

where 0n+m = (0, . . . , 0) ∈ Vn+m. Consider 2 cases:

• case 1: let be j ∈ 1,m such that an+j 6= 0, then
n+m⊕
j=1

ajgj(x
(n+m)) is

linear on xn+j, which is equivalent to it is a balanced boolean function,

• case 2: for any j ∈ 1,m, an+j = 0, then a(n) 6= 0(n) and
n+m⊕
j=1

ajgj(x
(n+m)) =

n⊕
j=1

ajfj(x
(n)), which is equivalent to it is a balanced

boolean function.

Consider now that G is a permutation, we need to prove that for any
i ∈ n+ 1, n+m the boolean functions ϕi−n

(
x(i)
)
is linear on xi. We prove

it without loss of generality for m = 1. As G is a permutation on Vn+1, then
for any y(n+1) ∈ Vn+1 exist a unique x(n+1) ∈ Vn+1 such that fi

(
x(n)
)

= yi
for all i ∈ 1, n and ϕ1

(
x(n+1)

)
= yn+1. Assume the contrary, and so sup-

pose that ϕ1

(
x(n+1)

)
is of the form ϕ1

(
x(n+1)

)
= xn+1h1

(
x(n)
)
⊕ h2

(
x(n)
)
,

where h1

(
x(n)
)
6≡ 0, 1, i.e., ϕ1

(
x(n+1)

)
is not linear on the variable xn+1.

We select y(n+1) ∈ Vn+1 such that G(x(n+1)) = y(n+1), where x(n+1) =
(α1, . . . , αn, xn+1) for fixed (α1, . . . , αn) ∈ Vn, and h1(α1, . . . , αn) = 0. Then

ϕ1(α1, . . . , αn, xn+1) = h2(α1, . . . , αn) = yn+1

does not depend of the xn+1 and consequently for y(n+1) exist x(n+1) =
= (α1, . . . , αn, 0), x(n+1) = (α1, . . . , αn, 1) such that G(x(n+1)) = y(n+1) and
hence G is not bijective. Consequently the function ϕ1

(
x(n+1)

)
must be linear

on the variable xn+1.

Using as base the algorithm 7.1 (page 228) of the work [9], which was
used to create permutation over Vn+1 specifying their coordinate functions,
we propose a new method for constructing involutions on Vn+m by existing
ones on Vn, where 1 6 m 6 n.
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Construction 1: Let be F = (f1, . . . , fn) : Vn → Vn be a permutation,
then the construction of the vectorial boolean function G = (g1, . . . , gn+m) :
Vn+m → Vn+m is defined as follows:

gi

(
x(n+m)

)
=

{
fi
(
x(n)
)
, i ∈ 1, n,

xi ⊕ ψi−n
(
x(i−1)

)
, i ∈ n+ 1, n+m,

(4)

where x(i−1) = (x1, . . . , xi−1) and ψj : Vn+j−1 → {0, 1} for any j ∈ 1,m are
arbitrary boolean functions.

Theorem 2. The vectorial boolean function G = (g1, . . . , gn+m) : Vn+m →
Vn+m defined by the rule (4) is an involution if and only if the permu-
tation F = (f1, . . . , fn) : Vn → Vn is an involution too and for any
j ∈ 1,m, x(n+j−1) ∈ Vn+j−1 holds

ψj

(
x(n+j−1)

)
= ψj

(
g1

(
x(n+m)

)
, . . . , gn+j−1

(
x(n+m)

))
. (5)

Proof. Let be the vectorial boolean function G = (g1, . . . , gn+m) : Vn+m →
Vn+m defined by the rule (4) an involution, then from (2) we have that for
any i ∈ 1, n+m

gi

(
G
(
x(n+m)

))
= xi.

This is equivalent to:

1. for any i ∈ 1, n

fi

(
F
(
x(n)
))

= xi

2. for any i ∈ n+ 1, n+m

gi

(
x(n+m)

)
⊕ ψi−n

(
g1

(
x(n+m)

)
, . . . , gi−1

(
x(n+m)

))
=

= xi ⊕ ψi−n
(
x(i)
)
⊕ ψi−n

(
g1

(
x(n+m)

)
, . . . , gi−1

(
x(n+m)

))
= xi.

Then, from 1) and 2), respectively, we obtain that G is an involution if and
only if F is an involution too and

ψj

(
x(n+j−1)

)
= ψj

(
g1

(
x(n+m)

)
, . . . , gn+j−1

(
x(n+m)

))

for any j ∈ 1,m, x(n+j−1) ∈ Vn+j−1.
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Let be f : Vn → {0, 1} the logical negation of the boolean function
f : Vn → {0, 1}, i.e.

f
(
x(n)
)

= f
(
x(n)
)
⊕ 1,

for any x(n) ∈ Vn (see [21]).
For a vectorial boolean function F = (f1, . . . , fn2) : Vn1 → Vn2, n1, n2 ∈

N, n1 > n2, we will write that F admit linear structures (see [21]), if exist a
vector a(n1) ∈ Vn\{0(n1)} such that

Da(n1)

F (x(n1)) = F
(
x(n1)

)
⊕ F

(
x(n1) ⊕ a(n1)

)
= b(n2) = const

for any x(n1) ∈ Vn1, where b(n2) ∈ Vn2. In this case vector a(n1) is called b(n2)—
linear translator (see [21]), of the vectorial boolean function F . Note that if
n2 = 1, then F is a boolean function.

Lemma 1. Let F = (f1, . . . , fn) : Vn → Vn be an involution, for the subset
s(k) = {i1, . . . , ik} ⊆ 1, n, 1 6 i1 < . . . < ik 6 n the vector e(n)(s(k)) ∈ Vn
is defined as follow

e
(n)
i (s(k)) =

{
0, i ∈ 1, n\s(k),

1, i ∈ s(k),

for any i ∈ 1, n and the vectorial boolean function F ′ = (f ′1, . . . , f
′
n) : Vn →

Vn is defined by the rule

f ′i(x
(n)) =

{
fi(x

(n)), i ∈ 1, n\s(k),

fi(x
(n)), i ∈ s(k),

(6)

for any i ∈ 1, n. Then F ′ is an involution if and only if the vector e(n)(s(k))
is a e(n)(s(k))—linear translator of F .

Proof. Considering that e(n)(s(k)) is a e(n)(s(k))—linear translator of F we
obtain that for any x(n) ∈ Vn

F
(
x(n) ⊕ e(n)(s(k))

)
⊕ e(n)(s(k)) = F

(
x(n)
)
. (7)

Since F is an involution, if xn run all the vector space Vn, then F (xn) run
all the vector space Vn too and we can rewrite the equality (7) as follow

F
(
F (x(n))⊕ e(n)(s(k))

)
⊕ e(n)(s(k)) = F

(
F (x(n))

)
= x(n). (8)

From (6) we obtain that F ′
(
x(n)
)

= F
(
x(n)
)
⊕ e(n)(s(k)), then (8) is equiv-

alent to

F
(
F ′
(
x(n)
))
⊕ e(n)(s(k)) = F ′

(
F ′
(
x(n)
))

= x(n),

i.e. F ′ is an involution.
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Using the logical negation of a boolean function and with the help of the
lemma 1, by existing involutions defined by the rule (4) we can describe new
involutions.

Theorem 3. Let G = (g1, . . . , gn+m) : Vn+m → Vn+m an involution from
the theorem 2 and G′ = (g′1, . . . , g

′
n+m) : Vn+m → Vn+m a vectorial boolean

function designed by the rule (6) for a fixed vector e(n+m)(s(k)) ∈ Vn+m,
where s(k) = {i1, . . . , ik} ⊆ 1, n+m, 1 6 i1 < . . . < ik 6 n+m.

1. Let k1 6 k, k1 ∈ N be a integer such that s(k1) = {i1, . . . , ik1} ⊆ 1, n.
The vectorial boolean function G′ is an involution if and only if the
vector e(n)(s(k1)) is a e(n)(s(k1))—linear translator of F and for any
j ∈ 1,m

ψj

(
x(n+j−1)

)
= ψj

(
g′1

(
x(n+m)

)
, . . . , g′n+j−1

(
x(n+m)

))
, (9)

2. Let be i1 > n. The vectorial boolean function G′ is an involution if and
only if for any j ∈ 1,m holds (9).

Proof. To prove the point 1 of the theorem consider that G′ is an involution,
i.e. for any x(n+m) ∈ Vn+m

G′
(
G′
(
x(n+m)

))
=

=
(
F ′
(
F ′
(
x(n)
))

, g′n+1

(
G′
(
x(n+m)

))
, . . . , g′n+m

(
G′
(
x(n+m)

)))
=

=
(
x(n), xn+1, . . . , xn+m

)
,

which is true if and only if F ′ is an involution and for any j ∈ 1,m
g′n+j

(
G′
(
x(n+m)

))
= xn+j. From the lemma 1 we obtain that F ′ is an invo-

lution if and only if the vector e(n)(s(k1)) is a e(n)(s(k1))—linear translator
of F ; and

g′n+j

(
G′
(
x(n+m)

))
= g′n+j

(
x(n+m)

)
⊕

⊕ ψj

(
g′1

(
x(n+m)

)
, . . . , g′n+j−1

(
x(n+m)

))
=

= xn+j ⊕ ψj
(
x(n+j−1)

)
⊕ ψj

(
g′1

(
x(n+m)

)
, . . . , g′n+j−1

(
x(n+m)

))
= xn+j

if and only if ψj
(
x(n+j−1)

)
= ψj

(
g′1
(
x(n+m)

)
, . . . , g′n+j−1

(
x(n+m)

))
. The

point 2 of the theorem can be proved analogously to the prove of the point
1 .
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2.1 Some examples of the system of boolean functions ψ1, . . . , ψm

Of great interest is the description of boolean functions ψj : Vn+j−1 →
{0, 1} for which the vectorial boolean function G : Vn+m → Vn+m defined
by the rule (4) is an involution. An example of a class of these functions is
described in the following proposition.

Proposition 1. Let F = (f1, . . . , fn) : Vn → Vn be an involution, ψ1 :
Vn → {0, 1} a boolean function such that for any x(n) ∈ Vn ψ1

(
x(n)
)

=
ψ1

(
F
(
x(n)
))

and for j ∈ 2,m the boolean functions ψj : Vn+j−1 → {0, 1}
are defined as

ψj

(
x(n+j−1)

)
= h1

j

(
x(n+j−1)

)
· ψj−1

(
x(n+j−2)

)
⊕ h2

j

(
x(n+j−1)

)
, (10)

where for any i ∈ {1, 2} hij : Vn+j−1 → {0, 1}. Then the vectorial boolean
function G = (g1, . . . , gn+m) : Vn+m → Vn+m defined by the rule (4) is an
involution if and only if for any i ∈ {1, 2} and j ∈ 2,m

hij

(
x(n+j−1)

)
= hij

(
g1

(
x(n+m)

)
, . . . , gn+j−1

(
x(n+m)

))
.

Proof. Suppose that for any i ∈ {1, 2} and j ∈ 2,m

hij

(
x(n+j−1)

)
= hij

(
g1

(
x(n+m)

)
, . . . , gn+j−1

(
x(n+m)

))
,

then from the theorem 2 we have that is sufficient to show that for any
j ∈ 1,m holds (5). Let’s show this by induction on j ∈ 1,m. For j = 1 the
equation (5) follows from the condition ψ1

(
x(n)
)

= ψ1

(
F
(
x(n)
))
. Suppose

that (5) is true for any j ∈ 2,m− 1. For j = m we obtain that

ψm

(
g1

(
x(n+m)

)
, . . . , gn+m−1

(
x(n+m)

))
=

= h1
m

(
g1

(
x(n+m)

)
, . . . , gn+m−1

(
x(n+m)

))
×

× ψm−1

(
g1

(
x(n+m)

)
, . . . , gn+m−2

(
x(n+m)

))
⊕

⊕ h2
m

(
g1

(
x(n+m)

)
, . . . , gn+m−1

(
x(n+m)

))
=

= h1
m

(
x(n+m−1)

)
· ψm−1

(
x(n+m−2)

)
⊕ h2

m

(
x(n+m−1)

)
= ψm

(
x(n+m−1)

)
.
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Corollary 1. Under the conditions of the proposition 1, if

h1
j

(
x(n+j−1)

)
= xn+j−1 and h2

j

(
x(n+j−1)

)
= xn+j−1,

then the vectorial boolean function G = (g1, . . . , gn+m) : Vn+m → Vn+m is an
involution.

In the proposition 1 was described a subclass of the involutions class
defined by the theorem 2, where the boolean functions ψj : Vn+j−1 →
{0, 1}, j ∈ 2,m are constructed recursively, based on the boolean func-
tion ψ1 : Vn → {0, 1}. Some examples of the boolean function ψ1 are given
in the corollary 2.

Let FixP (F ) be the set of all fixed points of the vectorial boolean function
F : Vn → Vn, i.e.

FixP (F ) =
{
x(n) ∈ Vn : F

(
x(n)
)

= x(n)
}
.

Corollary 2. Let G = (g1, . . . , gn+m) : Vn+m → Vn+m be a vectorial boolean
function defined by the rule (4) and for any x(n) ∈ Vn let ψ1 : Vn → {0, 1}
be a boolean function defined by one of the following rules:

1. ψ1

(
x(n)
)

=

{
ε, x(n) ∈ FixP (F ) ,

ε, x(n) /∈ FixP (F ) ;

2. ψ1

(
x(n)
)

= h
(
π
(
x(n)
))
⊕ h

(
π
(
F
(
x(n)
)))

;

3. ψ1

(
x(n)
)

= h
(
π
(
x(n)
))
· h
(
π
(
F
(
x(n)
)))

;

4. ψ1

(
x(n)
)

= h
(
π
(
x(n)
)
⊕ π

(
F
(
x(n)
)))

;

5. ψ1

(
x(n)
)

= h
(
z(n)
)

;

for any boolean function h : Vn → {0, 1}, where ε ∈ {0, 1},

z(n) = τ−1
(
τ
(
π
(
x(n)
))
⊗ τ

(
π
(
F
(
x(n)
))))

,

π = (π1, . . . , πn) : Vn → Vn is an arbitrary permutation, τ : Vn → F2n

is the correspondence defined by the rule (1), and by "⊗" is denoted the
multiplication of two elements on the finite field F2n. If for any j ∈ 2,m the
boolean function ψj is designed by the rule (10), then G is an involution.
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2.2 Constructing linear involutions of the form (4)

Consider now a particular case of the Construction 1 for constructing
linear involutions. The set of all matrices on F2 of dimension n×n is denoted
by F2n×n, the set of all invertible matrices from F2n×n is denoted by F∗2n×n and
for the identity and zero matrices of F2n×n we use the notations In and On,n,
respectively, for any n ∈ N. By x(n)↓ is denoted the transpose of the vector
x(n) ∈ Vn, i.e x(n)↓ = (x1, . . . , xn)

>.
Construction 1.1: Let be U = (uij)n,n ∈ F∗2n×n and the permutation

F = (f1, . . . , fn) : Vn → Vn is defined by the rule

F (x(n)) =
(
U · x(n)↓

)>

where x(n) ∈ Vn and for any i ∈ 1, n

fi(x
(n)) =

n⊕

j=1

uijxj.

Then the construction of the vectorial boolean function G = (g1, . . . , gn+m) :
Vn+m → Vn+m is defined as follows:

gi

(
x(n+m)

)
=





n⊕
j=1

uijxj, i ∈ 1, n,

xi ⊕
i−1⊕
j=1

cijxj, i ∈ n+ 1, n+m,
(11)

where C = (cij)m,n+m ∈ F2m×n+m.
Is easy to see that the vectorial boolean function G = (g1, . . . , gn+m) :

Vn+m → Vn+m defined by the rule (11) can be expressed as the multiplication
of a matrixM∈ F2n+m×n+m by the vector x(n+m) ∈ Vn+m, i.e.

G
(
x(n+m)

)
=
(
M · x(n+m)↓

)>
,

where

M =

(U
n,n
O

n,m

V
m,n
W

m,m

)

n+m×n+m

, C = (V
m,n
|W

m,m
)
m×n+m

V = (vij)m,n ∈ F2m×n andW = (wij)m,m ∈ F∗2m×m is a lower triangular matrix
of the form

W =




1 0 · · · · · · 0

w21
. . . . . . ...

... . . . . . . . . . ...

... . . . . . . 0
wm1 · · · · · · wm,m−1 1



m×m
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Theorem 4. The vectorial boolean function G = (g1, . . . , gn+m) : Vn+m →
Vn+m defined by the rule (11) is an involution if and only if the permutation
F = (f1, . . . , fn) : Vn → Vn is an involution, V =W · V · U and W2 = Im.

Proof. The vectorial boolean function G = (g1, . . . , gn+m) : Vn+m → Vn+m

defined by the rule (11) is an involution if and only ifM2 = In, and this is
equivalent to

(
U2
n,n

O
n,m

V
m,n
· U

n,n
⊕W

m,m
· V

m,n
W2

m,m

)

n+m×n+m

=

( I
n
O

n,m

O
m,n
I
m

)

n+m×n+m

,

which is true if and only if F is an involution, V =W·V·U andW2 = I
m
.

Corollary 3. Let be G = (g1, . . . , gn+m) : Vn+m → Vn+m a linear involution
from the theorem 4 and the vectorial boolean function H = (h1, . . . , hn+m) :
Vn+m → Vn+m is defined as follows:

H
(
x(n+m)

)
= G

(
x(n+m)

)
⊕ d(n+m)

where d(n+m) ∈ Vn+m. Then H is an involution if and only if d(n+m) ∈
FixP(G).

Remark 1. Is easy to see that in theorem 4 and corollary 3 are described
all linear and affin involutions possible which we can construct using the
construction designed by the rule (4).

3 On some cryptographic properties of the constructed
involutions

Exist several cryptographic properties for the characterization of vectorial
boolean functions from different points of view (see [21]) with particular
interest for the construction of cryptographic primitive. In this section our
purpose is to describe some cryptographic properties for our approaches,
such that the nonlinearity, the minimum algebraic degree, the differential
uniformity, lineal structures and the number of fixed points.

3.1 On the fixed points of the proposed involutions

Proposition 2. Any vector of the form
(
x(n), y(m)

)
∈ Vn+m is a fixed point of

the involution G from theorem 2 if and only if x(n) ∈ FixP (F ) , ψ1

(
x(n)
)

=
0, y(m) ∈ ΓG

(
x(n)
)
, where ΓG

(
x(n)
)

is the set of all vectors γ(m) ∈
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Vm such that for all its subvectors γ(j−1) ∈ Vj−1 the boolean functions
ψj
(
x(n), γ(j−1)

)
= 0, j ∈ 2,m, i.e.,

ΓG

(
x(n)
)

=
{
γ(m) ∈ Vm : ψj

(
x(n), γ(j−1)

)
= 0, j ∈ 2,m, γ(j−1) ∈ Vj−1

}
.

When the last condition is met

|FixP (G) | =
∑

x(n)∈FixP(F )

∣∣∣ΓG
(
x(n)
)∣∣∣ 6 2m · |FixP (F ) |.

Proof. If x(n) ∈ FixP (F ) then for any i ∈ 1, n, y(m) ∈ Vm

gi

(
x(n), y(m)

)
= fi

(
x(n)
)

= xi

and
gn+j

(
x(n), y(m)

)
= xn+j

if and only if ψ1

(
x(n)
)

= 0 and for any j ∈ 2,m ψj
(
x(n), y(j−1)

)
= 0, i.e.

y(m) ∈ ΓG
(
x(n)
)
, which implies that the vector

(
x(n), y(m)

)
∈ Vn+m is a fixed

point of G. Then we obtain that the number of fixed points of G can be
expressed as

|FixP (G) | =
∑

x(n)∈FixP(F )

∣∣∣ΓG
(
x(n)
)∣∣∣ .

Is not difficult to see that
∣∣ΓG

(
x(n)
)∣∣ 6 2m, then holds

|FixP (G) | 6 2m · |FixP (F ) |.

Corollary 4. Let G = (g1, . . . , gn+m) : Vn+m → Vn+m be an involution from
the theorem 2 and

1. if G′ = (g′1, . . . , g
′
n+m) : Vn+m → Vn+m is an involution defined by the

rule (6) from the point 1 of the theorem 3, then

|FixP(G′)| 6 2m · (2n − |FixP(F )|) ,

2. if G′ = (g′1, . . . , g
′
n+m) : Vn+m → Vn+m is an involution defined by the

rule (6) from the point 2 of the theorem 3, then

|FixP (G′)| 6 2m · |FixP (F )| − |FixP (G)| .
In particular, if G is an involution with the maximum possible number
of fixed points for the involutions defined by (4), (i.e. 2m · |FixP (F )|);
then the involution defined by (6) have not fixed points.
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Proof.

1. It is easy to see that if x(n) ∈ FixP (F ), then x(n) /∈ FixP (F ′), which
means that FixP (F )

⋂
FixP (F ′) = ∅ and |FixP(F ′)| 6 2n − |FixP(F )|.

Then from the proposition 2 we obtain that

|FixP(G′)| 6 2m · |FixP(F ′)| 6 2m · (2n − |FixP(F )|) .

2. It is easy to see that for any x(n) ∈ FixP (F ) , y(m) ∈ Vm we have
y(m) ∈ ΓG

(
x(n)
)
if and only if y(m) /∈ ΓG′

(
x(n)
)
, which is equivalent to

ΓG
(
x(n)
)⋂

ΓG′
(
x(n)
)

= ∅. Then
∣∣ΓG′

(
x(n)
)∣∣ 6 2m −

∣∣ΓG
(
x(n)
)∣∣ and

|FixP (G′)| =
∑

x(n)∈FixP(F )

∣∣∣ΓG′
(
x(n)
)∣∣∣ 6

∑

x(n)∈FixP(F )

(
2m −

∣∣∣ΓG
(
x(n)
)∣∣∣
)

=

= 2m · |FixP (F )| − |FixP (G)| .

For linear and affin involutions described in the section 2.2 we obtain the
followings results on their fixed points. The rang of a matrix A ∈ F2n×m is
denoted by rang(A).

Proposition 3. Let be H = (h1, . . . , hn+m) : Vn+m → Vn+m an affin involu-
tion from the corollary 3. Then

|FixP(H)| =
{

0, r 6= r1,

2n+m−r, r = r1,

where r = rang(M⊕In+m) and r1 = rang
(
M⊕In+m|d(n+m)↓

)
.

Proof. Is not difficult to see that if y(n+m) ∈ FixP(H), then the vector y(n+m)

is a solution of the system of linear equations

(M⊕In+m) · x(n+m)↓ = d(n+m)↓,

which have 2n+m−r if r = r1 and don’t have solutions if r 6= r1 (see [20]).

Remark 2. For the affin involution H from the corollary 3 we obtain that
the vector d(n+m) ∈ FixP(G) should be chosen that r 6= r1, to obtain an
involution without fixed points.
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3.2 On the linear structures and differential uniformity of the
proposed involutions

Lemma 2. If the boolean functions f : Vn → {0, 1} is linear on xi, i ∈ 1, n,
then the vector e(n)

i =
(
0(i−1), ε, 0(n−i)) ∈ Vn is ε—linear translator of the

boolean function f .

Proof. If the boolean functions f : Vn → {0, 1} is linear on xi, then exist a
boolean function f̂ : Vn−1 → {0, 1} such that

f
(
x(n)
)

= xi ⊕ f̂ (x1, . . . , xi−1, xi+1, . . . , xn)

and
f
(
x(n)
)
⊕ f

(
x(n) ⊕ e(n)

i

)
=

= f
(
x(n)
)
⊕ xi ⊕ ε⊕ f̂ (x1, . . . , xi−1, xi+1, . . . , xn) = ε.

Consider the differential uniformity of G : (g1, . . . , gn+m) : Vn+m → Vn+m

denoted by δ (G) and defined as

δ (G) = max
a(n+m)∈Vn+m\{0(n+m)},

b(n+m)∈Vn+m

δG

(
a(n+m), b(n+m)

)
,

where 0(n+m) = (0, . . . , 0) ∈ Vn+m and

δG

(
a(n+m), b(n+m)

)
=
∣∣∣{x(n+m) ∈ Vn+m : Da(n)

G (x(n+m)) = b(n+m)}
∣∣∣ .

With the help of the lemma 2 we can find the differential uniformity of
the described permutations in the theorem 1.

Proposition 4. Let G = (g1, . . . , gn+m) : Vn+m → Vn+m be a permutation
from the theorem 1. Then G admit linear structures, that is, δ (G) = 2n+m.

Proof. From the theorem 1 and lemma 2 we have that
(
0(n+m−1), 1

)
∈ Vn+m

is 1—linear translator of the boolean function ϕm : Vn+m → {0, 1}, and this
implies that for any x(n+m) ∈ Vn+m

G
(
x(n+m−1), xn+m

)
⊕G

(
x(n+1)

)
=

=
(

0(n+m−1), ϕm

(
x(n+m−1), xn+m

)
⊕ ϕm

(
x(n+m)

))
=
(

0(n+m−1), 1
)
,

from we obtain the statement of the proposition.

Remark 3. The proposition 4 implies that for an involution G from the
theorem 2, δ (G) = 2n+m too.
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3.3 On the minimum algebraic degree of the proposed involutions

Another cryptographic property, which is studied during the construction
of vectorial boolean functions is the minimum algebraic degree (see [21]),
defined by the formula

deg (G) = min
a(n+m)∈Vn+m\{0(n+m)}

deg
(〈
a(n+m), G

〉)
,

for G : Vn+m → Vn+m. When G is an involution defined by the rule (4) we
obtain the higher bound of deg (G) .

Proposition 5. Let G = (g1, . . . , gn+m) : Vn+m → Vn+m be a permutation
from the theorem 1. Then

deg (G) 6 n− 1.

Proof. It is sufficient to see that deg (G) 6 deg (F ), which is not greater than
n− 1 because F is an permutation too.

Remark 4. The proposition 5 implies that for an involution G from the
theorem 2, deg (G) 6 n− 1 too.

3.4 On the nonlinearity of the proposed involutions

The Walsh transform of a boolean function f : Vn → {0, 1} (see [21]), is
defined by the formula

Wb(n)

f =
∑

x(n)∈Vn

(−1)f(x
(n))⊕〈b(n),x(n)〉

for any b(n) ∈ Vn, where
〈
b(n), x(n)

〉
=

n⊕
i=1

bixi.

Consider now the nonlinearity (see [21]), of G denoted by N (G) and
defined as

N (G) = min
a(n+m)∈Vn+m\{0(n+m)}

N
(〈
a(n+m), G

〉)
,

where by N
(〈
a(n+m), G

〉)
is denoted the nonlinearity of the boolean function

〈
a(n+m), G

〉
=

n+m⊕
i=1

aigi
(
x(n+m)

)
, which is defined by the formula:

N
(〈
a(n+m), G

〉)
= 2n+m−1 − 1

2
max

b(n+m)∈Vn+m

∣∣∣Wb(n+m)

〈a(n+m),G〉
∣∣∣ .
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Lemma 3. Let G = (g1, . . . , gn+m) : Vn+m → Vn+m be an involution from
the theorem 2, where ψ1 : Vn → {0, 1} is chosen from the point 1 of the
corollary 2. If FixP(F ) = ∅, then N(G) = 0.

Proposition 6. Let G = (g1, . . . , gn+m) : Vn+m → Vn+m be an involution
from the theorem 2. Then

N (G) = 2 · min
a(n+m)∈Vn+m\{0(n+m)}

N
(

Ψa(n+m)

F,ψ

)
,

where ψ = (ψ1, . . . , ψm) : Vn+m−1 → Vm and the boolean function Ψa(n+m)

F,ψ :
Vn+m−1 → {0, 1} is defined by the rule

Ψa(n+m)

F,ψ

(
x(n+m−1)

)
=

n⊕

i=1

aifi

(
x(n)
)
⊕

m⊕

j=1

an+jψj

(
x(n+j−1)

)
.

Proof. From (4) we have that

Wb(n+m)

〈a(n+m),G〉 =
∑

x(n+m)∈Vn+m

(−1)

n⊕
i=1

aifi(x(n))⊕
m⊕
j=1

an+jgn+j(x(n+m))⊕〈b(n+m),x(n+m)〉
=

=
∑

x(n+m)∈Vn+m

(−1)

n⊕
i=1

aifi(x(n))⊕
m⊕
j=1

an+j(xn+j⊕ψj(x(n+j−1)))⊕〈b(n+m),x(n+m)〉
.

Denote by c(n+m) ∈ Vn+m the vector of the form(
b(n), an+1 ⊕ bn+1, . . . , an+m ⊕ bn+m

)
. Then

Wb(n+m)

〈a(n+m),G〉 = (1 + (−1)cn+m) ×

×
∑

x(n+m−1)∈Vn+m−1

(−1)

n⊕
i=1

aifi(x(n))⊕
m⊕
j=1

an+jψj(x(n+j−1))⊕〈c(n+m−1),x(n+m−1)〉
=

= (1 + (−1)cn+m) ·Wc(n+m−1)

Ψa(n+m)

F,ψ

,

which implies that

max
b(n+m)∈Vn+m

∣∣∣Wb(n+m)

〈a(n+m),G〉
∣∣∣ = 2 · max

c(n+m−1)∈Vn+m−1

∣∣∣∣Wc(n+m−1)

Ψa(n+m)

F,ψ

∣∣∣∣ ,

where

Ψa(n+m)

F,ψ

(
x(n+m−1)

)
=

n⊕

i=1

aifi

(
x(n)
)
⊕

m⊕

j=1

an+jψj

(
x(n+j−1)

)
.
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Then we obtain that N
(〈
a(n+1), G

〉)
= 2 · N

(
Ψa(n+m)

F,ψ

)
and

N (G) = 2 · min
a(n+m)∈Vn+m\{0(n+m)}

N
(

Ψa(n+m)

F,ψ

)
.

4 Some computational results

With the help of the software SageMath (see [22]), for mathematical and
cryptographic research, were calculated the basic cryptographic properties
studied in this work for our approaches.

4.1 Non-linear involutions constructed with our approaches

Let be G = (g1, . . . , gn+m) : Vn+m → Vn+m a involution from the theorem
2, for which the system of boolean functions ψ2, . . . , ψm is chosen so that for
any j ∈ 2,m the boolean function ψj is defined by the rule (10) and the
boolean functions h1

j , h
2
j are chosen from the corollary 1.

In the table 1 are showed these properties in the case when the boolean
function ψ1 : Vn → {0, 1} is chosen from the points 1—5 of the corollary 2,
respectively. To implement the experiments, several involutions were chosen
as F . For the point 1. of this corollary was chosen ε = 1 and for the points
2—5 of this corollary, several boolean functions were chosen as h and the
permutation π was generated random; the best results were obtained when

F (β) = β2n−2, h
(
x(n)
)

=





k⊕
j=1

xjxj+k ⊕ xn, n is odd,

k⊕
j=1

xjxj+k, n is even,

for any β ∈ F2n, where k =

{
n−1

2 , n is odd,
n
2 , n is even.

We will denote by ψi
1 the

boolean function ψ1 from the point i of the corollary 2.
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ψ1 n m
N deg |FixP(G)| δ(G)

ψ1 G ψ1 G

ψ1
1

4 4 2 16 3 2 0 256
5 3 2 8 4 3 0 256
6 2 2 4 5 4 0 256
7 1 2 4 6 5 0 256

ψ2
1

4 4 4 24 3 2 4 256
5 3 8 40 4 3 4 256
6 2 22 64 5 4 4 256
7 1 50 88 6 5 4 256

ψ3
1

4 4 3 24 4 3 2 256
5 3 11 42 5 4 2 256
6 2 24 40 5 4 4 256
7 1 43 86 7 6 2 256

ψ4
1

4 4 4 24 3 2 4 256
5 3 10 40 4 3 4 256
6 2 22 64 5 4 4 256
7 1 50 88 6 5 4 256

ψ5
1

4 4 3 24 4 3 2 256
5 3 11 42 5 4 2 256
6 2 24 64 4 4 0 256
7 1 49 90 7 6 2 256

Table 1: Some cryptographic properties of G.

4.2 Linear involutions constructed with our approaches

In the section 2.2 were described several approaches for the construction
of linear involutions of the form (4), using they matrix representation. Using
the notations of this section, in the table 2 are showed some examples of
matrices on F2 that satisfy the conditions of the theorem 4 and the corollary
3, for constructing linear and affin involutions, respectively.

Based on the statements of the proposition 3 and remark 2 we compute
the matrices Un,n, Wm,m and the vector d(n+m) so that the involution G has
as few fixed points as possible, and at the same time the involution H don’t
have.
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n m Un,n Vm,n Wm,m Mn+m,n+m d(n+m) |FixP(G)| |FixP(H)|

3 3




1 0 0
0 0 1
0 1 0







0 0 0
1 0 0
0 0 0







1 0 0
1 1 0
0 0 1







1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
1 0 0 1 1 0
0 0 0 0 0 1







0
0
0
0
0
1




16 0

3 4




1 0 0
0 0 1
0 1 0







0 1 1
1 1 0
0 0 0
1 1 1







1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1







1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 1 0 0 0
1 1 0 1 1 0 0
0 0 0 0 0 1 0
1 1 1 0 0 1 1







1
0
0
1
0
1
0




16 0

4 4




1 0 0 0
0 1 0 0
1 1 1 0
1 1 0 1







1 1 0 0
0 1 1 0
1 1 0 0
1 1 1 0







1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1







1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0
1 1 0 0 1 0 0 0
0 1 1 0 1 1 0 0
1 1 0 0 0 0 1 0
1 1 1 0 0 0 1 1







0
0
0
1
0
0
0
0




32 0

Table 2: Some involutions from the Construction 1.1. and their fixed points

5 Conclusions

Constructing permutations by specifying their coordinate functions could
be useful when implementing these transformations by using a bit-slicing ap-
proach. In this paper we consider th construction of involutions specifying
their coordinate functions. We have presented a new construction of invo-
lutions of dimension n + m by existing ones of dimension m. For proposed
construction are described several subclasses with particular practical in-
terest in terms of an effective implementations as is the case, for example,
the recursive system of boolean functions ψ1, . . . , ψm from the proposition
1. Was also considered a particular case of the presented construction for
constructing all linear and affin involutions, which can be created with our
approaches.

Several cryptographic properties such that nonlinearity, algebraic degree,
differential uniformity, lineal structure and number of fixed points have been
calculated in this work for the constructed involutions. For the involutions G
from the theorem 2 are described in the point 2 of theorem 4 a method for
constructing involutions without fixed points when |FixP(G)| reaches its max-
imum value. In the case of presented affin involutions are given the necessary
conditions to obtain involutions of this kind without fixed points too. Was
proved that proposed involutions admit linear structure, which implies that
their differential uniformity will be 2n+m. Practical results of these properties
are showed too.
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There are several questions about the construction suggested in this work
which are left as future work, for example, the existences of non-recursive sys-
tems of boolean functions ψ1, . . . , ψm for which the vectorial boolean func-
tions defined by the rule (4) are involutions; and the existences of systems
of boolean functions ψ1, . . . , ψm for which the nonlinearity of the resulting
involutions in the finite field F28 is greater than 90.
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Abstract

Currently numerous cryptographic systems are based on SP-networks. These
primitives are supposed to be secure but recent investigations show that some at-
tacks are possible. The aim of this work is to study the security of the Russian stan-
dardized block cipher Kuznyechik against invariant attacks. We study the known
decompositions of its permutation and show the ways of constructing invariant sub-
sets. A new approach to invariant attacks are presented and proved that there is no
subsets based on S-Box properties that are invariant under the round functions of
Kuznyechik.

Keywords: Kuznyechik, block cipher, invariant attack, nonlinear invariant, decomposition,
S-Box, permutation

1 Introduction

Invariant attacks are one of the most known approaches to studing the
cryptographic algorithm security based on its structural properties. Modern
cryptographic primitives have round based structure and several algorithms
have been broken using this type of attack [1, 2, 3].

A lot of researches focused on the cryptographic properties of the Rus-
sian standardized block cipher Kuznyechik, [4, 5, 6]. At the same there are
currently no known practical attacks on it. Authors [4] have suggested that
recently founded decompositions of the permutation of Kuznyechik may lead
to some attacks on it. In this work we propose a new approach to generalizing
invariant attacks based on the S-Box properties of the algorithm and analyse
the resistance of Kuznyechik block cipher on it.

2 Preliminaries

Let Fq be a finite field of characteristic 2 with q = 2p elements, Fnq — an n-
dimensional vector space over Fq. The additive group (Fq,⊕) is homomorphic
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to the group (Fp2,⊕) with exclusive-or operator ⊕. By GLm(q) we denote a
group of n× n invertible matrices over Fq.

Block cipher design is based on Shannon’s principles of confusion and
diffusion [7]. A function F : Fmq → Fmq of key-alternating substitution-
permutation networks (SP-networks or SPN) is composed of a layer of sub-
stitution boxes (S-boxes), and a layer of bit permutations. Let

FK(x) = F (x)⊕K = X[K] (F (x))

be a round function (incuding the key addition), F (x) = L ◦ S(x), where

– S: Fmq → Fmq , S(x) = S(x1, . . . , xm) = (π(x1), . . . , π(xm));

– L: Fmq → Fmq , L(x) = x · L, L ∈ GLm(q), L = (li,j)m×m, li,j ∈ F∗q.

Such an SP-network will be denoted as SPN∗.
According to [3] the core idea of nonlinear invariant attack is to find a

function g : Fmq → F2 such that there exists many keys K:

g (FK(x)) = g(x⊕ k)⊕ c = g(x)⊕ g(k)⊕ c ∀x ∈ Fmq .

In particular, if there exists a subset G of Fmq such that

{FK(x), x ∈ G} = G (or for the simplicity FK(G) = G). (1)

for a lot of keys K, the function g is the indicator function of the subset G.
This idea can be generalized as follows. Let G ⊂ Fmq , r ∈ N and

FKi+r
◦ . . . ◦ FKi

(G) = G

for a set of vector of keys {(Ki, . . . , Ki+r)}. The set G can be used to im-
plement an invariant attack. The problem is to find a way to construct such
a subset. The easiest way to solve it is to use the invariants of functions S
and L. This paper proposes a different approach, which consists in construct-
ing an invariant for the round transformation, which, in general, is not an
invariant of S or L.

Let us present some of the results of the work [8] that are necessary for
further exposition. Let A and B be a pair of families of sets

A = {A1, A2, . . . , Aea} , Ai ⊆ Fq,

B = {B1, B2, . . . , Beb} , Bi ⊆ Fq
and for any i ∈ {1, . . . , ea} there exists j ∈ {1, . . . , eb} such that π (Ai) ⊆ Bj.
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Consider the families Am and Bm that are the Cartesian product of fam-
ilies A and B correspondingly. Then for any element Ai1 × . . .× Aim ∈ Am,
there exists an element Bj1 × . . .×Bjm ∈ Bm such that

S (Ai1 × . . .× Aim) = (π(Ai1)× . . .× π(Aim)) ⊆ Bj1 × . . .×Bjm.

Suppose that set G is a subsets of the family Am and r = 0. That means
that there exists a key K such that the following diagram is true:

Ai1 × . . .× Aim
S−→ Bj1 × . . .×Bjm︸ ︷︷ ︸

∈Bm

L−→ C︸︷︷︸
∈C

X[K]−−→ Ai1 × . . .× Aim︸ ︷︷ ︸
∈Am

. (2)

The obvious consequence of this diagram is the following

Proposition 1 ([8]). Let F : Fmq → Fmq be a round function of a key-
alternating SPN∗. If there exists a key K such that the diagram (2) is true,
then the family

C = LS (Ai1 × . . .× Aim)

has the form Cl1 × . . .× Clm, where Clj , j ∈ {1, . . . ,m} is a subset of a Fq.

Using the same idea we can generalised this approach for r ≥ 0. Let
G = (V,E) be an oriented graph, with vertices

V =
{
Ai1 × . . .× Aim|Aij ⊆ Fq, j ∈ {1, . . . ,m}

}
.

An edge
(
Ai′1 × . . .× Ai′m, Ai′′1 × . . .× Ai′′m

)
is in E if and only if there exists

a key K such that

FK
(
Ai′1 × . . .× Ai′m

)
= Ai′′1 × . . .× Ai′′m.

The generalization of an invariant attack is possible if there exists a cycle in
G. If diagram (2) is true then there exists a loop in G, if |E| = 0 then attack
is impossible. If there exists a cycle of length r + 1 in G then the following
diagram is true:

Ai1 × . . .× Aim
S−→ Bj1 × . . .×Bjm

L−→ Cl1 × . . .× Clk
X[Ki]−−−→

X[Ki]−−−→ Ao1 × . . .× Aok

X[Ki+r]−−−−→ . . .
X[Ki+r]−−−−→ Ai1 × . . .× Aim.

Then Ai1 × . . .× Aim ∈ G and

FKi+r
◦ . . . ◦ FKi

(Ai1 × . . .× Aim) = Ai1 × . . .× Aim.

Using the graph representation and the fact that L ∈ GLm(q) it’s easy to
prove
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Proposition 2 ([8]). Let F : Fmq → Fmq be a round function of a key-
alternating SPN∗, A′ = Ai′1 × . . . × Ai′m and A′′ = Ai′′1 × . . . × Ai′′m be two
vertices of the same cycle of graph G,

B′ = S (A′) , C ′ = LS (A′) , B′′ = S (A′′) , C ′′ = LS (A′′) .

Then

– B′ = Bj′1 × . . .×Bj′m, B
′′ = Bj′′1 × . . .×Bj′′m ∈ Bm,

– C ′ = Cl′1 × . . .× Cl′m, C ′′ = Cl′′1 × . . .× Cl′′m ∈ Am,
–
∣∣Ai′1

∣∣ = . . . =
∣∣Ai′m

∣∣ =
∣∣Bj′1

∣∣ = . . . =
∣∣Bj′m

∣∣ =
∣∣Cl′1

∣∣ = . . . =
∣∣Cl′m

∣∣,
–
∣∣Ai′1

∣∣ =
∣∣Ai′′1

∣∣.
Using these cardinalities relations it is possible to show the algebraic

structure of vertices in cycles of G.

Theorem 1 ([8]). Let F : Fmq → Fmq be a round function of a key-alternating
SPN∗, Ai1 × . . .× Aim is a vertex on a cycle of graph G,

– S (Ai1 × . . .× Aim) = Bj1 × . . .×Bjm,

– L(Bj1 × . . .×Bjm) = Cl1 × . . .× Clm.
Then

1. Aiz , Bjz , Clz are some cosets of (Fq,⊕), z = {1, . . . ,m};
2. for any z ∈ {1, . . . ,m} there exists c ∈ Fq: π(c ⊕ Clz) is a coset of

(Fq,⊕).

This theorem sets up the way of finding the invariant subset G. The
first we need is to enumerate pairs (Ai, Bi) of coset of (Fq,⊕) such that
π(Ai) = Bi.

In this work we analyze Kuznyechik block cipher that is known to be
an SPN∗ and prove that |E| = 0. To prove this fact, let us first prove the
following theorem.

Theorem 2. Let F : Fmq → Fmq be a round function of a key-alternating
SPN∗, Ai1 × . . .×Aim is a vertex on a cycle of graph G, Bj1 × . . .×Bjm =
S (Ai1 × . . .× Aim). For any z ∈ {1, . . . ,m} Aiz , Bjz = Bjz ⊕ bjz is a coset
of (Fq,⊕), Bjz is a subgroup, and

Uz = {0} × . . .× {0} × Bjz︸ ︷︷ ︸
z

×{0} × . . .× {0}.
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Then the set Wz = L (Uz) has the form

Wz = Wz1 × . . .×Wzm,

where Wzh is a coset of (Fq,⊕) such that there exists a constant
ch : π (Wzh ⊕ ch) is a coset of (Fq,⊕), h = {1, . . . ,m}.

Proof. Let’s consider the set

Bj1 × . . .×Bjm = Bj1 × . . .× Bjm ⊕ (bj1, . . . , bjm) .

Without loss of generality consider h = 1.

L(Bj1 × . . .×Bjm) = L(Bj1 × . . .× Bjm)⊕ L (bj1, . . . , bjm) =

= L({0} × Bj2 × . . .× Bjm)⊕ L (bj1, . . . , bjm)⊕ L(U1) =

= L({0} × Bj2 × . . .× Bjm)⊕ L (bj1, . . . , bjm)⊕W1. (3)

U1 is a subgroup of Fmq then L(U1) = W1 is a subgroup of Fmq too. Moreover,
let

W1 =
{(

w
(j)
1,1, . . . , w

(j)
1,m

)∣∣∣ j ∈ {1, . . . , |U1|}
}
.

Then for any z = {1, . . . ,m}W1,z =
{
w

(j)
1,z

∣∣∣ j ∈ {1, . . . , |U1|}
}
is a subgroup

of Fq because L = (li,j)m×m, li,j ∈ F∗q.
According to the theorem 1

L(Bj1 × . . .×Bjm) = Cl1 × . . .×Clm = Cl1 × . . .× Clm ⊕ (cl1, . . . , clm), (4)

where Clz is a subgroup of (Fq,⊕), clz ∈ Fq, z ∈ {1, . . . ,m}. From equations
(3) and (4) it follows that the set W1 is a subset of

Cl1 × . . .× Clm ⊕ (cl1, . . . , clm)⊕ L (bj1, . . . , bjm)

because
(0, . . . , 0) ∈ L({0} × Bj2 × . . .× Bjm).

At the same time |W1,z| = |Cl1| from which it follows that Cl1 = W1,z. Using
the theorem 1 this theorem is proven.

3 Kuznyechik permutation properties

Increased attention has been paid to the permutation of the Russian
startedized algorithm Kuznyechik [9] in recent years. Its first decomposition
was found by Alex Biryukov, Leo Perrin, and Aleksei Udovenko [10]. In this
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Figure 1: BPU-decomposition, [10]

work we call it BPU-decomposition. Some other interesting properties were
found in [11, 4]. BPU-decomposition has a rather simple design (see fig. 1)
which can be used for efficient implementation on various platforms [12].

The following algorithm was found by [10] to implement the S-Box of
Kuznyechik. Let F24 = GF (24, ·,⊕) = GF (2)[y]/(f(y)) be a finite field
with 24 elements and irreducible polynomial f(y) = y4 ⊕ y3 ⊕ 1. Every
element x ∈ F28 can be considered as a concatenation of l, r ∈ F24 using bit
representation of x:

x = (x1, . . . , x8) = (l‖r), l = (x1, . . . , x4), r = (x5, . . . , x8).

Using this bijection algorithm from [10] can be presented as follows:

1. (l ‖ r) := α(l ‖ r),

2. if r = 0, then l := ν0(l), else l := ν1(l · I(r));

3. r := σ(r · ϕ(l)),

4. return (l ‖ r) := ω(l ‖ r),

where nonlinear transformations ν0, ν1, I, σ, ϕ are given in the following
table (we consider that elements of F24 can be shown in hexadecimal repre-
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sentation):

I 0, 1, c, 8, 6, f, 4, e, 3, d, b, a, 2, 9, 7, 5
ν0 2, 5, 3, b, 6, 9, e, a, 0, 4, f, l, 8, d, c, 7
ν1 7, 6, c, 9, 0, f, 8, 1, 4, 5, b, e, d, 2, 3, a
ϕ b, 2, b, 8, c, 4, 1, c, 6, 3, 5, 8, e, 3, 6, b
σ c, d, 0, 4, 8, b, a, e, 3, 9, 5, 2, f, 1, 6, 7

and linear transformations α and ω are the following:

α =




0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
0 1 0 0 0 0 1 1
1 1 1 0 1 1 1 1
1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 0
0 0 0 1 1 0 1 0
0 0 1 0 0 0 0 0




, ω =




0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
1 0 0 1 1 0 1 0
0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




.

According to Theorem 1 , we must look for coset Ai, which are maped by
the S-Box to some coset Bi. Let us show that the BPU-decomposition allows
us to extract such cosets.

Proposition 3. For S-Box π of Kuznyechik there exist two pairs of subgroup
(Ai,Bi)

– A1 =
{
α−1 (0xd · x‖x)

∣∣x ∈ F24
}
, B1 = {β (0‖y)| y ∈ F24},

– A2 =
{
α−1 (x‖0)

∣∣x ∈ F24
}
, B2 = {β (y‖0)| y ∈ F24},

such that there exist a, b ∈ F8
2 : π(Ai ⊕ a) = Bi ⊕ b.

Proof. Let π̂ be an affine-equivalent permutation of π (see fig. 2):

π̂(x) = ω−1
(
π
(
α−1(x)

)
⊕ (0x2‖0xc)

)
.

If we show that for

– A′1 = {(0xd · x‖x)|x ∈ F24}, B′1 = {(0‖y)| y ∈ F24},

– A′2 = {(x‖0)|x ∈ F24}, B′2 = {(y‖0)| y ∈ F24},

the equation π̂ (A′i) = B′i is true for every i ∈ {1, 2}, we’ll proof the proposi-
tion.
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Figure 2: Decomposition of π̂

Without loss of generality, let’s consider the case i = 1 (fig. 3) the case
i = 2 can be considered similarly (fig. 4).

If x is not equal to 0, then x · 0xd · x−1 = 0xd is a constant and
ν1 (0xd)⊕ 0x2 = 0x0.

It’s obvious that π̂ maps the set {(x · 0xd‖x) , x ∈ F∗24} to {(0‖y) , y ∈
F∗24} because of the facts: ϕ (0x2) 6= 0, x1 · 0x2 = x2 · 0x2⇔ x1 = x2, σ is a
bijection and σ(0) = 0xc.

If x is equal to 0 then π̂ (0‖0) = (0‖0).

The proved proposition only indicates that such cosets exist, but does not
prove that others do not exist. To enumerate them all, consider an algorithm
that works for any permutation. Let span(S) be a linear span of a set S.
Using ideas from [13] the following algorithm can be proposed:

Algorithm 1.

1. i := 0

2. for every a, b ∈ Fq:

(a) Ai ← {0};
(b) Bi ← span (π (Ai ⊕ a)⊕ b);
(c) Ai ← span

(
π−1 (Ai ⊕ b)⊕ a

)
;

(d) if Ai = span(Ai) then:

– if |Ai| 6= 28, print(Ai = Ai ⊕ a,Bi = Bi ⊕ b), i← i+ 1;
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Figure 3: π̂ maps A′1 to B′1

– for every x ∈ F8
2\Ai: Ai ← span (Ai ∪ x), go to step (2.b);

Proposition 4. The algorithm 1 is correct.

Proof. It’s obvious that if there exists a coset Ai ⊂ F8
2 such that a permuta-

tion π maps it into coset Bi ⊂ F8
2 then algorithm 1 will print it.

Definition 1. A pair of sets (Ai,Bi) is I pair of sets for a permutation
π : Fq → Fq if there exist a, b ∈ Fq such that

π(Ai ⊕ a) = Bi ⊕ b.

Subspaces Ai and Bi are called LI and RI sets for π correspondingly.

In proprosition 3 we found two I pairs of sets (Ai,Bi) for permutation
π and every set consists of 16 elements. Using the algorithm 1 one can find
such pairs of sets of any size. We implemented it and found:

– 2 I pairs (Ai,Bi), |Ai| = |Bi| = 16;

– 1 943 I pairs (Ai,Bi), |Ai| = |Bi| = 4;

– 2 730 I pairs (Ai,Bi), |Ai| = |Bi| = 2.
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Figure 4: Invariant subspace of π̂

4 Impossibility attack details

Using the theorem 2 we can propose the following approach to prove the
impossibility of the invariant attack. Let (Ai,Bi) is an I pair for permutation
π. Consider

B
(j)
i = {0} × . . .× {0}︸ ︷︷ ︸

j−1

×Bi × {0} × . . .× {0},

L
(
B

(j)
i

)
= C

(j)
i =

{(
c

(j,1)
i,k , . . . , c

(j,m)
i,k

)
, k = 1, . . . , |Bi|

}
.

And from the theorem 2 it follows that every set

C
(j,l)
i =

{
c

(j,l)
i,k , k = 1, . . . , |Bi|

}

must be Ad — a subset of an LI set for π. Then

∃ c1, c2 ∈ F24 : π (Ad ⊕ c1)⊕ c2

is a subgroup of (Fq,⊕). Using computer calculation and the ideas above we
proved the following

Proposition 5. Let π is a permutation L is a linear and S is a nonlinear
transform of Kuznyechik algorithm, Then for every I pair (Ai,Bi), |Bi| > 1,
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for permutation π and for every j = {1, . . . ,m}, there exist l = {1, . . . ,m}
such that C(j,l)

i is not a subset of any subgroup Ad such that

∃ c1, c2 ∈ F24 : π (Ad ⊕ c1)⊕ c2

is a subgroup of (Fq,⊕).

Let’s consider the most interesting example and take into account I pair
of sets (Ai,Bi) from the proposition 3:

– A1 = {0x00, 0x05, 0x22, 0x27, 0x49, 0x4c, 0x6b, 0x6e, 0x8b, 0x8e, 0xa9,
0xac, 0xc2, 0xc7, 0xe0, 0xe5}, B1 = {0x00, 0x01, 0x0a, 0x0b, 0x44,
0x45, 0x4e, 0x4f, 0x92, 0x93, 0x98, 0x99, 0xd6, 0xd7, 0xdc, 0xdd};

– A2 = {0x00, 0x01, 0x0a, 0x0b, 0x44, 0x45, 0x4e, 0x4f, 0x92, 0x93,
0x98, 0x99, 0xd6, 0xd7, 0xdc, 0xdd}, B2 = {0x00, 0x02, 0x04,
0x06, 0x10, 0x12, 0x14, 0x16, 0x20, 0x22, 0x24, 0x26, 0x30, 0x32,
0x34, 0x36};

It’s the largest LI and RI sets for π. We also can mention that B1 = A2. If
we consider

B1
1 = B1 × {0} × . . .× {0}

then C1,1
1 = B1 = A2 because according to the [9] the linear transform of

Kuznyechik is based on LFSR with the least feedback coefficient equals to
e ∈ F8

2. At the same time C1,2
1 6= A1 ⊕ a nor C1,2

1 6= A2 ⊕ a for any a ∈ F28

that means that Ai1 in G is not A1 ⊕ c for any c ∈ F28. Much simpler with

B1
2 = B2 × {0} × . . .× {0}.

In that case C1,1
2 = B2 6= A1 and C1,1

2 = B2 6= A1.

5 Conclusion

We presented a new approach to invariant attacks based on the S-box
properties of an SPN∗. Kuznyechik is an SPN∗ since it has a linear layer based
on MDS-matrix. Using a computer calculation we enumerated all I pairs for
permutation π of Kuznyechik algorithm and proved the impossibility of a
generalised invariant attack.
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[4] Léo Perrin., “Partitions in the S-Box of Streebog and Kuznyechik. IACR Cryptology ePrint
Archive, 2019:92”, 2019 https://eprint.iacr.org/2019/92.

[5] Vitaly Kiryukhin., “An algorithm for bounding non-minimum weight differentials in 2-round
LSX-ciphers. Cryptology ePrint Archive, Report 2020/1208”, 2020 https://eprint.iacr.
org/2020/1208.

[6] Riham AlTawy and Amr M. Youssef., “A Meet in the Middle Attack on Reduced Round
Kuznyechik. Cryptology ePrint Archive, Report 2015/096”, 2015 https://eprint.iacr.
org/2015/096.

[7] Henk C. A. van Tilborg, editor., “Encyclopedia of Cryptography and Security.”, Springer,
2005.

[8] D.I. Trifonov and D.B. Fomin., “Invariant Subspaces in SPN Block Cipher.”, Applied Dis-
crete Mathematics,, ??:?? (2021), ??–?? Manuscript submitted for publication..

[9] “GOST R 34.12-2015 Information technology. Cryptographic data security. Block ciphers.”,
2015.
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Abstract

This paper presents algebraic attacks on Simon and Speck, two families of
lightweight block ciphers having LRX- and ARX-structures respectively. They were
presented by the U.S. National Security Agency in 2013 and later standardized by
ISO as a part of the RFID air interface standard. We algebraically encode the ciphers
and try to solve the underlying systems with different SAT solvers, methods based
on the linearization and for the first time apply to these ciphers the approaches that
use the sparsity of the considered systems of equations. The linearization parameters
in systems of equations for both of the ciphers are estimated. A comparison of the
efficiency of the used methods is provided.

Keywords: algebraic cryptanalysis, block cipher, lightweight, Simon, Speck

Lightweight cryptography is a research direction of current interest. This
is due to the fact that the impact and the usage of RFID tags, FPGAs, smart-
cards, mobile phones, sensor networks and other cryptographic algorithms for
resource-constrained devices continuously grows and becomes more and more
important. Lightweight cryptographic primitives are designed to be both ef-
ficient and secure for limited resources. In this case the problem of obtaining
the trade-off between the security and efficiency, measured by different met-
rics, appears.

There were developed a number of lightweight block and stream ciphers,
hash functions with a purpose of obtaining the aforementioned trade-off. For
example, lightweight block ciphers designs include, but are not limited to,
HIGHT [1], KATAN [2], KLEIN [3], Piccolo [4] and PRESENT [5].
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In 2013, the NSA introduced the specifications of lightweight block cipher
families Simon and Speck that were claimed to be flexible enough to provide
excellent performance in both hardware and software environments. Simon
has been optimized for performance on hardware devices, and Speck for per-
formance in software. But it was emphasized that both families performed
exceptionally well in both hardware and software, providing the platform
flexibility required by future applications. As of October 2018, the Simon
and Speck ciphers have been standardized by ISO as a part of the RFID air
interface standard, International Standard ISO/29167-21 (Information tech-
nology — Automatic identification and data capture techniques — Part 21:
Crypto suite SIMON security services for air interface communications) and
International Standard ISO/29167-22 (Information technology — Automatic
identification and data capture techniques — Part 22: Crypto suite SPECK
security services for air interface communications), that makes them available
for use by commercial entities.

There are no specific cryptanalytic results nor analysis provided in the
specification document. However, later there appeared a couple of works re-
lated to the cryptanalysis of these ciphers. Mostly differential attacks are
under consideration. For instance, in paper [6] differential cryptanalysis of
round-reduced Simon and Speck was considered. The attacks on up to
slightly more than half the number of rounds were described and the draw-
back of the intensive optimizations in these ciphers was concluded.

The considered ciphers are representatives of LRX- and ARX- structures
of block ciphers, the core of them is the explicit usage of nonlinear algebraic
operations instead of S-boxes. It leads to the problem of algebraic analysis of
these ciphers. Algebraic analysis of Simon was made by Raddum in [7]. Com-
bined algebraic and truncated differential cryptanalysis on reduced-round
Simon appeared in paper of Courtois et al. [8]. The resistance of Simon-
64/128 with respect to algebraic attacks was studied by using a SAT solver
and ElimLin algorithm. In article [9] the usage of SAT-solvers for algebraic
cryptanalysis of ARX-structures was discussed. Recently, in paper [10] the
attack on up to 13 rounds with 8 chosen plaintexts by fixing 4 and 6 key bits
for Simon-32/64 and Simon-64/128 was presented.

In current work we study and compare the efficiency of different types
of algebraic attacks on round-reduced Simon and Speck. The analysis is
provided via different SAT solvers usage as well as methods of solving systems
of polynonomial equations, based on the linearization routine. The methods
that exploit the sparsity of the systems of equations (The Raddum-Semaev
description of the system and the Algorithm) are also considered. This is the
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first attempt to analyze the resiliense of Speck cipher to different algebraic
attacks outside the SAT-solvers usage. The conclusion on the obtained results
is given.

1 Simon and Speck families of ciphers

1.1 General description of Simon

Simon is a family of lightweight block ciphers for an optimal hard-
ware performance, presented in [11]. Simon has structure of classical Feistel
scheme, in each round 2n-bit input of the round is divided into two n-bit
halves. Each round of Simon applies a non-linear, non-bijective round func-
tion F : Fn2 → Fn2 to the left half L of the state. The output of F is added
using XOR to the right half R along with a round key k, and the two halves
are swapped. The round function F is defined as

F (x) = (S8(x)� S1(x))⊕ S2(x), x ∈ Fn2 ,

where Sj(x) denotes left rotation of x ∈ Fn2 by j positions and the symbol �
is for binary operation AND.

We introduce a new variable for each output of the bitwise operation
�, then to describe T rounds we get n(T − 2) quadratic equations in
n(T − 2) + k unknowns. Where n is a word size, T is a number of rounds
and k is a key length.

Li Ri

S8

S1

S2

ki

Li+1 Ri+1

Figure 1: Round function of Simon

The key schedule of Simon is described as a function that operates on
two, three or four n-bit word registers, depending on the size of the general
key. It performs two rotations to the right: S−3(x) and S−1(x) and XOR the
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results together with a fixed constant c = 2n− 4 and five constant sequences
depending on the version of the specification. These constant sequences are
obtained by using three square matrices of order 5 over the field F2, and a
linear feedback shift register where the first two are of period 31 and the last
three have the period 62. The general secret key consists of m key words,
each of n bits length, where m ∈ {2, 3, 4}.

1.1.1 Key schedules

The first m keys are set, each consisting of n bits. The sequence of keys
is calculated recursively (c = 2n−4 is a constant, and zj is a fixed periodical
sequence, exact value see in [11]). The value of m depends on the values of
the block size 2n and the number of rounds T (Table 1)

ki+m =





c⊕ (zj)i ⊕ ki ⊕
(
I ⊕ S−1

)
S−3ki+1, for m = 2,

c⊕ (zj)i ⊕ ki ⊕
(
I ⊕ S−1

)
S−3ki+2, for m = 3,

c⊕ (zj)i ⊕ ki ⊕
(
I ⊕ S−1

)
(S−3ki+3 ⊕ ki+1), for m = 4.

Block size 2n Key size mn Word size n Key words m const seq Rounds T
32 64 16 4 z0 32
48 72 24 3 z0 36

96 4 z1 36
64 96 32 3 z2 42

128 4 z3 44
96 96 48 2 z2 52

144 3 z3 54
128 128 64 2 z2 68

192 3 z3 69
256 4 z4 72

Table 1: Simon parameters

1.2 General description of Speck

Speck is a family of lightweight block ciphers for excellent performance
in both hardware and software, but have been optimized for performance on
microcontrollers. This family was also presented in paper [11]. In each round
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2n-bit input of the round is divided into two n-bit halves. Each round of
Speck applies a non-linear round function is defined as

Rk(x, y)→
((
S−α(x) + y

)
⊕ k, Sβ(y)⊕

(
S−α(x) + y

)
⊕ k
)
,

where Sj(x) denotes left rotation (if j > 0) by j positions and right rotation
(if j < 0) of x ∈ Fn2 , the symbol «+» is an addition modulo 2n. The param-
eters have following values: α = 7 and β = 2 if n = 16 (block size is equal
to 32) and α = 8 and β = 3 otherwise.

On the first round there will be only 2n equations because initially we
set two n-bit words. On the next encryption rounds, 2 · (8n − 3) equations
are added each time (for m = 1 7n− 3 equations are added on key schedules
and 8n−3 on a round function) and 3n unknowns. Starting from the second
round, 3 unknowns are added due to the key schedule. When constructing
a system of equations, we substitute the input and output cipher before the
first round and after the last (L0, R0, Ln, Rn), so the number of unknowns
is reduced by 4n. The final formulas for the number of equations and the
number of unknowns are

e =

{
(7n− 3)(T − 1) + (8n− 3)(T − 1) + 2n, for m = 1,

2(8n− 3)(T − 1) + 2n, for m = 2, 3, 4,

u =

{
n(5T − 4), for m = 1,

n(6T − 5), for m = 2, 3, 4.

where e is a number of equations, u is a number of variables, n is a word
size, T is a number of rounds.

Li Ri

S−α

Sβ

Li+1 Ri+1

ki

Figure 2: Round function of Speck
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1.2.1 Key schedules

The Speck key schedules use the round function to generate round keys.
Let K = (lm−2, . . . , l0, k0) be a key for a Speck, where li, k0 ∈ Fn2 , m ∈
{2, 3, 4}. The value of m depends on the values of the block size 2n and the
number of rounds T (Table 2). Keys ki and li are defined as

li+m−1 = (ki + S−αli)⊕ i,

ki+1 = Sβki ⊕ li+m−1

Block size 2n Key size mn Word size n Key words m Rot α Rot β Rounds T
32 64 16 4 7 2 22

48
72

24
3

8 3
22

96 4 23

64
96

32
3

8 3
26

128 4 27

96
96

48
2

8 3
28

144 3 29

128
128

64
2

8 3
32

192 3 33
256 4 34

Table 2: Speck parameters

Conducting cryptanalysis on a small number of rounds (such as 3 and 4)
with selecting standard characteristics (Table 2) is not sensible since the keys
are not built on the basis of the original ones and there will be no connection
between them. Therefore, in this work we consider the cipher with m = 1 for
T ∈ {3, 4}.

1.2.2 Addition modulo 2n

The round function of the Speck cipher is nonlinear, this property in
Speck is provided by the addition operation modulo 2n, which is the part
of the encryption algorithm. It is possible to obtain a redefined system of
6n− 3 linearly independent algebraic equations that completely describe the
operation under consideration [12]. One of them will be linear while the rest
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are quadratic.




w0xi+α = xαxi+α ⊕ y0xi+α , i = 1, n− 1

w0yi = xαyi ⊕ y0yi , i = 0, n− 1

w0wi = xαwi ⊕ y0wi , i = 0, n− 1

w1xα = x1+αxα ⊕ y1xα ⊕ xαy0
w1y0 = x1+αy0 ⊕ y1y0 ⊕ xαy0
wi = xi+α ⊕ yi ⊕ xi−1+α ⊕ yi−1 ⊕ xi−1+αyi−1 ⊕ xi−1+αwi−1⊕
yi−1wi−1, i = 2, n− 1

wi(xi−1+α ⊕ yi−1) = xi−1+αxi+α ⊕ xi−1+αyi ⊕ xi−1+α ⊕ xi−1+αwi−1⊕
xi+αyi−1 ⊕ yi−1yi ⊕ yi−1 ⊕ yi−1wi−1 , i = 2, n− 1

wi(xi−1+α + wi−1) = xi−1+αxi+α ⊕ xi−1+αyi ⊕ xi−1+α ⊕ xi+αwi−1 ⊕ yiwi−1⊕
xi−1+αwi−1 , i = 2, n− 1

w0 = xα mod n ⊕ y0
w1 = x1+α ⊕ y1 ⊕ xαy0

2 Attacks based on linearization

2.1 Pure linearization

The idea of this method is to assign every monomial from the initial
system with a new variable. The system after the assignment becomes a
linear one. The obtained system is solved via different methods, for instance
Gaussian elimination, and solutions of linear system are checked for being
solutions for the initial nonlinear system of equations.

The efficiency of linearization depends on the rank r of the system whereas
the number of different monomials in the initial system defines the number
of variables n′ in the system of linear equations. The set of solutions is not
empty, so it is 2n

′−r > 0, hence in order to estimate the performance one
should analyze the bounds for the values of n′ and r.

The analysis of this attack (see [13]) shows that the rank of the system
is expected to be sufficiently large if m ≈ n2/2. Estimation of the required
number of operations and time complexity of the attack can be provided
by taking into account the number of different monomials in the system of
equations that describe the considered cipher and varying its rank.
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2.1.1 Number of different monomials in Simon’s system of equations

Considering the encryption algorithm, we can estimate the number of
monomials for each round. With the introduction of new variables, the esti-
mate is 6nT , where n is the word length, T is the number of rounds. The
estimate was obtained based on the fact that for each operation new variables
are introduced (xor, plus, plus, addition with key) and taking into account
the re-designation when replacing Li+1 and Ri+1.

In addition, an estimation of the number of variables without reassign-
ment (introduction of new variables) was carried out in order to assess the
effectiveness of the linearization method. When analyzing a small number
of rounds without introducing new variables, it was noticed that every four
rounds, the number of variables decreases when added using Ri. Thus, a
recurrence relation was obtained for the number of variables, taking into ac-
count the decrease every four rounds. Let P (T ) be the number of variables
on the T -th round, where n is a word size.

P (T ) =





4 · n, T = 1

7 · n, T = 2

n
(
P 2(T − 2) + P (T − 2) + 1

)
, if T is divisible by 4

n
(
P 2(T − 2) + P (T − 1) + P (T − 2) + 1

)
, otherwise.

In practice, an estimate for the number of variables with n = 16, T = 32 was
found, excluding the key stage, it is about 268. Thus, we found that changing
the variables significantly reduces the amount of computation.

For the case when new variables are introduced on every round and the
degree is at most 2, the formula without monomials that come from the key
schedule equations (all equations are linear), is

M 6 6nT,

whereM is a number of monomials, n is a word size, T is a number of rounds.

Block size 2n Word size n Rounds T Num. of monomials Rank of the linearized system
Num. of unknowns
with key schedule

32 16 32 ≈ 211.6 ≈ 28.9 ≈ 29

48 24 36 ≈ 212.3 ≈ 29.7 ≈ 29.7

64 32 42 ≈ 213 ≈ 210.3 ≈ 210.4

44 ≈ 213 ≈ 210.4 ≈ 210.4

96 48 52 ≈ 213.9 ≈ 211.2 ≈ 211.3

54 ≈ 213.9 ≈ 211.3 ≈ 211.3

128 64 68 ≈ 214.7 ≈ 212 ≈ 212.1

69 ≈ 214.7 ≈ 212 ≈ 212.1

72 ≈ 214.8 ≈ 212.1 ≈ 212.2

Table 3: Parameters of Simon’s system of equations
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By using these data the estimates of cryptographic strength with respect
to linearization can be made. In fact it defined by the complexity of the
search in the set of the solutions of obtained system of equations and the
complexity of obtaining the solutions by Gauss elimination. The complexity
of the search is about 2n′−r, where n′ is the number of monomials (variables
in lonearized system) and r is the rank of linearized system.

For real specifications, for instance for 32 rounds block size and 32 rounds
number of monomials (variables in linearized system) is about 211.5 while the
rank is about 29. For 96 block size and 52 rounds the number of monomials
(variables in linearized system) is about 214 while the rank is about 211 It
is clear that the obtained estimates are unfeasible in comparison with brute
force.

2.1.2 Number of different monomials in Speck’s system of equations

The main method of withholding degree is the introduction of new vari-
ables for the output bits of nonlinear operations. In this case the degree will
then not exceed 2. New variables are introduced with each new round: cipher
text (xi, yi), key (ki, li), variables describing addition modulo 2n.

In the system of equations that describes an addition modulo 2n (section
1.2.2), there are total 5(7n−8) monomials. In practice, it was found out that
the unique monomials in the system of equations of addition modulo 2n is
at most 25n− 18. As a result, the number of unique monomials per Speck
round is at most 28n− 18 per each round.

The final formula for estimating the number of monomials, excluding such
ones that come from the key schedule equations (all equations are linear), is

M 6 (28n− 18)T,

where M is the number of monomials, n is the word size, T is the number of
rounds.

Block size 2n Rounds T Num. of monomials
Rank of the system
without key sch.

Rank of the system
with key schedule

Num. of unknowns
without key sch.

Num. of unknowns
with key schedule

32 22 ≈ 213.2 ≈ 211.4 ≈ 212.4 ≈ 29.95 ≈ 211

48
22 ≈ 213.8 ≈ 212 ≈ 213 ≈ 210.5 ≈ 211.6

23 ≈ 213.9 ≈ 212.1 ≈ 213.1 ≈ 210.6 ≈ 211.7

64
26 ≈ 214.5 ≈ 212.7 ≈ 213.7 ≈ 211.2 ≈ 212.3

27 ≈ 214.5 ≈ 212.8 ≈ 213.7 ≈ 211.3 ≈ 212.3

96
28 ≈ 215.2 ≈ 213.4 ≈ 214.4 ≈ 211.9 ≈ 213

29 ≈ 215.2 ≈ 213.4 ≈ 214.4 ≈ 212 ≈ 213

128
32 ≈ 215.8 ≈ 214 ≈ 215 ≈ 212.6 ≈ 213.6

33 ≈ 215.8 ≈ 214.1 ≈ 215.1 ≈ 212.6 ≈ 213.6

34 ≈ 215.9 ≈ 214.1 ≈ 215.1 ≈ 212.6 ≈ 213.6

Table 4: Parameters of Speck’s system of equations
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As well as in the previous section by using obtained estimates the com-
plexity of the linearization attack can be analyzed. For real specifications, for
instance for 32 rounds block size and 32 rounds number of monomials (vari-
ables in linearized system) is about 213 while the rank is about 29. For 96
block size and 28 rounds the number of monomials (variables in linearized
system) is about 215 while the rank is about 213 It is clear that the obtained
estimates are unfeasible in comparison with brute force as well.

2.2 XL-attack

This attack was introduced in [14, 15]. It takes a system of m polynomial
equations in n unknowns, of degree d and outputs its solution or solutions,
if the equations have sufficient rank.

– 1: Select degree D > d. Usually D = d+ 1.

– 2: Make a list S of all monomials of degree D− d or less, including the
monomial 1, which has degree 0.

– 3: Multiply all equations by every element of S. (Since there were m
equations before this step, there are m|S| equations after it).

– 4: Linearize the system.

– 5: Solve the obtained system via linear algebra.

For the case d = 2 and D = d + 1 the analysis of this attack (see [13])
shows that the uique solution is likely to be found if m ≈ n2/6.

2.3 ElimLin

The ElimLin algorithm appeared in [16] (see also its analysis in [17]). Its
point is the search of hidden linear equations existing in the ideal generated by
the given system of equations. This algorithm is composed of two sequential
steps:

1 : Gaussian Elimination: Discover all the linear equations in the linear
span of initial equations.

2 : Substitution: Variables are iteratively eliminated.
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In more details it can be described as follows.
INPUT: A system of degree 2 polynomial equations. OUTPUT: Either, a

solution or solutions to the system, if the equations have sufficient rank, or if
not, then a reduced system of equations in fewer variables than the original,
to be solved by some other method.

1 : D is an empty set.

2 : Linearize the system of equations.

3 : Perform Gaussian Elimination to result in Reduced Row Echelon Form.

4 : Let ` be the number of all-linear equations found.

1 : If ` = 0, STOP.

2 : If ` > 0.

1 : For i = 1, 2, . . . , `

1 : Move all the variables and constants, but one, to one side
of the equal sign.

2 : Substitute this redefinition of a variable into the other equa-
tions, thus eliminating one variable.

2 : Substitute this redefinition of a variable into the other def-
initions in D.

2 : Add the definition to D.
2 : Goto Step 3, “Perform Gaussian Elimination.”

2.4 Results

In the Table 5 we give the results for the pure linearization, the XL-
method and the ElimLin method that allow to compare Simon and Speck
from that perspective. For XL-method the value of the resulting degree D
was chosen to 3.

A search on the key space key is 216 (when n = 16, m = 1). As we can
see in the table 5 the linearization method from round 4 and 5 onwards gives
worse results than a brute force attack. Using the pure linearization method
for T at least 4 and XL-method for at least 5 rounds (cipher Simon) does
not improve the search for a solution in comparison with brute force.
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Simon parameters
Number

of equations

Number

of variables

Number

of monomials

Number

of solutions

Pure

linearization
T = 3, m = 1 48 32 48

4, only one corresponds

to the key

XL-method T = 3, m = 1 1584 32 992 1

Pure

linearization
T = 4, m = 1 64 48 80 65536

XL-method T = 4, m = 1 3136 48 2616
256, only one corresponds

to the key

Pure

linearization
T = 5, m = 1 80 64 112 232

XL-method T = 5, m = 1 5200 64 5008 2336

Speck parameters

Pure

linearization
T = 3, m = 1 500 176 1236 —

XL-method T = 3, m = 1 88500 176 185216 —

Table 5: Results for attaks based on linearization

Parameters (Equations, Linear equations)
(Equations, Linear equations

after ElimLin applied)

Simon T = 3, m = 1 (48, 32) (48, 32)

Simon T = 5, m = 1 (80, 32) (80, 48)

Speck T = 3, m = 1 (500, 132) (307, 137)

Speck T = 5, m = 2 (1032, 296) (654, 297)

Table 6: Results for ElimLin

3 Attack based on SAT solvers

3.1 SAT

The Boolean satisfiability problem (SAT) is a decision problem, in which
for an arbitrary Boolean formula the question is whether there exists such
assignment of variables that the formula has value True. This problem is
known to be NP-hard.

SAT solvers are a powerful computational tools to test the hardness of
certain problems, they have successfully been used to test hardness assump-
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tions [18]. There are several examples of the usage of SAT solvers in a scope
of algebraic cryptanalysis. The first SAT-based cryptanalysis was provided
by Massacci et al. in [19]. In that work the Data Encryption Standard (DES)
was attacked with a usage of DPLL-based SAT solvers.

SAT-based cryptanalysis implies two stages: on the first stage a SAT en-
coding is provided, for instance the translation of the given ANF system to
CNF. There are some tools for converting cryptographic tasks into СNF:
Grain-of-Salt [20], URSA [21], SAW [22], Transalg [23], Bosphorus [24]. We
use anf2cnf [25] convertor from PolyBoRi library integrated at Sage. On the
second stage the obtained SAT instance is solved using SAT solving algo-
rithm. For cryptographic systems often applied such SAT-solvers as Crypto-
MiniSat [26] and Lingeling (with its parallel versions Plingeling and Treen-
geling) [27].

For addition information about overview and state-of-art on SAT solvers
and their applications to cryptanalysis we recommended to refer to paper [23].

3.2 Results

In this section the results on the usage of SAT solvers for attack on
reduced-round versions of Simon and Speck ciphers are given. We apply
SAT solvers CryptoMiniSat (in Sage ver. 6.10) and Lingeling, Plingeling,
Treengeling at PC with following features: Core i5-4690 CPU 3.5 GHz (х4),
12Gb RAM.

Choosing the tools for solving SAT problem was make in favor of Lin-
geling family solvers and CryptoMiniSat based on rating SAT Competition
2018 [28], 2020 [29]. The CryptoMiniSat solver was originally developed
for solving SAT problems related to cryptographic structures and has been
widely used in scientific literature for analyzing methods based on SAT solv-
ing. Plingeling and CryptoMiniSat solvers were included in the top-3 parallel
tracks (only for SAT) SAT Competition 2018, which is presumably about the
effectiveness of their subsequent use on multiprocessor systems.

Experimental result of SAT solving for 3 to 10 round Simon and 3 to 6
round Speck are presented at Tables 7 and 8. Two ANF generation form for
Simon were examined: all round keys are independent variables and all round
keys are represented by key schedule algorithm.
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Simon parameters Num. of
equations

Num. of
unknowns

SAT
parameters SAT Time (RAM)

T = 3, m = 1 (with round key) 80 80 96 lit., 432 clause

CryptoMiniSat (SageMath) 0.17 sec.
Lingeling 0.01 sec., 0.1 MB
Plingeling 1.1 sec., 0.7 MB
Treengeling 0.50 sec., 0.05 MB

T = 5, m = 2 (with round key) 128 128 192 lit., 1136 clause

CryptoMiniSat (SageMath) 8.43 sec.
Lingeling 0.9 sec., 2.0 MB
Plingeling 2.9 sec., 21.0 MB
Treengeling 2.36 sec., 10 MB

T = 5, m = 2 (key schedule) 80 80 176 lit., 1710 clause

CryptoMiniSat (SageMath) 15.79 sec.
Lingeling 1.4 sec., 2.0 MB
Plingeling 2.2 sec., 15.4 MB
Treengeling 0.86 sec., 3 MB

T = 7, m = 2 (with round key) 192 192 320 lit., 2064 clause

CryptoMiniSat (SageMath) 287.31 sec.
Lingeling 3687.9 seс., 45.9 MB
Plingeling 212.7 sec., 103.3 MB
Treengeling 681.14 sec., 77 MB

T = 7, m = 2 (key schedule) 112 112 320 lit., 3632 clause

CryptoMiniSat (SageMath) 101.23 sec.
Lingeling 1867.2 sec., 38.0 MB
Plingeling 229.5 sec., 99.2 MB
Treengeling 389.84 sec., 62 MB

T = 8, m = 2 (with round key) 224 224 384 lit., 2528 clause

CryptoMiniSat (SageMath) -
Lingeling 69811.9 sec., 120.5 MB
Plingeling 4775.5 sec., 260.3 MB
Treengeling 12702.81 sec., 182 MB

T = 8, m = 2 (key schedule) 128 128 368 lit., 4448 clause

CryptoMiniSat (SageMath) 51533.67 sec.
Lingeling 845.4 sec., 26.6 MB
Plingeling 1188.8 sec., 169.2 MB
Treengeling 4426.12 sec., 95 MB

T = 9, m = 2 (key schedule) 144 144 480 lit., 6448 clause

CryptoMiniSat (SageMath) -
Lingeling >260174.3 sec., >180.7 MB
Plingeling 47799.2 sec., 620.3 MB
Treengeling 24547.91 sec., 172 MB

T = 10, m = 2 (key schedule) 160 160 560 lit., 8096 clause

CryptoMiniSat (SageMath) -
Lingeling -
Plingeling 17554.9 sec., 458.8 MB
Treengeling 60776.91 sec., 234 MB

T = 11, m = 2 (key schedule) 176 176 640 lit., 9648 clause

CryptoMiniSat (SageMath) -
Lingeling
Plingeling -
Treengeling

Table 7: Results for SAT solvers on Simon

Speck
parameters

Num. of
equations

Num. of
unknowns

SAT
parameters SAT Time (RAM)

T = 3, m = 1 500 176 1460 lit.,
11020 clause

CryptoMiniSat (SageMath)
Plingeling
Treengeling
Lingeling

0.56 sec.
0.9 sec., 9.6 MB
0.97 sec., 4 MB
0.2 sec., 1.9 MB

T = 4, m = 2 782 320 2492 lit.,
17380 clause

CryptoMiniSat (SageMath)
Plingeling
Treengeling
Lingeling

21.4 sec.
3.0 sec., 17.3 MB
8.25 sec., 15 MB
61.4 sec., 14.8 MB

T = 5, m = 2 1032 416 3312 lit.,
23184 clause

CryptoMiniSat (SageMath)
Plingeling
Treengeling
Lingeling

-
-
14448.17 sec., 278 MB
-

T = 6, m = 2 1282 512 4132 lit.,
28988 clause

CryptoMiniSat (SageMath)
Plingeling
Treengeling
Lingeling

-
-
123353.82 sec., 546 MB
-

Table 8: Results for SAT solvers on Speck
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4 The Raddum–Semaev Method

4.1 The representation of the system os equations

This approach to solving sparse polynomial systems of equations over F2

was introduced by H̊arvard Raddum and Igor Semaev, its general descrip-
tion was presented in [30]. The analysis and some properties one can find in
paper [31].

Its core is the following. To i-th equation fi(x) = 0 from the initial system
of equations a subset if variables Xi ⊆ X and the list Li ⊆ F|Xi|

2 of vectors
are associated. The set Xi is the set of all variables from which the Boolen
function f essentially depends. The list Li consists of all configurations that
are in fact solutions of the equation fi(x) = 0 (it is expected that the car-
dinality of |Li| is about 2|Xi|−1). Every pair

(
Xi, Li

)
can be considered as

a single vertex in a graph. This set of vertices is said to be upper set [13].
The other type of vertices (lower set) is defined by the pairs

(
Xi ∩Xj, L

′
ij

)

each of which is obtained via the intersection of variables ffrom i-th and j-th
equations, whereas the list L′ij is a set of all possible combinations for tha
variables from Xi ∩ Xj that is a space F|Xi∩Xj |

2 . The edges are drawn from
the vertex

(
Xi ∩Xj, L

′
ij

)
to every of vertices

(
Xi, Li

)
and

(
Xj, Lj

)
. If there

is a pair of vertices with the same intersection that is already considered in
the graph, two edges are added instead of introducing the new vertex.

The sparsity in variables plays an important role since the lists Lij com-
prise all possible combinations from the intersections of two particular equa-
tuions. Here, we discuss a form of sparsity when only a limited numberof
variables actually appear in each equation. If this number is large the com-
putationsl cost can be nonfeasible. Together with that, all solutions of the
equations from the initial system should be considered.

4.2 Agreeing-Gluing Algorithm

The processing and the search of the solution is performed via the so
called Agreeing procedure. This routine takes two adjacent vertices and up-
dates their lists by removing vectors that have different subvectors for com-
mon variables. It starts chain-reaction with another vertices that were agreed
before such update, so the algorithm proceeds them again that leads to the
reducing of their lists.

In practise it is often the case when all vertices are in agreement state
while there are still a lot of redundant configarations in their lists, that makes
the search of the solution hard from this point. For such situations a Gluing
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procedure is performed. For two pairs
(
X1, L1

)
and

(
X2, L2

)
two sets of

variables Z = X1 ∪ X2 and Y = X1 ∩ X2 are defined by the rule U =
{a1, b, a2} with (a1, b) ∈ L1, (b, a2) ∈ L2, ai = Xi \ Y and b belongs to Y .
Then the vector (a1, b, a2) is the gluing of (a1, b) and {b, a2}. After the gluing
the new vertex is not agreed with its neighbours so the Agreement procedure
can start.

There is also another technique used for re-starting the Agreement pro-
cedure that is known as Splitting. Its idea is that the list of the vertex is
splitted into two parts one of which is temporarily discarded. If there is no
solution at the end of the work of the Algorithm, the another partition is
considered.

The criteria for stop is the situation when there is an only one item in
every list, but in practise it is enough to have small number of vectors in the
lists after the Agreeing-Gluing Algorithm.

As results for the usage of this Algorithm to attack Simon and Speck
we give only maximal number of rounds for which the Algorithm finished
in feasible time. It is worth mention that time complexity depends heavily
on the heuristics used to start the Agreement process whether it is (partial)
Splitting or Gluing. The choice of vertices for Gluing can also comprise some
analysis of current state of the graph.

4.3 Simon

The number of variables in each equation non-trivially depends on the
number of rounds and keys. The Table 9 shows the dependence of the maxi-
mal number of variables in the equation on the number of rounds and keys.

m = 2 Num. of rounds (T ) 5 6 7 8 9 10 11 12
Max. num. of variables 9 11 12 12 14 17 18 18
Num. of rounds (T ) 13 14 15 16 17 18 19 20
Max. num. of variables 18 18 18 18 22 25 26 26

m = 4 Num. of rounds (T ) 5 6 7 8 9 10 11 12
Max. num. of variables 6 10 18 21 23 25 28 31

Table 9: Number of variables for each equation for Simon

It shows that for T > 16 it becomes rather costly to perform the Agreeng-
Gluing algorithm.

Within current work the Agreeing-Gluing Algorithm was run on Simon
for up to 9 rounds.
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Simon
parameters

Num. of
equations

Num. of
unknowns

Upper set
Lower set

T = 7, m = 2 112 112 112
800

T = 8, m = 2 128 128 128
1072

T = 9, m = 2 144 144 144
1600

Table 10: Parameters for the Raddum-Semaev Algorithm on Simon

4.4 Speck

By introducing of new variables on each round of Speck cipher, the
number of different variables on each round does not increase. The maximum
number of variables that occur in a single equation is 6. Furthermore, the
number of equations and the number of variables on each round can be
represented as a Table 11 for m = 1 and as a Table 12 for m = 2, 3, 4.

Number of variables Number of equations
6 2(T − 1)(2n− 4)
5 2(T − 1)n
4 6(T − 1)n+ (T − 2)n
3 2(n+ 1)(T − 1)
2 3n

Table 11: Number of variables for each equation for Speck, m = 1

Number of variables Number of equations
6 2(T − 1)(2n− 4)
5 2(T − 1)n
4 6(T − 1)n+ (T − 2)n
3 2(n+ 1)(T − 1)
2 (T − 1)n+ 3n

Table 12: Number of variables for each equation for Speck, m = 2, 3, 4

The Agreeing-Gluing Algorithm was run on Speck for up to 6 rounds.
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Speck
parameters

Num. of
equations

Num. of
unknowns

Upper set
Lower set

T = 3, m = 1 500 176 500
558

T = 4, m = 2 782 320 782
749

T = 5, m = 2 1032 416 1032
1005

T = 6, m = 2 1282 512 1282
1229

Table 13: Parameters for the Raddum-Semaev Algorithm on Speck

5 Conclusion

The goal of current work was to analyze and compare the efficiency of dif-
ferent types of algebraic attacks under the same conditions on two instances
of LRX- and ARX- ciphers that are based on the explicit usage of logical
operations. This is the first attempt to estimate the resilience of the cipher
Speck to algebraic cryptanalysis via different methods.

Experimental results show that algebraic analysis techniques is perspec-
tive way for modern cipher’s robustness analysis (especially for lightweight
ciphers). Two approaches at algebraic analysis as linearization methods and
reduction to SAT-problem for Simon and Speck ciphers are presented. The
usage of the the Raddum–Semaev Algorithm was also analyzed.

The results of algebraic analysis show that including of extra nonlinear
operation (like addition modulo 2n) leads to an extremely increase of time and
memory complexity of algebraic attack. Therefore observed methods more
efficiently applicable for Simon cryptanalysis then for Speck encryption
algorithm. At the same time the sparsity of the system for Speck seems to
be extremely lower than for Simon that leads to the idea that the usage of
techniques that exploit sparsity is a goal worth pursuing.

Further directions of research are: theoretical complexity assessments of
algebraic analysis for full-round Simon and Speck ciphers, experimental us-
age of other ANF-to-CNF converters and efficient SAT-solvers, observe and
develop methods to combine linearization and SAT techniques to improve
efficiency of analysis. The usage and comparison of other methods of solving
systems of Boolean equations is also a direction for the future research.
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Abstract

Consider a random binary sequence X1, . . . , Xn and the hypothesis H0 that the
elements of this sequence are independent and have equiprobable distributions on the
set {0, 1}. In this paper we propose two goodness-of-fit criterions for the hypothesis
H0, these criterions are based on computation of Lempel-Ziv statistics. A sequence
of the length n = mT is divided into m blocks of (equal) length T , for these blocks
we compute values of Lempel-Ziv statistics W1(T ), . . . ,Wm(T ). If the hypothesis
H0 is true, these values are independent and their distributions are equal, so we
may construct goodness-of-fit tests for hypothesis H0 based on these statistics via
standard methods.

The first criterion is based on the statistic W̃ (2mT ) = (W1 +W2 + . . .+Wm)−
(Wm+1 + Wm+2 + . . . + W2m), the distribution of this statistic is symmetric about
zero.

The statistic of the second criterion is the value χ̃2(mT ) = max1≤k≤m χ2
k(T ),

where χ2
1(T ), . . . , χ2

m(T ) — values of chi-square statistics corresponding to
W1(T ), . . . ,Wm(T ).

For both criterions we propose limit distributions of statistics, and for the first
criterion we also obtain an estimation for the speed of convergence to the limit
normal distribution,

To compute the distributions of statistics Wk(T ) we use the formulae proposed
in [4] (these formulae may be found in the section 5).

Keywords: Lempel-Ziv, RNG testing, statistical criterion, computation.

1 Introduction

Lempel-Ziv critetion for a long time was a part of the NIST Statistical
Test Suite — well-known collection of statistical criterions for testing the
quality of random and pseudorandom sequences designed by the National
Institute of Standards and Technology, USA (ref. [1], [2]).

For computation of Lempel-Ziv statistic a sequence X1, X2, . . . of ele-
ments of alphabet {0, 1} is divided into sequences of digits (words) in such a
way that any next word is the least word that is not equal to any of previous
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words; the first word is the empty word. The statistic of Lempel-Ziv crite-
rion is the amount W (T ) of words obtained in such a way for the sequence
X = (X1, X2, . . . , XT ) of the length T.

Examples:
Binary sequence 011101101011 of 12 digits is be divided into 7 words

∅, (0), (1), (11), (01), (10), (101) and remainder 1 that is not considered be-
cause it is equal to the third word.

Binary sequence 010101101010 of 12 digits is be divided into 7 words
∅, (0), (1), (01), (011), (010), (10) without remainder.

The Lempel-Ziv criterion is a goodness-of-fit criterion for the hypothe-
sisH0 that digits of sequenceX are independent and equiprobable distributed
on {0, 1}, this criterion is defined as follows:

{|W (T )− µ(T )| < Cσ(T )} ⇒ H0,

{|W (T )− µ(T )| ≥ Cσ(T )} ⇒ H1, (1)

where C — critical level, H1 — full alternative for hypothesis H0, µ(T ) =
EW (T ) and σ(T ) =

√
DW (T ). It was proved (ref. [1], §3.10) that

lim
T→∞

EW (T )

T/ log2 T
= 1

DW (T ) ∼ T (CD + δ log2(T ))

log3
2 T

for T →∞, (2)

where CD = 0.26600 . . . is a constant and δ(·) is a slowly varying function
with zero mean value, |δ(·)| < 10−6.

As was mentioned in [1], if the hypothesis H0 is true, the distribution of
random variable (W (T )−µ(T ))/σ(T ) for T →∞ converges to the standard
normal distribution, so for a given significance level α > 0 the critical level C
is generally defined by the condition 2(1−Φ(C)) = α, where Φ(x) — standard
normal distribution function, and the probability to reject the hypothesis H0

if it is true tends to α for T →∞.
Due to insufficient knowledge about speed of convergence of the distribu-

tion of statistic W (T ) to the limit distribution and about accuracy of esti-
mations (2), it was recommended to use Lempel-Ziv criterion only for long
binary sequences, i.e. for T ≥ 106 (ref. [1]). This shortcoming was mentioned
as one of reasons for removing this criterion from NIST Suite (ref. [3]).

The narrowness of the interval that contains the main mass of distribu-
tion of statistic W (T ) was also mentioned as a shortcoming of Lempel-Ziv
criterion (ref. [3]).
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Obviously, there may be some other compression-based statistical criteri-
ons. As an example, some interesting experimental results for criterions based
on RAR and ARJ compression, along with theoretical results for appliance
of universal codes for statistical criterions for random sequences of 0 and 1,
may be found in [7].

As an advantages of criterions presented in this paper over standard
Lempel-Ziv criterion we may mention their accuracy that is limited only by
computational resources. Further, we propose limit distributions for statis-
tics of these criterions and for the first statistic we have obtained explicit
estimations for the speed of convergence to limit (normal) distribution. For
reasoning of these criterions we significantly rely on numeric data obtained
via the method of computation of probabilities of distribution of W (T ) pro-
posed in [4] for the assumption that hypothesis H0 is true.

2 Criterion with summation

Divide sample X = (X1, X2, . . . , X2mT ) into 2m nonintersecting blocks
of the length T and for each of these blocks compute value of Lempel-Ziv
statistic W (T ). Denote computed values as W1,W2, . . . ,W2m and compute
statistic

W̃ (2mT ) = (W1 +W2 + . . .+Wm)− (Wm+1 +Wm+2 + . . .+W2m).

Formula for this statistic may be rewritten as

W̃ (2mT ) =
m∑

i=1

Vi(2T ) =
m∑

i=1

(Wi(T )−Wi+m(T )),

in this way random value W̃ (2mT ) is represented as the sum of m indepen-
dent values Vi(2T ) that are identically distributed and

EVi(2T ) = 0,EW̃ (2mT ) = 0,DW̃ (2mT ) = 2mDW (T ).

Goodness-of-fit criterion for hypothesis H0 of independent and equiprobable
distribution of the elements of sample X that is based on statistic W̃ (2mT )
is defined as follows:

{
|W̃ (2mT )| < C

√
DW̃ (2mT )}

}
⇒ H0,

{
|W̃ (2mT )| ≥ C

√
DW̃ (2mT )

}
⇒ H1.
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Hypothesis H1 is the full alternative to hypothesis H0, C is the critical level
and for a given significance level α > 0 critical level C is defined by the
equality 2(1− Φ(C)) = α.

For given values of m and T distribution of Wi(T ) may be computed
by formulae from section 5 and after that distribution of Vi(2T ) may be
computed by formula

P{Vi(2T ) = k} =
∑

l

P{W (T ) = l}P{W (T ) = k − l}.

Distribution of random variable W̃ (2mT ) may be computed as the m-fold
convolution of the distribution Vi(2T ).

For random variable V2T and T = 1000, 2000, . . . , 8000 we have com-
puted values E|V2T |, DV2T , σ(V2T ) =

√
DV2T and E|V2T |3, these values are

presented in table 3.

3 On the accuracy of normal approximation
for W̃ (2mT ).

The accuracy of normal approximation of the distribution of statis-
tic W̃ (2mT ) may be estimated via well-known Berry–Esseen inequality (in-
equality for constant C1 may be found in [5]).

Theorem 1. For distribution function of random variable W̃ (2mT ) the fol-
lowing inequality is valid:

sup
−∞<x<∞

∣∣∣∣∣∣∣
P





W̃ (2mT )√
DW̃ (2mT )

< x




− Φ(x)

∣∣∣∣∣∣∣
≤ C1E|V1(2T )|3

(2mDW (T )))3/2
, (4)

where C1 ≤ 0.4774.

Corollary 1. If m→∞, then for any −∞ < x <∞

P





W̃ (2mT )√
DW̃ (2mT )

< x




→ Φ(x).

In the final part of this paper in table 4 we present computed values of
the right part of inequality (4) for T = 1000, . . . , 8000 and m = 1000, 2000.
These values show that for estimation of accuracy of normal approximation
of W̃ (2mT ) values of m are more important than values of T .
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4 Criterion of chi-square type

Let us remind well-known fact of mathematical statistics (e.g. [6], §3.2,
section 2).

Statement 1. Let the support of random variable ξ be divided into intervals
∆1, . . . ,∆N . Let simple hypothesis H0 for the distribution of ξ be considered
and P{ξ ∈ ∆j} = p0

j , j = 1, . . . , N, if this hypothesis is true. For given
sample X1, . . . , Xn of values of random variable ξ and any j = 1, . . . , N

compute values vj =
n∑
i=1

I{Xi∈∆j} and value

χ2 =
N∑

j=1

(vj − np0
j)

2

np0
j

.

Then for n→∞ the distribution of random value χ2 converges to chi-square
distribution with N − 1 degrees of freedom.

Denote the distribution function of chi-square distribution with N − 1
degrees of freedom as χ2

N−1(x). For a given significance level α ∈ (0, 1) define
critical level C(N − 1, α) by equality

χ2
N−1(C(N − 1, α)) = α. (5)

For chi-square criterion the hypothesis H0 is accepted if

{χ2 ≤ C(N − 1, α)}
and is rejected if

{χ2 > C(N − 1, α)}.
Now we propose goodness-of-fit criterion for the hypothesis of equiprob-

able Bernoulli distribution that is based on dividing samples into blocks and
using chi-square criterion. For clearness of explaination we use explicit values
of probabilities of distribution W (T ) for T = 1000 (ref. table 1).

Consider sample X1, . . . , Xn of n = mT digits, each digit is equal to zero
or one. We divide this sample into m nonintersecting blocks of the length T
and for each block compute value WT . For T = 1000 we divide the set of
possible values of W (T ) into N = 5 intervals

∆1 = {0, . . . , 171},∆2 = {172},∆3 = {173},∆4 = {174},∆5 = {175, 176, . . .},
so, according to previously computed distribution of W (T ),

p0
1 = 0.074603, p0

2 = 0.245722, p0
3 = 0.409858, p0

4 = 0.236133, p0
5 = 0.0336848.
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Remark 1. Probabilities p0
1, . . . , p

0
5 are given with the accuracy up to 6-th

digit and the sum of these five values is equal to 1.0000008. During the com-
putation these values were calculated with higher accuracy and for calculated
values

1− p0
1 − p0

2 − p0
3 − p0

4 − p0
5 = 2.64274 · 10−019.

For any of m obtained values W1(T ), . . . ,Wm(T ) we compute values
vk,1(T ), vk,2(T ), vk,3(T ), vk,4(T ), vk,5(T ) which are equal to amounts of val-
ues Wk(T ) that turned out to be in one of corresponding five intervals. We
compute statistics

χ2
k(T ) =

5∑

j=1

(vk,j − np0
j)

2

np0
j

and statistic
χ̃2(mT ) = max

1≤k≤m
χ2
k(T ).

For a given significance level α > 0 we calculate the quantile C(4, α1/m) and
define the criterion by the rules

{χ̃2(mT ) < C(N − 1, α1/m)} ⇒ H0,

{χ̃2(mT ) ≥ C(N − 1, α1/m)} ⇒ H1,

where H1 is the full alternative for main hypothesis H0, N = 5.

Theorem 2. Let the hypothesis H0 be true, so random variables
X1, . . . , XmT are independent and equiprobably distributed on {0, 1}. If pa-
rameters m and N are fixed and T →∞, then

P{χ̃2(mT ) < x} → 1−
(
1− χ2

N−1(x)
)m
, x ∈ (−∞,+∞) (6)

P{χ̃2(mT ) ≥ C(N − 1, α1/m)} → α. (7)

There χ2
N−1(x) is the distribution function of the chi-square distribution with

N − 1 degrees of freedom and C(N − 1, α) is the function of α defined in
(5).

So, if the hypothesis H0 is true and the size T of sample increases, then
the probability to reject tends to α.

If value T increases, then the number of values such that random variable
W (T ) is equal to this value with significant probability also increases. For
example, for T = 8000 the set of possible values of W (T ) may be divided
(ref. table 1) into N = 7 intervals

∆1 = {0, . . . , 970},∆2 = {971},∆3 = {972}, . . . ,∆7 = {976, 977, . . .},
so the distribution of statistic χ2 converges to chi-square distribution with 6
degrees of freedom.
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5 On computation of the probabilities of distribu-
tion W (T )

Lempel-Ziv algorithm sequentially compose a dictionary of words of 0
and 1. Consider value S(n) that is equal to cumulative length of all words in
a dictionary of n words.

Values of random variable S(n) and statisticW (T ) are linked by equality
{
W (T ) < n

}
=
{
S(n) > T

}
.

Via this simple formula the computation of distribution of W (T ) may
be implemented by significantly simpler computation of distribution of S(n).
Formulae for distributions of S(n) are presented in the next theorem.

Theorem 3. Let X1, X2, . . . be a sequence of independent random variables
that are distributed on the set {0, 1} with probabilities

P{Xt = 1} = p, P{Xt = 0} = 1− p,

where p ∈ (0, 1). Then for r = 0, 1, . . . , n(n− 1)/2

P{S(n+ 1) = n+ r} =

=
n∑

m=0

Cm
n p

m(1− p)n−m
r∑

l=0

P{S(m) = l}P{S(n−m) = r − l}.

Initial and boundary values of probabilities P{S(n+ 1) = r} are defined
by equalities

P{S(0) = 0} = P{S(1) = 0} = 1,

P{S(2) = 1} = 1, P{S(2) = 1 + r} = 0, если r ≥ 1.

P{S(n+ 1) = r} = 0, r = 0, . . . , n− 1.

Proofs of these statements were given in [4].

6 Tables

All tables are provided for equiprobable distribution of random variables
{X1, . . . , Xn} on set {0, 1}.

Table 1 (in 4 parts). Probabilities of distributions of random variables
W (1000), . . . ,W (8000).
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n T = 1000 n T = 2000

169 0.0007 300 0.0012
170 0.0089 301 0.0103
171 0.0648 302 0.0564
172 0.2457 303 0.1848
173 0.4098 304 0.3317
174 0.2361 305 0.2915
175 0.0330 306 0.1088
176 0.0006 307 0.0143

308 0.0005
8 9

EW (T ) 172.899 EW (T ) 304.220

n T = 3000 n T = 4000

420 0.0001 536 0.0005
421 0.0011 537 0.0036
422 0.0081 538 0.0193
423 0.0406 539 0.0710
424 0.1321 540 0.1747
425 0.2647 541 0.2753
426 0.3050 542 0.2633
427 0.1863 543 0.1439
428 0.0545 544 0.0417
429 0.0067 545 0.0058
430 0.0003 546 0.0003

11 11
EW (T ) 425.627 EW (T ) 541.309
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n T = 5000 n T = 6000

647 0.0001 756 0.0005
648 0.0014 757 0.0031
649 0.0081 758 0.0146
650 0.0338 759 0.0503
651 0.0996 760 0.1246
652 0.2013 761 0.2168
653 0.2693 762 0.2568
654 0.2285 763 0.1999
655 0.1172 764 0.0983
656 0.0343 765 0.0291
657 0.0053 766 0.0049
658 0.0004 767 0.0004

12 12
EW (T ) 653.046 EW (T ) 761.811

n T = 7000 n T = 8000

862 0.0004 966 0.0002
863 0.0021 967 0.0013
864 0.0102 968 0.0065
865 0.0358 969 0.0239
866 0.0939 970 0.0668
867 0.1787 971 0.1395
868 0.2414 972 0.2137
869 0.2248 973 0.2344
870 0.1400 974 0.1796
871 0.0563 975 0.0935
872 0.0140 976 0.0321
873 0.0021 977 0.0070
874 0.0002 978 0.0009

13 13
EW (T ) 868.213 EW (T ) 972.665

Probabilities that are not presented in table 1 are smaller than 0.0001.
The string under the strings with expectations shows the number of such n
that P{W (T ) = n} ≥ 0.0001.

In table 2 we present computed values of EW (T ) and DW (T ) to compare
them and main parts of formulae (2) recomended by NIST. We may note that
for presented values of parameter T computed values considerably differ from
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the main parts of values that are recommended by NIST.

Table 2.

T EWT
T

log2 T
DWT

0.266T
log3

2 T

1000 172.899 100.343 0.96268 0.26874
2000 304.220 182.385 1.34154 0.40345
3000 425.627 259.723 1.65301 0.51781
4000 541.309 334.286 1.92859 0.62103
5000 653.046 406.910 2.18096 0.71686
6000 761.811 478.059 2.41656 0.80727
7000 868.213 548.025 2.63918 0.89348
8000 972.665 617.008 2.85136 0.97628

Table 3. Values E|V2T |, DV2T , σ(V2T ) =
√

DV2T and E|V2T |3 for T =
1000, 2000, . . . , 8000

T E|V2T | DV2T σ(V2T ) E|V2T |3
1000 1.05493 1.92537 1.38758 4.29894
2000 1.26349 2.68309 1.63801 7.04866
3000 1.41194 3.30601 1.81824 9.62922
4000 1.53127 3.85718 1.96397 12.1292
5000 1.63290 4.36191 2.08852 14.5852
6000 1.72236 4.83312 2.19844 17.0151
7000 1.80281 5.27836 2.29747 19.4288
8000 1.87627 5.70272 2.38804 21.8339
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Table 4. Values of the right part of inequality (4).

T m = 1000 m = 2000

1000 2.42924e-005 8.58868e-006
2000 2.42123e-005 8.56035e-006
3000 2.41834e-005 8.55011e-006
4000 2.41720e-005 8.54608e-006
5000 2.41702e-005 8.54547e-006
6000 2.41755e-005 8.54733e-006
7000 2.41869e-005 8.55136e-006
8000 2.42042e-005 8.55748e-006
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Abstract

Security of the many keyed hash-based cryptographic constructions (such as
HMAC) depends on the fact that the underlying compression function g(H,M)
is a pseudorandom function (PRF). This paper presents key-recovery algorithms for
7 rounds (of 12) of Streebog compression function. Two cases were considered, as a
secret key can be used: the previous state H or the message block M . The proposed
methods implicitly show that Streebog compression function has a large security
margin as PRF in the above-mentioned secret-key settings.

Keywords: Streebog, PRF, truncated differentials, rebound, polytopic cryptanalysis.

1 Introduction

Hash function is one of the most commonly used cryptographic primitives.
Usually, the following three security properties are expected from a non-keyed
hash function:

1) preimage resistance (for a given value Hash(Msg) it is hard to obtain
Msg);

2) second preimage resistance (for a given message Msg it is difficult to
find a different Msg′ such that Hash(Msg) = Hash(Msg′));

3) collision resistance (it is hard to construct a nontrivial message pair
(Msg,Msg′) such that Hash(Msg) = Hash(Msg′)).

For hash functions based on the Merkle-Damg̊ard scheme [3, 2], sim-
ilar requirements are imposed on the underlying compression function
g(Hprev,M) = Hnext (whereM is a fixed-length block of the hashed message,
Hprev and Hnext are the previous and the next internal states respectively).

Russian hash function Streebog [1], like many others, uses slightly mod-
ified Merkle-Damg̊ard approach. Its compression function is based on a 12-
rounds AES-like [22] block cipher in Miyaguchi-Preneel mode. The previous
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internal state is transformed to 13 round keys for the block cipher. The in-
ternal state consists of 8×8 bytes (n = 512 bits). The output length of hash
function can be either 512 or 256-bit.

Over recent years, Streebog (as well as its compression function and block
cipher) was subjected to a thorough analysis by many experts. We cite papers
devoted to the preimage [11, 12, 16, 9], the second preimage [7], various
types of the collisions [10, 11, 12, 13, 14]. Many articles describe so-called
«known-key» (and «chosen-key») distinguishers [8, 13, 12, 17, 18]. The latter
demonstrate some non-random structural properties of the transformation (a
compression function or a block cipher) by constructing the corresponding
set of input-output pairs.

Keyless hash function is often used as part of the secret-key cryptoal-
gorithms. Some of the most well-known examples are HMAC and NMAC
[6]. The security of such algorithms depends significantly on the fact that the
compression function is a PRF. Let one of the arguments g(H,M) be a secret
key and an adversary can adaptively choose blocks for the other input and
observe outputs. It is clear that a simple key guessing with time-complexity
about t = 2n can be used to distinguish between g(H,M) and a random
function. In some cases, straightforward birthday-paradox distinguisher with
data-complexity q = 2n/2 can also be mounted. Is it possible to construct
more efficient algorithms for a specific instance of g(H,M)? In our paper we
consider round-reduced Streebog compression function.

To the best of our knowledge, there is only one paper [15] on the subject1.
The authors [15] utilize impossible differential properties to mount secret-
state (secret-IV) recovery attacks on 6.75-rounds.

Next, we present key-recovery algorithms for 7-round Streebog compres-
sion function.

In section 3 we describe algorithm for the secret-state case. The proposed
method is based on polytopic approach [5]. A naive algorithm for «generalized
birthday problem» [23] is also an important part of the method.

In section 4 the second secret-message case is considered. The rebound
technique [25] is used to obtain usable pairs of non-secret states. The trun-
cated differential [20] method is then applied to recover the secret message.

Comparative characteristics of algorithms are presented in table 1. Note
also that the initial data processing was not taken into account when calcu-
lating the complexity of attacks [15] (so t < q, «Time» is less than «Data»).

1For completeness, it is worth noting that key-recovery attack on HMAC-Streebog was presented in [24]
as the extension of the generic state-recovery attack on HMAC with an arbitrary Merkle-Damg̊ard hash-
function. Data-complexity of attack [24] is significantly more than HMAC allowable «provable secure»
bounds [6]. The attack also does not depend on the properties of the compression function.
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Our results provide an additional argument showing that Streebog com-
pression function (as a PRF) has a significant security margin.

Setting Rounds Time Memory Data Description

secret H

6.75 2399.5 2349 2483 [15]
6.75 2261.5 2205 2495.5 [15]
7 2421 2354 264 Section 3
12 2256 2256 2256 birthday-paradox distinguisher
12 2512 ∼ 2 key guessing

secret M 7 2240 220 2113 Section 4
12 2512 ∼ 2 key guessing

Table 1: Attacks on Streebog compression functions in secret-key settings. «Time» (t) in
g computations, «Memory» in n-bit blocks, «Data» (q) in chosen message-output pairs.

2 Definitions

Let F28 be a finite field. Each element of F28 can be interpreted as an
integer or binary vector. Denote v × v matrix space over F28 by Fv×v28 (we
also use symbol Fv28 as a vector space). Elements from Fv×v28 will be denoted
by capital letters: A, B. Blocks of states and messages also belong to Fv×v28 .
Elements of a matrix are indexed by 0 ≤ i, j ≤ v−1 (for example, a = A[0, 0]
is an element from the upper-left corner of the matrix). A[i, ·] is i-th row of
A, A[·, j] is j-th column of A.

Denote bitwise xor operation by symbol ⊕. This operation is defined
naturally for all the objects under consideration.

Let us have a sequence of blocks

B0, ..., Bd ∈ Fv×v28 , d ∈ N,

then we refer to ∆B = B0 ⊕B1 ∈ Fv×v28 as a difference and to a sequence

δB = (B0 ⊕B1, B0 ⊕B2, ..., B0 ⊕Bd) ∈
(
Fv×v28

)d (1)

as a d-difference. Differences are indicated in bold text: δM , ∆K4.
The d-difference δB ∈

(
Fv×v28

)d can also be interpreted as v×v «columns»
of d bytes each: δB ∈

(
Fd28
)v×v, δB[i, j] ∈ Fd28. If ∆B[i, j] 6= 0 (resp.

δB[i, j] 6= 0) then we say that the position (i, j) is active, otherwise inactive,
0 ≤ i, j ≤ v − 1.

The differential (resp. polytopic) trail is the sequence of the differences
(resp. d-differences) after each transformation in the cipher.

The transformations over Fv×v28 (also over Fv28 and F28) are denoted by sans
serif font: f, S, L. The notation LS indicates a composition of transformations,
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where S applies first (the reverse order «left-to-right» is used on the figures).
The inverse transformations are specified by f−1.

Streebog

Streebog compression function gN(H,M) employs AES-like XSPL-cipher
E in the Miyaguchi-Preenel mode

gN(H,M) = E(H ⊕N,M)⊕H ⊕M = R, where

H ∈ Fv×v28 is the previous state of the hash function;
M ∈ Fv×v28 is the message block;
N ∈ Fv×v28 is the number of previously hashed bits;
R ∈ Fv×v28 is the output (the next state of hash function).
The block cipher E consists of 12 rounds and a post-whitening key addi-

tion. Each round consists of four operations:
X – modulo 2 addition of an input block with a round key;
S – parallel application of the fixed bijective substitution s to each byte

of the state;
P – transposition of the state;
L – parallel application of the linear transformation l to each row of the

state. In [22], it was shown that l-transformation can be represented as the
MDS matrix L over F8×8

28 .
The block cipher formula is

E(K,M) = X[K13]LPSX[K12] . . . LPSX[K2]LPSX[K1](M).

The state size consists of n = 512 bits (v × v = 8× 8 bytes).
The key schedule uses round constants Ci ∈ Fv×v28 , i = 1, 2, . . . , 12, and

round keys Ki ∈ Fv×v28 , i = 1, 2, . . . , 13 are derived from a master key K0 as
follows:

K0 = H ⊕N, K1 = LPS(H ⊕N), Ki+1 = LPS(Ki ⊕ Ci), i = 1, 2, . . . , 12.

We also denote the intermediate states before X, S, P, L transformations
in i-th round as Xi, Yi, Zi, Wi correspondingly (X1 = M , Y1 = M ⊕ K1,
Z1 = S(Y1), W1 = P(Z1), etc.). The states in the key schedule are denoted
in a similar way HXi = Ki, HYi, HZi, HWi, where H = HX0, HX1 =
LPS(H ⊕N) etc.

We define an r-round compression function with r + 1 round keys as:

g(H,M) = (X[Kr+1]LPSX[Kr] . . . LPSX[K1](M))⊕H ⊕M.

Next, we also assume that N is an arbitrary constant C0.
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3 State as a secret key

Let the state H be a secret. An adversary knows a message M and an
output R.

g(H,M) = E(H,M)⊕H ⊕M = R.

Hence, the analysis is reduced to the block cipher

E(H,M)⊕H = R⊕M = R̃,

E(H,M)⊕H = X[Kr+1 ⊕H]LPSX[Kr] . . . LPSX[K1](M),

where the last round key is K̃r+1 = Kr+1 ⊕H.
A secure block cipher can be used as a secure PRF up to about q = 2n/2

queries [19]. Thus, any algorithm that requires more message-output pairs
can’t be considered as a direct threat to a PRF. The generic limit of the time
complexity t = 2n is defined by straightforward key guessing.

We propose the polytopic (multidimensional differential) based key-
recovery algorithm against 7-rounds. The method consists of the following
steps:

1. Choose structure of 264 messages M ;
2. Guess 64 bits of the first key K1. Partially encrypt all messages up to

the second L-transformation;
3. Choose about 27 blocks (of 264) and obtain d-difference δW2 with only

one active S-box;
4. Propagate δW2 forward to δW5[0, 0] by guessing 136 bits of the

intermediate states;
5. Propagate δR̃ backward to δX6[0, 0] by guessing 72 bits of the inter-

mediate states (similarly and independently for δX6[0, 1],...,δX6[0, 7]);
6. Check by using a naive algorithm for «generalized birthday prob-

lem» that δW5[0, 0] can be obtained via inverse linear transformation
l−1(δX6[0, 0], . . . , δX6[0, 7]);

7. If the check failed in the previous step then go back to step 2 and try
another bits of K1. If the check is passed then the key bits and the state bits
are guessed correctly.

Let’s look at the steps in more detail.
The first and second steps are designed to bypass the first round (figure 1).

We use the structure of 264 messages. One column in each message takes all
possible values (M [·, 0] in the picture). All other seven columns are arbitrary
constants (M [·, 1], ..., M [·, 7] in the picture). For any values of K1 and K2,
this will also be true for the columns in W2 = PSX[K2]LPSX[K1](M).
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Guess columnK1[·, 0] and compute rowK2[0, ·]. In this case, all the values
in column W2[·, 0] are exactly known.

Figure 1: Steps 1-2. Guessed bits are highlighted with green. Computed or known values
are denoted by gray cells. The formulas are given in reverse (left-to-right) notation.

Recall that for each of the 264 states W2 in the structure, columns
W2[·, 1], ..., W2[·, 7] are unknown constants. It is easy to find such 27 states
W

(0)
2 ,W (1)

2 ,...,W (d)
2 , d = 27 − 1 that d-difference

δW2 = (W
(0)
2 ⊕W

(1)
2 ,W

(0)
2 ⊕W

(2)
2 , ...,W

(0)
2 ⊕W

(d)
2 ) ∈

(
Fv×v28

)d

will have only one active byte δW2[0, 0]. In other words, we select states
W2 so that the bytes W2[1, 0],...,W2[7, 0] are also constants. We choose the
corresponding outputs R̃ and compute d-difference δR̃.

The difference (and d-difference) is unambiguously propagated through
X, L and P transformations, but we have to guess the state bytes to propagate
the difference through S. Obviously, zero difference remains the same after
any transformation.

If the bytes fromK1[·, 0] are guessed correctly, then the trail from δW2 to
δR̃ must exist. Otherwise, it’s possible to check that there are no appropriate
trails (or almost none).

The d-difference δW2 propagates through L and X[K3] to δY3, which
contains eight active bytes δY3[0, ·] (see figure 2). Recall that this is true
due to the MDS property of L [22]. We guess Y3[0, ·] and obtain 264 possible
d-differences δZ3. Next, δY4 is computed by linear propagation through P,
L, X[K4]. All byte positions in δY4 are active.

By guessing only one column Y4[·, 0] we obtain 2128 possible d-differences
δZ4[·, 0]. The remaining seven columns in δZ4 are active but unknown to
us.
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Figure 2: Steps 4-5. Forward and backward d-difference propagations.

The d-difference δY5[0, ·] is calculated in the same way for each δZ4[·, 0].
Another byte Y5[0, 0] allows us to compute δZ5[0, 0] ∈ Fd28 and δW5[0, 0] =
δZ5[0, 0].

Thus, we have 264 ·264 ·28 = 2136 values of δW5[0, 0], stored in the array
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Lfrw. Each d-difference corresponds to the sequence of bytes

Y3[0, 0], Y3[0, 1], . . . , Y3[0, 7], Y4[0, 0], Y4[1, 0], . . . , Y4[7, 0], Y5[0, 0].

Consider the backward direction. We know d-difference δR̃ and can com-
pute δZ7 by backward propagation through X[K8 ⊕H], L−1, P−1.

Guess one row of Z7 (bytes Z7[1, 0],...,Z7[1, 7] on figure 2). We obtain
264 values of corresponding column in δZ6. Guess one byte in Z6 (byte
Z[0, 1] on figure). Hence, we can compute 272 possible values of δY6[0, 1]
and δX6[0, 1] = δY6[0, 1].

Similar actions are performed in parallel for the other seven rows in δZ7.
As a result, we computed values of δX6[0, 0], δX6[0, 1], ..., δX6[0, 7].
Eight lists L0, L1, ...,L7 of 272 values (d-difference) each were stored.

Hypothetically, all (272)8 = 2576 values of δX6[0, ·] can be computed,
and therefore, δW5[0, ·] = l−1(δX6[0, ·]). Next, each variant of δW5[0, 0]
can be checked by searching among previously computed ones in the forward
direction. Obviously, this way is much expensive.

Let’s rewrite the expression for the inverse linear transformation

W5[0, ·]× L = X6[0, ·],

W5[0, ·] = X6[0, ·]× L−1,

W5[0, 0] = c0 ·X6[0, 0]⊕ c1 ·X6[0, 1]⊕ . . .⊕ c7 ·X6[0, 7],

where: L ∈ F8×8
28 (resp. L−1) is the MDS matrix of the linear transformation l

(resp. the inverse transformation l−1); c0, c1, . . . , c7 ∈ F28 are the coefficients
from the column of L−1. The matrix representation from [22] is implicitly used
here, but the expressions can be rewritten for the binary 64× 64 matrix.

The same equality is also true for the correct pairs of the differences
(d-differences)

δW5[0, 0] = c0 · δX6[0, 0]⊕ c1 · δX6[0, 1]⊕ . . .⊕ c7 · δX6[0, 7],

where ci·δX6[0, i] = (ci·∆x1, ci·∆x2, . . . , ci·∆xd), ∆xj ∈ F28, i = 0, ..., 7,
j = 1, ..., d, δX6[0, i] ∈ Fd28. Therefore, we can proceed to the simpler
problem

Lfrw[pfrw] = c0 · L0[p0]⊕ c1 · L1[p1]⊕ . . .⊕ c7 · L7[p7], (2)

we should find the indexes p0, p1, ..., p7, pfrw so that the equation is correct, or
prove that there are no such indexes. We obtain some example of a generalized
birthday problem [23], but we have no task to find at least some «collision».
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Our goal is to build only one unique correct solution. All others should be
discarded. Because of this, we apply a naive approach.

Rearrange the components of the equation

Lfrw[pfrw]⊕c0 ·L0[p0]⊕c1 ·L1[p1]⊕c2 ·L2[p2] = c3 ·L3[p3]⊕. . .⊕c7 ·L7[p7]. (3)

Combine all lists from the left side (3) into one. We obtain an array Lleft

containing 2136 ·
(
272
)3

= 2352 elements (d-differences) from Fd28. The hash
table is used to store items. The d-difference is the «key», the guessed state
bits are the «value». Hence, each item requires (8 · d + 352) < 3n bits of
memory to be stored (in total, less than 2354 n-bit states).

It’s not hard to see, that the right side (3) generates (272)5 = 2360 items
(Lright) that can be constructed dynamically by iterating through 360 bits.

If the arbitrary element from Lright is found in Lleft, then we assume that
the trail from δW2 to δR̃ exists and all the bits (K1[·, 0], Y3[0, ·], Y4[·, 0],
Y5[0, 0], Z6[0, ·], Z7) are guessed correctly. What is the average number of
false assumptions? We have 2360+352 = 2712 pairs of d-differences (8d-bit
values). Thus, under the hypothesis of a random and uniform distribution,
we get 264 · 2712 · 2−127·8 = 2−240 ≈ 0 false solutions (the factor 264 emerges
due to the key guessing at step 2). The value of d can be reduced, but this
does not significantly affect the estimation of the time complexity.

If no element from Lright is found in Lleft then we guess the next value of
K1[·, 0]. Steps 3-6 are repeated again.

The last round key K̃8 = K8 ⊕ H is computed via the known state Z7

and the corresponding output R̃

K̃8 = R̃⊕ LP(Z7).

In this way, the challenge is reduced to six rounds.
There is a different approach. The bytes of the other seven rows in Z6

are determined by parallel guessing of (Y5[0, 1], Z6[1, ·]), (Y5[0, 2], Z6[2, ·]),
..., (Y5[0, 7], Z6[7, ·]). The correct values are obtained via similar check of the
trail from δX6[i, ·] to δW5[i, 0] through inverse linear transformation l−1,
i = 1, 2, . . . 7. Next, we use simple relation Z7 = S(K7⊕LP(Z6)) and recover
the round key

K7 = S−1(Z7)⊕ LP(Z6).

The secret H is computed due to the invertibility of the key schedule.
By the end, the time complexity of the key-recovery algorithm is

t = 264
︸︷︷︸
K1[·,0]

·


16 · 264
︸ ︷︷ ︸

step 2

+ d′ · 2136
︸ ︷︷ ︸

step 4

+ d′ · 8 · 272
︸ ︷︷ ︸

step 5

+ d′ · 2352
︸ ︷︷ ︸
Lleft

+ d′ · 2360
︸ ︷︷ ︸
Lright

+ 7 · d′ · 272
︸ ︷︷ ︸
Z6 recovery


 ,
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where d′ = d+1 = 27. In total, t ≈ 2431 Sbox computations. We estimate the
computation complexity of the 7-round compression function as 2·7·64 ≈ 210

Sbox computations (memory access operations). As a result, we get time
complexity t = 2431 · 2−10 = 2421. The proposed method requires less than
2354 (n-bit states) of memory. The data complexity is 264 chosen pairs (M,R).

The described algorithm is deterministic – the probability of success is
equal to one. Meanwhile, the most effective method [21] against 7-round
AES-128 uses a rare event (truncated differential).

Note also that the ideas of the proposed method can be applied to 6
rounds of AES-128 (similar to steps 3-7 above). We were able to build an
attack with time complexity about 2120 memory access operations and a
small amount of the chosen plaintexts q = d+ 1 < 25. Due to the relatively
high time complexity, we were unable to extend the attack to 7 rounds (as
in steps 1-2).

4 Message as a secret key

Let the message M be a secret

g(H,M) = E(H,M)⊕H ⊕M = R.

An adversary has a full control over the master-key H and the round keys
of the underlying block cipher

E(H,M)⊕M = R⊕H = R̃.

The function E(H,M) ⊕M with secret M is a secure PRF in the ideal
cipher model (i.e. if E is a family of random permutations). The proof can
be found, for example, in [4, Theorem 8.5]. In this case, there is no sim-
ple birthday-paradox distinguisher. Only brute-force key search is applicable
attack.

Consider the algorithm against seven rounds, which consists of two stages.
«Offline» stage. Due to the rebound approach [25], about 2112 pairs

(H,H ′) are formed (q = 2113). Each pair generates a truncated differential
trail ∆K1 →∆K2 → . . .→∆K8 with the pattern

«8− 1− 8− 64− 16− 16− 64− 64» of the active S-boxes.

«Online» stage. For each H, we get the output R̃ (resp. for H ′ and R̃′).
The truncated related-key differential trail ∆M → . . . → ∆R̃ is realized
with a probability of at least 2−112. The pattern of the active S-boxes is
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«8−0−8−0−16−16−64−64». For each pair (R̃, R̃
′
) we construct about

2128 possible values of the unknown internal state. Each solution is checked
directly. If the rare event actually occurred, then among the constructed
solutions there will be a true one.

In more detail.
We should construct the suitable round keys for the block cipher. Choose

arbitrary nonzero bytes in one column of the difference ∆HW3 (highlighted
with green on figure 3). Propagate forward to ∆HY4 = L(∆HW3). Sim-
ilarly in the backward direction ∆HZ4 = P−1L−1(∆K5). We choose two
columns in ∆K5 so that all bytes in ∆HZ4 are active. Thus, we have
2558 · (216 − 8 · 255 − 1)8 ≈ 2191.6 pairs (∆HY4,∆HZ4). Solve equation
S(HY4⊕∆HY4)⊕S(HY4) = ∆HZ4. We get a total of about 2190.4 solutions
(see also Appendix A).

Figure 3: «Offline» stage. Truncated differential trail over round keys.

Next, in so-called «outbound phase» we compute

K8 = LPSX[C7] . . . LPS(HY4) and K1 = X[C1]S
−1 . . .P−1L−1X[C4](HY4).

We expect almost all trails ∆K6 → ∆K7 → ∆K8 match the pattern «16
– 64 – 64». The trails with smaller number of active S-boxes are also appro-
priate. We assume that the part ∆K1 ←∆K2 ←∆K3 of the constructed
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trail match the pattern «8 – 1 – 8» with probability 255/2558 ≈ 2−56 due to
the transition «1← 8».

As a result we obtain about 2134.4 = 2190.4−56 pairs (H,H ′).
We request (R̃, R̃

′
) for each (H,H ′) from the «oracle». Consider the prop-

agation of the differences with secret M (figure 4). Obviously, M = M ′ and
∆M = 0. Before the first non-linear layer ∆Y1 = ∆K1 ⊕∆M = ∆K1.
We hope that ∆HZ1 = ∆Z1. The transition ∆HY1 → ∆HZ1 is possi-
ble, hence, the probability ∆Y1 →∆Z1 is not less than (2/256)8 = 2−56. If
actually ∆HZ1 = ∆Z1 then

∆Y2 = ∆K2 ⊕∆X2 = LP(∆HZ1)⊕ LP(∆Z1) = 0.

Figure 4: «Online» stage. Truncated related-key differential trail. The first round.

The same is true for ∆Y3 = ∆K3 and «parallel» transitions
∆HY3 → ∆HZ3, ∆Y3 → ∆Z3 (figure 5). We also assume that
Pr (∆Z3 = ∆HZ3) ≥ 2−56.

Figure 5: «Online» stage. The third round.
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Thus, in the fifth round Pr(∆X5 = 0) = Pr(∆K5 = ∆Y5) ≥ 2−56·2.
So both differences ∆HW6 and ∆W6 have only two active columns each
(figure 6). Each row in ∆Y7 belongs to a set of 216 differences (not 264)

∆Y7[i, ·] = l(∆W6[i, 0])⊕l(∆HW6[i, 0]) = l(∆W6[i, 0]⊕∆HW6[i, 0]),

where the difference (∆W6[i, 0]⊕∆HW6[i, 0]) contains no more than two
active bytes, i = 0, 1, ..., 7. For the sake of simplicity, it is assumed that all
the rows in ∆Y7 are active (this is not the case with a probability of only
about 1− (1− 2−16)8 ≈ 2−13).

Figure 6: «Online» stage. Propagation to ∆Y7.

Recall that ∆K8 and the output difference ∆R̃ are known, ∆M = 0.
Therefore, the equation

S(∆Y7 ⊕ Y7)⊕ S(Y7) = P−1L−1(∆R̃⊕∆K8 ⊕∆M )

can be solved row-by-row. We expect an average (see also Appendix A)
2128 = 216·8 solutions Y7. The possible secret valueM is calculated by knowing
Y7 and the round keys. The truth of each value M is checked on an arbitrary
input-output pair (H,R).

The time complexity of the proposed method is

t = 2128 · 264
︸ ︷︷ ︸

”offline”

+ 2112 · 2128
︸ ︷︷ ︸

”online”

≈ 2240 operations.

«Offline» and «Online» stages can be performed simultaneously. Hence, the
memory is only used to store the possible values of ∆Y7 and similar tables (no
more than 220 states). The described algorithm is probabilistic. We estimate
the lower bound of the success probability as 1− (1− 2−112)q/2 ≈ 1− e−1 ≈
0.63 with q = 2113 chosen pairs (H,R).
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5 Conclusion

In this paper we examine Streebog compression function as preudo-
random function (PRF). Each of the two inputs (the previous state and
the message block) can be used as a secret parameter and these two cases
were considered.

We present two key-recovery algorithms for 7 rounds (of 12).

Setting Rounds Time Memory Data Method
secret state 7 2421 2354 264 impossible polytopic

secret message 7 2240 220 2113 truncated differentials

The security proofs of many keyed hash-based cryptoalgorithms rely on
PRF-properties of the underlying compression function. Our results demon-
strate a great security margin of the Streebog 12-round compression function
as a PRF in the above-mentioned secret-key settings. Thus, we have another
yet informal argument that Streebog-based keyed algorithms are secure.
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A Differential properties of Streebog’s S-box

The differential distribution table (DDT) is defined as follows

DDT[∆x][∆y] = |{x : s(x)⊕ s(x⊕∆x) = ∆y}| ,
where s : F28 → F28, x,∆x,∆y ∈ F28.

The distribution of the number of solutions for Streebog’s S-box is shown
in the table below.

Solutions 0 2 4 6 8 256

Number 38235 22454 4377 444 25 1

For random non-zero ∆x,∆y ∈ F28\0 the probability that at least some
solution exists is

p = Pr (|{x : ∆y = s(x)⊕ s(x⊕∆x)}| > 0) =
22454 + 4377 + 444 + 25

2552
.
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Let ∆x 6= 0, ∆y 6= 0, and it is also known that the equation

s(x)⊕ s(x⊕∆x) = ∆y

has a solution x. Then we get a conditional distribution of the number of
solutions (

2 4 6 8
22454

27300

4377

27300

444

27300

25

27300

)
.

The expected value of such a distribution (i.e., the average number of solu-
tions provided that at least one solution exists) is

1

27300
(2 · 22454 + 4 · 4377 + 6 · 444 + 8 · 25) =

216 − 28

27300
= 2.39 . . . = z.

The case «S(∆HY4 ⊕HY4)⊕ S(HY4) = ∆HZ4»
We assume, that ∆HZ4 is a random difference. We also know that

∆HZ4 consisting only of non-zero bytes.
Each row in ∆HY4 is also completely non-zero and belongs to a set of

255 elements.
The probability that a single byte matches is p ≈ 0.419. Hence a row

matches with a probability of p8 ≈ 2−10.
The probability that among the allowed ∆HY4[0, ·] there is a suitable

one 1− (1− p8)255 ≈ 2−2.2.
Therefore the probability for a match of all 8 rows equals to 2−2.2·8 =

2−17.6.
Each pair (∆HY4,∆HZ4) for which the equation is solvable gives an

average of z64 ≈ 280.4 solutions.
We have (216 − 8 · 255− 1)8 ≈ 2127.6 possible values ∆HZ4. As a result

we obtain about
2127.6+80.4−17.6 = 2190.4

valid states HY4.
The case «S(∆Y7 ⊕ Y7)⊕ S(Y7) = ∆Z7»
The case is similar to the previous one. We also assume, that ∆Z7 is a

random fully active difference.
Each row in ∆Y7 belongs to a set of u = (216 − 1) elements.
We expect that about u · p8 ≈ 26 suitable ∆Y7[i, ·] for each i = 0, . . . , 7.
In total, we have about (26)8 = 248 possible variants of ∆Y7.
Thus, the average number of solutions Y7 is equal to z64 · 248 ≈ 2128.
The assumptions and estimates presented in the Appendix were also ex-

perimentally verified using software from [14].
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Abstract

A function of n variables over a finite field of q elements is called maximally non-
linear if it has the greatest nonlinearity among all q-valued functions of n variables.
It is proved that for q > 2 and even values n, a necessary condition for the maximum
nonlinearity of a function is the absence of a linear manifold of dimension greater
than or equal to n/2, on which its restriction would coincide with the restriction of
some affine function. In accordance with it, functions from Maiorana-McFarland’s
and Dillon’s families of bent functions are not maximally nonlinear. A new family
of maximally nonlinear bent functions of degree from 2 to max{2, (q − 1)(n/2− 1)}
with nonlinearity equal (q − 1)qn−1 − q n

2
−1 is constructed.

Keywords: finite field, nonlinearity, bent function, maximally nonlinear function

1 Introduction

Let Fq be a finite field of q elements, where q = pm, p is a prime number,m
is a positive integer, and Fn

q is an n-dimensional vector space over the field Fq,
where n is a positive integer. We denote by P n

q the set of all mappings of
the space Fn

q into the field Fq or q-valued logic functions of n variables, and
by An

q its subset of affine mappings. Since any function a(x) ∈ An
q can be

uniquely represented by a polynomial over the field Fq of the form

a(x1, . . . , xn) = a0 ⊕ a1 ⊗ x1 ⊕ · · · ⊕ an ⊗ xn, (1)

where a0, a1, . . . , an ∈ Fq, ⊕ and ⊗ are addition and multiplication op-
erations in Fq,1 we can use the vector representation of affine mappings by
associating the function a(x) with the vector α = (a0, a1, . . . , an) ∈ Fn+1

q ,
where the coordinates a0, a1, . . . , an are the coefficients in the polynomial
representation (1).

1By analogy with works [7, 8], the symbols ⊕ and ⊗ are used to denote operations in Fq in order to
avoid coincidence with the designation of operations with real numbers and, conversely, to obtain match
in the special case q = 2.
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Taking the Hamming distance between functions in the space Fqn
q as the

proximity metric and denoting the distance between functions f(x) ∈ P n
q

and a(x) ∈ An
q as ραf we define the nonlinearity of the function f(x) by the

formula
Nf = min

α∈Fn+1
q

ραf . (2)

This parameter plays an important role in cryptography and coding the-
ory. It is known from practice that high nonlinearity is one of the necessary
conditions for the resistance of cryptosystems built using such functions to
decryption methods. We will call functions from P n

q with the largest value of
nonlinearity maximally nonlinear and denote the class of such functions by
MNn

q .
The study of this class of Boolean functions began in the 1960s. As noted

in [2], Soviet cryptographers contributed greatly to the research in this field.
At the same time the first public article on this issue appeared only in 1976.
Drawing on character theory, O.S. Rothaus for even values of n described the
class of Boolean functions, which he called bent functions, with the maximum
possible nonlinearity equal to 2n−1−2

n
2−1, and showed that this class coincides

with the class MNn
2 [6]. For odd values of n, there are no Boolean bent

functions. Nonlinearity equal to 2n−1 − 2
n−1
2 is provided by the so-called "1-

plateaued" or "near-bent" functions. By the beginning of the 1980s it was
proved that for n ≤ 7 these functions are maximally nonlinear.However,
later in the scientific literature Boolean functions of 9 variables with greater
nonlinearity were presented. Subsequently, numerous studies of Boolean bent
functions appeared, as well as generalizations of the results of [6] to other
discrete mappings, including functions over finite fields for q > 2.

A generalization of the concept of a bent function to the case of a residue
ring Zk, which is a field for prime k, was presented in [5]. For an arbitrary
finite field, such a generalization was first presented in 1994 by A.S. Ambrosi-
mov. In [1] the definition of a q-valued bent function is given, all quadratic
bent functions are described and their number is calculated (hereinafter q-
valued bent functions are considered by us as in article [1], and the class of
such functions of n variables is denoted by Bn

q ). In contrast to the case of
Boolean functions, q-valued bent functions for odd values of the field char-
acteristic p also exist for odd values of n. In [1], the generalized Rothaus
criterion was also proved, which states that f(x) ∈ Bn

q if and only if the
derivative of the function f(x) in the direction c given by the difference
f(x⊕ c)	 f(x), where 	 is the subtraction operations in Fq, is a balanced
function for ∀c ∈ Fn

q\{0} (functions for which all nontrivial derivatives are
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balanced are also called perfect nonlinear). Almost simultaneously, a simi-
lar definition of a bent function and a proof of the coincidence of the class
of bent functions with the class of perfect nonlinear functions in the case
of an arbitrary finite field appeared in [4]2. At the same time, the issues of
nonlinearity of bent functions were not considered in these papers.

For q > 2, not all bent functions are maximally nonlinear. As noted in
[3], while retaining perfect nonlinearity associated with resistance to differ-
ential cryptanalysis methods, q-valued bent functions are not optimal when
using linear methods associated with the nonlinearity in the sense of (2).
In this regard, the problem of describing the nonlinearity of q-valued bent
functions and identifying subclasses of bent functions with the highest degree
of nonlinearity is urgent.

In [7], for f(x) ∈ P n
q , the following upper bound for nonlinearity was

obtained
Nf ≤ (q − 1)qn−1 − q n2−1, (3)

which, in particular, is also valid for all q-valued bent functions. In [8], for
n = 1, estimate (3) was refined as follows:

Nf ≤ q − 2. (4)

We denote the class of functions Extended-Affine equivalent or EA-
equivalent to a mapping f(x) ∈ P n

q by FEA(f). It is known that membership
in bent functions is preserved for the class FEA(f). In [8], it was shown that
all functions from the class FEA(f) have the same nonlinearity and therefore
the property of maximum nonlinearity is also preserved.

It follows from the results of [8] that for q > 2 and even values of n, the
set of quadratic q-valued bent functions of n variables is split into two classes
of EA-equivalent functions. For functions of one class, the equality

Nf = (q − 1)qn−1 − q n2−1 (5)

holds, and this class, taking into account inequality (3), consists of maximally
nonlinear functions, while for functions of another class the equality

Nf = (q − 1)(qn−1 − q n2−1)

holds, and this class does not contain maximally nonlinear functions. For
fields of odd characteristic and odd values of n, all quadratic q-valued bent
functions of n variables have the same nonlinearity equal to

Nf = (q − 1)qn−1 − q n−12 ,

2The definition of a q-valued bent function [1, 4] falls under the general definition of a bent function
from a finite abelian group into a finite abelian group [9].
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and are maximally nonlinear in the case n = 1.
Thus, for even values of n in [8], a criterion was proved: f(x) ∈ MNn

q

if and only if equality (5) is valid for the nonlinearity of the function. This
criterion allows for q > 2, to obtain the necessary condition for the maxi-
mum nonlinearity of a q-valued function and to draw conclusions regarding a
number of famous classes of bent functions that consist not only of quadratic
functions.

2 Necessary condition for maximum nonlinearity and
results for bent functions

Let f |R be the restriction of a function f(x) ∈ P n
q to a subset R ⊆ Fn

q .
For such restrictions we use the Hamming distance in the space F

|R|
q as the

proximity metric and denote by ραf |R the distance between the restrictions
f |R and a|R, where a(x) ∈ An

q . Let’s further use the auxiliary parameters

δαf |R = q−1
q −

ραf |R
|R| introduced in [7]. In the case R = Fn

q , we have δαf = q−1
q −

ραf
qn .

A special case of a subset is a linear manifold of the vector space Fn
q . Let

Mn
q (r) denote the set of all r-dimensional linear manifolds in the space Fn

q ,
where 0 ≤ r ≤ n. In the case M ∈ Mn

q (r), the parameter δαf |M satisfies the

formula δαf |M = q−1
q −

ραf |M
qr .

Theorem 1. Let f(x) ∈ MNn
q , where q > 2 and n is even. Then in the

space Fn
q there is no linear manifold of dimension greater than or equal to n/2

on which the restriction of the function f(x) coincides with the restriction
of some affine function.

Proof. Let’s prove the theorem by contradiction.
If there exists a manifold of dimension greater than n/2 on which the

restriction of the function f(x) coincides with the restriction of the affine
function, then any of its n/2 - dimensional submanifolds also possess this
property, which allows us to restrict ourselves to considering the latter.

Let M ∈ Mn
q (r) be a manifold on which the restriction f |M coincides

with the restriction a|M , where a(x) ∈ An
q . Then the relations ραf |M = 0 and

δαf |M = q−1
q are valid.
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Like any linear manifold of dimension n/2, the manifoldM is a collection
of solutions of a system of n/2 linear equations over the field Fq of the form





b1,0 ⊕ b1,1 ⊗ x1 ⊕ · · · ⊕ b1,n ⊗ xn = 0,

. . .

bn/2,0 ⊕ bn/2,1 ⊗ x1 ⊕ · · · ⊕ bn/2,n ⊗ xn = 0

(6)

with a matrix of coefficients of rank equal to n/2. The results of [7] for
∀α ∈ Fn+1

q imply the relation

δαf |M =
∑

c1,...,cn/2

δ
α⊕c1⊗β1⊕···⊕cn/2⊗βn/2
f , (7)

where βi = (bi,0, bi,1, . . . , bi,n) ∈ Fn+1
q from (6) for i = 1, . . . , n/2, and

c1, . . . , cn/2 are all possible different sets of n/2 elements of the field Fq.
The right-hand side of (7) contains q

n
2 terms and therefore there is a term

with coefficients ĉ1, . . . , ˆcn/2, for which the following inequality holds:

δ
α⊕ĉ1⊗β1⊕···⊕ ˆcn/2⊗βn/2
f ≥ (q − 1)q−

n
2−1. (8)

From (8) follows the inequality

ρ
α⊕ĉ1⊗β1⊕···⊕ ˆcn/2⊗βn/2
f ≤ (q − 1)qn−1 − (q − 1)q

n
2−1,

which for q > 2 contradicts the hypothesis of the theorem, since equality (5)
holds for the maximally nonlinear function.

Theorem is proved.

Remark 1. In the case of Boolean functions, Theorem 1 does not work.
Indeed, Boolean bent functions based on the Mayorana-McFarland’s con-
struction f(x) = 〈x′, π(x′′)〉 ⊕ g(x′′), where x′ = (x1, . . . , xn/2), x′′ =

(xn/2+1, . . . , xn) ∈ F
n/2
2 , π is an arbitrary substitution on the set F

n/2
2 , 〈∗, ∗〉

is the scalar product of vectors in the space F
n/2
2 , and g is an arbitrary func-

tion from P
n/2
2 , are maximally nonlinear functions with Nf = 2n−1 − 2

n
2−1.

However, their restrictions for any fixation of the variables xn/2+1, . . . , xn
constants coincide with the restrictions of affine functions. Boolean bent
functions based on the Dillon’s construction, obtained by summing the char-
acteristic functions of 2n−1 or 2n−1 + 1 linear subspaces of the space Fn

2 of
dimension n/2 with pairwise intersection only along the zero vector3, are
also maximally nonlinear and at the same time certainly contain subspaces
of dimension n/2, on which the function is equal to a unit constant.

3These sets of bent functions are also called Partial Spreads and are denoted PS− and PS+ respec-
tively.
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In [3], for even values of n, generalizations Mayorana-McFarland’s and
Dillon’s constructions to the case of functions of q-valued logic are presented.

The Mayorana-McFarland’s construction for q-valued bent functions of n
variables has a form similar to the Boolean case

f(x) = 〈x′, π(x′′)〉 ⊕ g(x′′), (9)

where x′ = (x1, . . . , xn/2), x′′ = (xn/2+1, . . . , xn) ∈ F
n/2
q , π is an arbitrary

substitution on the set F
n/2
q , 〈∗, ∗〉 is the scalar product of vectors in the

space F
n/2
q , and g is an arbitrary function from P

n/2
q .

Using the correspondence of the vector space F
n/2
q to the field Fqn/2, the

Dillon’s construction for q-valued bent functions of n variables are defined as
follows

f(x) = h(x′ ⊗ (x′′)q
n
2−2), (10)

where x′, x′′ ∈ Fqn/2, ⊗ and (∗)∗ are operations of multiplication and expo-
nentiation in the field Fqn/2, respectively, and the mapping h : Fqn/2 → Fq is
balanced function.

Corollary 1. Let q > 2, n is even, f(x) ∈ Bn
q and f(x) represented in

the form (9), that is, it belongs to the Mayorana-MacFarland’s family. Then
f(x) 6∈MNn

q .

To prove the corollary, it suffices to note that for any fixation of the
variables xn/2+1, . . . , xn by constants, the restriction of the function f(x)
coincides with the restriction of the affine function and use Theorem 1.

Corollary 2. Let q > 2, n is even, f(x) ∈ Bn
q and f(x) represented in the

form (10), that is, it belongs to the Dillon’s family. Then f(x) 6∈MNn
q .

Setting x1 = . . . = xn/2 = 0 or xn/2+1 = . . . = xn = 0, we obtain
subspaces of the space Fn

q of dimension n/2, on which the restriction of
the function f(x) coincides with the constant function h(0), and, hence, by
Theorem 1, the function f(x) is not maximally nonlinear.

3 Construction of a family of maximally nonlinear bent
functions

The idea underlying the Mayorana-McFarland construction allows for q >
2 and even values of n ≥ 4 to specify maximally nonlinear q-valued bent
functions of degree greater than two4.

4For n = 4 the condition q > 3 must be satisfied.
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Theorem 2. Let q > 2, n is even, x′ = (x1, x2) ∈ F2
q, x′′ =

(x3, . . . , xn/2+1), x′′′ = (xn/2+2, . . . , xn) ∈ F
n/2−1
q , π is an arbitrary sub-

stitution on the set F
n/2−1
q , 〈∗, ∗〉 is the scalar product of vectors in the space

F
n/2−1
q , and g is an arbitrary function from P

n/2−1
q . Then

a) for fields of even characteristic with respect to the function

f(x) = x1 ⊗ x2 ⊕ x2
1 ⊕ c⊗ x2

2 ⊕ 〈x′′, π(x′′′)〉 ⊕ g(x′′′), (11)

where c is a free term of an irreducible polynomial x2⊕x⊕c,5 the statements
f(x) ∈ Bn

q and f(x) ∈MNn
q are true;

b) for fields of odd characteristic with respect to the function

f(x) = x2
1 	 d⊗ x2

2 ⊕ 〈x′′, π(x′′′)〉 ⊕ g(x′′′), (12)

where d is a quadratic nonresidue6, the statements f(x) ∈ Bn
q and f(x) ∈

MNn
q are true.

Proof. Let’s consider the case of fields of even characteristic. For n = 2, the
proof of the theorem is obvious, since expression (11) reduces to the quadratic
form x1⊗ x2⊕ x2

1⊕ c⊗ x2
2, and from [8] it follows that when c is a free term

of a irreducible polynomial x2 ⊕ x ⊕ c, this form is a maximally nonlinear
bent function of two variables.

Now let n ≥ 4. Let’s prove that f(x) is a bent function. As stated
above, f ′(x′) = x1 ⊗ x2 ⊕ x2

1 ⊕ c ⊗ x2
2 ∈ B2

q . The function f ′′(x′′,x′′′) =
〈x′′, π(x′′′)〉 ⊕ g(x′′′) belongs to the Mayorana-McFarland family and there-
fore f ′′(x′′,x′′′) ∈ Bn−2

q . It follows from [4] that the sum of bent functions
of independent variables is a bent function defined on the totality of these
variables. Therefore, f(x) = f ′(x′)⊕ f ′′(x′′,x′′′) ∈ Bn

q .
Let’s proceed to the proof of the maximum nonlinearity of f(x). Fixing

n/2− 1 variables as constants




xn/2+2 = bn/2+2,

. . .

xn = bn,

(13)

we obtain a subfunction fβ(x′,x′′) ∈ P n/2+1
q of the form

fβ(x′,x′′) = x1 ⊗ x2 ⊕ x2
1 ⊕ c⊗ x2

2 ⊕ 〈x′′, π(β)〉 ⊕ g(β),

5The equivalent condition in terms of the absolute trace is determined by the equality Tr(c) = c ⊕
c2 ⊕ · · · ⊕ c2m−1

= 1
6An element d ∈ Fq\{0} is called a square nonresidue if @a ∈ Fq such that the equality a2 = d holds.
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where β = (bn/2+2, . . . , bn) ∈ F
n/2−1
q .

For an affine function â(x′,x′′) = a0 ⊕ a1 ⊗ x1 ⊕ · · · ⊕ an/2+1 ⊗ xn/2+1 ∈
A
n/2+1
q , which corresponds to the vector α̂ = (a0, a1, a2, a3, . . . , an/2+1) =

(a0, a1, a2, α
′′) ∈ F

n/2+2
q , in the case α′′ 6= π(β) the sum fβ(x′,x′′)⊕ â(x′,x′′)

has independent linear terms and therefore it is balanced. Then for qn/2+2−q3

corresponding parameters of the subfunction fβ(x′,x′′) the equalities ρα̂fβ =

(q− 1)q
n
2 hold. In the case α′′ = π(β), this sum is a function that essentially

depends only on two variables x1 and x2. From [8] it follows that in this case
for q3 remaining parameters the inequalities ρα̂fβ ≥ (q − 1)q

n
2 − q

n
2−1 hold,

since x1 ⊗ x2 ⊕ x2
1 ⊕ c⊗ x2

2 ⊕ a1 ⊗ x1 ⊕ a2 ⊗ x2 ⊕ g(β)⊕ a0 ∈MN 2
q .

Let Mβ ∈ Mn
q (n/2 + 1) be the linear manifold defined by the same

fixation of variables (13). It follows from [7] that qn/2+2 parameters ρα̂fβ of the
subfunction fβ(x′,x′′), by multiplication, define qn+1 parameters ραf |Mβ of the
restriction f |Mβ

, namely, for all possible sets of n/2− 1 elements of the field
cn/2+2, . . . , cn the following relations hold

ρ
(α̂,0,...,0)⊕cn/2+2⊗βn/2+2⊕cn⊗βn
f |Mβ

= ρα̂fβ ,

where (α̂, 0, . . . , 0) ∈ Fn+1
q , and also for i = n/2 + 2, . . . , n the vector

βi = (bi, 0, . . . , 0, 1, 0, . . . , 0) ∈ Fn+1
q and its (i + 1)-th coordinate is 1.

Thus, for ∀α ∈ Fn+1
q \{(a0, a1, a2, π(β), α′′′)}, where α′′′ = (an/2+2, . . . , an) ∈

F
n/2−1
q , the equalities ραf |Mβ

= (q − 1)q
n
2 hold, then while for ∀α ∈

{(a0, a1, a2, π(β), α′′′)} the inequalities ραf |Mβ ≥ (q − 1)q
n
2 − q n2−1 hold.

Going through all possible β ∈ F
n/2−1
q we obtain qn/2−1 pairwise disjoint

linear manifolds for which the relation

Fn
q =

⋃

β∈Fn/2−1q

Mβ

holds. Since π is a substitution on F
n/2−1
q , it is easy to see that ∀α =

(a0, a1, a2, α
′′, α′′′) ∈ Fn+1

q the following relations chain holds

ραf =
∑

β∈Fn/2−1q

ραf |Mβ
=

∑

β∈Fn/2−1q \π−1(α′′)

ραf |Mβ
+ ραf |M

π−1(α′′)
≥

≥ (q
n
2−1 − 1)(q − 1)q

n
2 + (q − 1)q

n
2 − q n2−1 = (q − 1)qn−1 − q n2−1.

Taking into account inequality (3) and the criterion of maximum nonlin-
earity, based on equality (5), we obtain that f(x) ∈MNn

q .
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The proof of the second part of the theorem in the case of a field of odd
characteristic and a function of the form (12) is carried out similarly, taking
into account that it follows from [8] that, for a quadratic nonresidue d, the
quadratic form x2

1 	 d ⊗ x2
2 is a maximally nonlinear bent function of two

variables.
Theorem is proved.

Remark 2. In a similar way to the proof of Theorem 2, we can show that for
q > 2 and n is odd, for the function f(x) = x2

1⊕〈x′′, π(x′′′)〉⊕ g(x′′′), where
x′′ = (x2, . . . , x(n+1)/2), x′′′ = (x(n+3)/2, . . . , xn) ∈ F

(n−1)/2
q , π is an arbitrary

substitution on the set F
(n−1)/2
q , 〈∗, ∗〉 is the scalar product of vectors in the

space F
(n−1)/2
q , and g is an arbitrary function from P

(n−1)/2
q , the following

inequality holds
Nf ≥ (q − 1)qn−1 − q n−12 ,

and for n = 1, as follows from (4), f(x) is a maximally nonlinear function.
In the case of a field with an odd characteristic, f(x) is a bent function,
while for a field of an even characteristic, it is a balanced function and not
a bent function.

Remark 3. The families of functions constructed in Theorem 2 and as a
result of Remark 2 can be extended by adding EA-equivalent functions from
P n
q .

Thus, Theorem 2, taking into account Remark 3, makes it possible for
q > 2 to define a wide class of maximally nonlinear bent functions of q-
valued logic from an even number of variables of arbitrary degree from 2 to
max{2, (q−1)(n/2−1)}. It does not overlap with the famous classes of bent
functions listed above, since all of its functions are highly nonlinear.

4 Conclusion

The results obtained here confirm that for q > 2 and even values n, some
famous families of q-valued bent functions do not possess the property of
maximum nonlinearity. At the same time a new family of bent functions over
finite fields is constructed, which are both perfect nonlinear and maximally
nonlinear.

For odd values of n, a family of q-valued functions with a sufficiently high
degree of nonlinearity is indicated. In the case of fields of odd characteris-
tic, this family belongs to the class of bent functions, and for fields of even
characteristic, it belongs to the class of balanced functions.
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Abstract

The present article is concerned with the problem of obtaining exact formulas and
bounds for the curvature (i.e., the sums of modules of Walsh coefficients) and nonde-
generacy (parameter related to the resistance of a Boolean function against certain
method of analysis) of some classes of cryptographic Boolean functions. Moreover,
for these classes we determinate other relevant cryptographic parameters as non-
linearity, algebraic degree and distance to linear structures. Also, we extend the
curvature parameter to the world of S-Boxes and for various nonlinear components
of actual symmetric cryptographic algorithms we investigate the behavior of some
parameters and matrices connected with the curvature of Boolean functions.

Keywords: Boolean functions, Walsh coefficients, filtering generators, combining generators,
curvature, nondegeneracy, S-Box, block ciphers

Introduction

Boolean functions are an inseparable class of functions in modern Cryp-
tography that play crucial roles in the combiner and filter models of stream
ciphers systems and determine the most critical properties of the so-called
Substitution Boxes (S-Boxes), which very often are included in the design of
block ciphers and hash functions to provide nonlinear relationship between
the input bits and the output bits, ensuring what Shannon called confusion.

In this work we continue the research line started in [6], considering the
problem of obtaining exact formulas and bounds for the sums of modules of
Walsh coefficients of some classes of cryptographic Boolean functions. The
sums of modules of Walsh coefficients originally appeared in [14] during the
study of the properties of binary filtering generator when estimating the
frequencies of elements in the segments of output sequences, was also inves-
tigated in [6, 16] for various Boolean functions and used in [15] for obtaining
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estimates of the number of solutions of nonlinear systems of equations in the
case when the arguments of functions in these system, are obtained by using
linear recurrent sequences over Galois rings. Recently, it has been appeared
again in [19] when considering Boolean functions as points on the hypersphere
in the Euclidean space, where the authors of this work suggested calling it —
curvature of a Boolean function, due to its particular geometric meaning. In
what follows, in order to unify the same concept, we shall support this term
when referring to the sum of modules of Walsh coefficients.

The present article is mainly devoted to the study of the curvature and
nondegeneracy (resistance to a method of analysis based on algebraically de-
generate approximations [1]) of some cryptographic classes of Boolean func-
tions and other significant cryptographic properties of these classes. Also, we
extend the notion of the curvature to the world of S-Boxes and for several
nonlinear components of actual symmetric cryptographic primitives we inves-
tigate some parameters connected with the curvature of Boolean functions.

Our work is structured as follows: We begin with preliminaries in Sec-
tion 1, providing necessary notations and concepts about Boolean functions.
In Section 2, we find the exact values and bounds of the curvature and non-
degeneracy of some classes of Boolean functions and for these classes we also
determine other relevant parameters such as non-linearity, algebraic degree
and distance to linear structures. The variation of the curvature when chang-
ing randomly one or multiples values in the output of a Boolean function is
analysed in Section 3. In Section 4, we extend the curvature parameter to n-
bit S-Boxes and the behavior of this parameter when studing some concrete
8-bit S-Boxes is analysed. The article is concluded in Section 5.

1 Preliminaries

Let F2 be a finite field of two elements. For any n ∈ N we denote by
Fn2 = F2×· · ·×F2, the vector space of dimension n with the components from
the field F2, let 0 = (0, 0, . . . , 0) be the null vector of Fn2 and by ⊕ we denote
the addition operation of Fn2 . A Boolean function of n variables is a mapping
from Fn2 to F2. The set of all Boolean functions with n variables is denoted by
Fn = {f : Fn2 → F2} and it is well-known that Fn is a linear vector space over
F2. The indicator function, denoted by δa, is defined as follows, δa(x) = 1,
if x = a and δa(x) = 0, when x 6= a. The Hamming weight wH(x) of a
binary vector x ∈ Fn2 being the number of its nonzero coordinates (i.e., the
size of supp(x) = {i ∈ {1, 2, . . . , n} : xi 6= 0}, the support of vector x), the
Hamming weight wH(f) of a Boolean function f ∈ Fn is the size of supp(f) =
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{x ∈ Fn2 : f(x) 6= 0}, the support of function f . The distance dist(f, g)
between functions f, g ∈ Fn is the value of wH(f ⊕ g). The value vector vf
of a Boolean function f is the vector (f(0, . . . , 0), . . . , f(1, . . . , 1)) of length
2n consisting of the values of f on all possible inputs in the lexicographic
order. Every function f ∈ Fn has a unique polynomial representation over
F2, of the form f(x1, . . . , xn) =

⊕
I⊆{1,...,n} aI

(∏
i∈I xi

)
, which very often is

called the algebraic normal form (in brief the ANF) or Zhegalkin polynomial
of f . The algebraic degree of a Boolean function f with n variables, denoted
by dalg(f), is defined as dalg(f) = max{#I |aI 6= 0}, where #I denotes the
size of I with the convention that the zero function has algebraic degree 0
(see, [5, p. 35]). For x, y ∈ Fn2 the scalar product of x and y is defined as

〈x, y〉 = x · yT =
n⊕

i=1

xiyi ∈ F2.

The set
{
〈a, x〉 ⊕ b

∣∣ a ∈ Fn2 , b ∈ F2

}
of affine Boolean functions in n

variables is denoted as An. For a Boolean function f ∈ Fn its nonlinearity,
denoted by nl(f), is the Hamming distance from the set of all affine functions
An:

nl(f) = dist(f,An) = min
l∈An

dist(f,An).
When analysing the most relevant cryptographic properties of Boolean

functions the Walsh–Hadamard transform is frequently used. The
Walsh–Hadamard transform of a Boolean function f ∈ Fn is a function
Wf : Fn2 → Z such that

Wf(u) =
∑

x∈Fn2

(−1)f(x)⊕〈u,x〉, u ∈ Fn2 . (1)

The value Wf(u) is called the Walsh–Hadamard coefficients (or Walsh
coefficients). The nonlinearity of f ∈ Fn can be evaluated using its Walsh
coefficients as follows:

nl(f) = 2n−1 − 1

2
max
u∈Fn2
|Wf(u)|. (2)

The Boolean function f ∈ Fn is called a Bent function if |Wf(u)| = 2
n
2

for any u ∈ Fn2 . The subset of Fn containing all Bent function is denoted by
Bn.

The autocorrelation function of a Boolean function f ∈ Fn is a function
∆f : Fn2 → Z such that

∆f(u) =
∑

x∈Fn2

(−1)f(x)⊕f(x⊕u), u ∈ Fn2 . (3)
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It is well-known (see, for example, [18, p. 97]) that for any f ∈ Fn and
u ∈ Fn2 the following equality holds

∑

v∈Fn2

∆f(v)(−1)〈u,v〉 =W2
f (u). (4)

By applying in (4) the inverse Fourier transform formula (see, for example,
[5, p. 59]), we have

∆f(u) =
1

2n

∑

v∈Fn2

W2
f (v)(−1)〈u,v〉. (5)

The space of linear structures (see, [12]) for a Boolean function f ∈ Fn
is the following set:

Lf = {u ∈ Fn2 | ∀v ∈ Fn2 f(v ⊕ u) = f(v)⊕ εu, εu ∈ F2}.

In this context, a vector 0 6= u ∈ Fn2 is a linear structure for f ∈ Fn if
and only if the function f ′u(v) = f(v⊕u)⊕f(v) is constant on Fn2 . Nonlinear
transformations used in block ciphers should have no nonzero linear structure
[10] and the existence of nonzero linear structures, for the Boolean functions
implemented in filtering and combining generators, is a potential weakness
and is better avoided.

The distance to linear structures (see, [12]) of any n-variable Boolean
function f , denoted by ls(f), can be calculated as follows

ls(f) = 2n−2 − 1

4
max

06=u∈Fn2
|∆f(u)|. (6)

The smaller parameter max06=u∈Fn2 |∆f(u)|, the better the cryptographic
quality of the Boolean function f .

Nondegeneracy of a function f ∈ Fn, denoted by nd(f), is defined as the
distance between f and the set of all algebraically degeneratea Boolean func-
tions and can be evaluated (see, for example, [12]) using the autocorrelation
of f as follows

nd(f) = 2n−2 − 1

4
max

06=u∈Fn2
∆f(u). (7)

As stated at beginning, the parameter nd(f) is closely related to the
resistance offered by f against a method of analysis based on algebraically

aA function f ∈ Fn is called algebraically degenerate if there are g ∈ Fk and a binary (k × n)-matrix
D for some k < n such that f(u) = g

(
D · uT

)
for all u ∈ Fn2 .
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degenerate approximations (see, [1]). The higher is nd(f), the better is the
contribution of f to the resistance to this method.

The curvature of a Boolean function f ∈ Fn, denoted by curv(f), is
defined as:

curv(f) =
∑

u∈Fn2

|Wf(u)|. (8)

As showed in [6], the curvature of f ∈ Fn has the following bounds

2n ≤ curv(f) ≤ 2
3n
2 , (9)

where the lower bound becomes an equality if and only if f ∈ An and the
upper bound is achieved only when f ∈ Bn. The curvature parameter (which
is affine invariant) is a very useful tool for characterizing "how close" is a
Boolean function f ∈ Fn to being linear (or Bent) and in some sense this
parameter can indicate some insight about the nonlinearity of f .

2 The curvature and nondegeneracy of some classes of
Boolean functions

In this section, the main attention is paid to the calculation of the cur-
vature and nondegeneracy of some classes of Boolean functions. For these
classes, we also determine other parameters having a crucial significance in
Cryptography such as non-linearity, algebraic degree and distance to linear
structures.

2.1 Class of balanced functions with maximal algebraic degree

For an even natural number n ≥ 4 and ϕ ∈ Bn−2, a class of Balanced
functions fϕ which its ANF contains a single term x1x2 · · ·xn−1 can be defined
as follows

fϕ(x1, . . . , xn) = x1x2 · · ·xn−1 ⊕ ϕ(x1, . . . , xn−2)⊕ xn, (10)

this class was studied in [6] only in the case when n is an even natural
number. For an odd natural number n = 2k + 1 ≥ 3, choosing ϕ ∈ Bn−1 we
can construct the class fϕ as

fϕ(x1, . . . , xn) = x1x2 · · ·xn−1 ⊕ ϕ(x1, . . . , xn−1)⊕ xn. (11)

It should be pointed out that the use of these functions as filter functions
in the filtering generators permit to guarantee non-trivial lower bounds of
linear complexity of their output sequences (see, for example, [29]).
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Proposition 1. ([6]) Let fϕ be the Boolean function defined by the equality
(10). Then curv(fϕ) = 2

3n
2 −1 + 2n + (−1)fϕ(1)2

n
2 +1, where 1=(1,1,. . . ,1).

Next, we give the exact value of the curvature parameter for Boolean
functions defined by (11) because it has never been published and some
results contained in the proof of the following proposition will be used to
determine other characteristic of this class.

Proposition 2. Let fϕ be the Boolean function defined by the equality (11).
Then curv(fϕ) = 2

3n−1
2 − 2

n+3
2 .

Proof. Walsh coefficients of fϕ are equals to

Wfϕ(a) =
∑

x1,x2,...,xn∈F2

(−1)x1x2···xn−1⊕ϕ(x1,...,xn−1)⊕xn⊕a1x1⊕···⊕anxn.

If an = 0, then obviously Wfϕ(a) = 0. If an = 1, then

Wfϕ(a1, . . . , an−1, 1) = 2Wϕ(a1, . . . , an−1)− 4(−1)ϕ(1)⊕a1⊕···⊕an−1,

where 1 = (1, 1, . . . , 1). Thus

Wfϕ(a1, . . . , an) =

{
0, if an = 0;

2Wϕ(a1, . . . , an−1)− 4(−1)ϕ(1)⊕a1⊕···⊕an−1, if an = 1.

Let us denote by ϕ̃ the dual of the Bent function ϕ, which satisfies the next
relation

Wϕ(a) = (−1)ϕ̃(a)2
n−1

2 , a ∈ Fn−1
2 . (12)

It is well known (see, for example, [18, p. 253]), that ϕ̃ is a Bent-function.
Hence the following function is also Bent

ψ(x1, . . . , xn−1) = ϕ̃(x1, . . . , xn−1)⊕ x1 ⊕ · · · ⊕ xn−1 ⊕ ϕ(1). (13)

Taking into account, that ˜̃ϕ = ϕ the following relations holds Wψ(0) =
(−1)ϕ(1)Wϕ̃(1) = 2

n−1
2 > 0. In this way,

wH(ψ) = 2n−2 − 1

2
Wψ(0) = 2n−2 − 2

n−1
2 −1 = 2n−2 − 2

n−3
2 .

By relation

(−1)a1⊕···⊕an−1⊕ϕ(1)Wϕ(a1, . . . , an−1) = 2
n−1

2 (−1)ψ(a1,...,an−1)

it holds, that the set of numbers (−1)a1⊕···⊕an−1⊕ϕ(1)Wϕ(a1, . . . , an−1) con-
tains wH(ψ) numbers equal to −2

n−1
2 and 2n−1 − wH(ψ) numbers equal to

2
n−1

2 . Then,

curv(fϕ) = (2
n−1

2 +1+4)(2n−2−2
n−3

2 )+(2
n−1

2 +1−4)(2n−2+2
n−3

2 ) = 2
3n−1

2 −2
n+3

2 .
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Proposition 3. Let fϕ be the Boolean function defined by the equality (11).
Then nd(fϕ) = 2n−2 − 2.

Proof. We shall use the expressions of Wfϕ, obtained in the proof of Propo-
sition 2 and relation written in (5) for calculating the autocorelation of fϕ,
which in this case has the following form

∆fϕ(u1, . . . , un) =
1

2n

∑

v∈Fn2

W2
fϕ

(v1, . . . , vn)(−1)〈(u1,...,un),(v1,...,vn)〉 =

=
(−1)un

2n

∑

v1,...,vn−1∈F2

W2
fϕ

(v1, . . . , vn−1, 1)(−1)u1v1⊕...⊕un−1vn−1.

Let us denote û = (u1, . . . , un−1), v̂ = (v1, . . . , vn−1) ∈ Fn−1
2 . Then

∆fϕ(û, un) =
(−1)un

2n

∑

v̂∈vn−1

W2
fϕ

(v̂, 1)(−1)〈û,v̂〉 =

=
4(−1)un

2n

∑

v̂∈Fn−1
2

(
Wϕ(v̂)− 2(−1)v1⊕...⊕vn−1⊕ϕ(1)

)2

(−1)〈û,v̂〉.

Now using relations (12), (13) we have

∆fϕ(û, un) =
4(−1)un

2n

[ ∑

v̂∈Fn−1
2

2n−1(−1)〈û,v̂〉 − 4 · 2n−1
2

∑

v̂∈Fn−1
2

(−1)ψ(v̂)⊕〈û,v̂〉 +

+4
∑

v̂∈Fn−1
2

(−1)〈û,v̂〉
]

=

=
4(−1)un

2n

[
22n−2 · δ0(û)− 4 · 2n−1

2 Wψ(û) + 4 · 2n−1 · δ0(û)

]
,

where δ0(û) = δ0(u1)δ0(u2) · · · δ0(un−2).
Thus, if û = 0 and un = 1 then ∆fϕ(0, 1) = −2n. If un ∈ {0, 1} and

there exist some i ∈ {1, . . . , n− 1} for which ui 6= 0 we obtain ∆fϕ(û, un) ∈
{−8, 8}. In this way we conclude that nd(fϕ) = 2n−2 − 1

4
max

06=u∈Fn2
∆f(u) =

2n−2 − 2.

Proposition 4. Let fϕ be the Boolean function defined by the equality (10).
Then nd(fϕ) = 2.
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Proof. The proof is quite similar to the proof of Proposition 3, using the
expressions of Wfϕ obtained in [6].

n curv(fϕ) nl(fϕ) dalg(fϕ)

even 2
3n
2 −1 + 2n 2n−1 − 2

n
2 − 2 n− 1

+(−1)fϕ(1) · 2n
2 +1

odd 2
3n−1

2 − 2
n+3

2 2n−1 − 2
n−1

2 − 2 n− 1

n ls(fϕ) nd(fϕ)

even 0 2
odd 0 2n−2 − 2

x1

x2

...
...

ϕ

xn−2

xn−1

xn

fϕ(x1, x2, . . . , xn)

Figure 1: Cryptographic parameters of fϕ and its high level representation.

If denote en = (0, . . . , 0, 1), then from the proof of Proposition 3 we
have ∆fϕ(en) = ∆fϕ(0, 1) = −2n and for functions defined by (10) the
following equality holds fϕ(x) ⊕ fϕ(x ⊕ en) = 1, which means that en is
a linear structure for fϕ and in this case ∆fϕ(en) = −2n. From relation
max06=u∈Fn2 |∆fϕ(u)| ≤ 2n, we conclude that both classes of functions defined

by (10), (11) have ls(fϕ) = 2n−2 − 1

4
max

06=u∈Fn2
|∆fϕ(u)| = 0.

We compile in Figure 1 the high level representation when n is even (if n
is odd, the scheme is almost identical) and some cryptographic characteristics
of this class fϕ for any natural number. When n → ∞, we have curv(fϕ) =
O(2

3n
2 ) and as can be observed from this figure, we can construct balanced

Boolean function fϕ with maximal algebraic degree having high nonlinearity.
However, if n is an even natural the nondegeneracy of fϕ is very low in
contrast with the value nd(fϕ) when n is odd. In any case, the main weakness
of these classes is the existence of nonzero linear structures.

2.2 Classes of functions obtained by using Maiorana–McFarland
and Dobbertin constructions

Let n = 2k, where k ≥ 2, Φ: Fk2 → Fk2 - any mapping with coordinates
functions Φi : Fk2 → F2, i = 1, 2, . . . , k, i.e., Φ(y) = (Φ1(y), . . . ,Φk(y)). For
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all x = (x1, ..., xk) , y = (y1, ..., yk) ∈ Fk2 we introduce the following notation.

〈Φ(y), x〉 = Φ1(y)x1 ⊕ Φ2(y)x2 ⊕ · · · ⊕ Φk(y)xk. (14)

Choosing an arbitrary Boolean function h(y) in k-variables, we de-
fine the following n - variables Boolean function with the help of Maio-
rana–McFarland construction.

fΦ,h(x, y) = 〈x,Φ(y)〉 ⊕ h(y), x, y ∈ Fk2. (15)

Let M = (mij)k×k be a matrix over F2 with rangM = k − 1. Consider
the following map Φ: Fk2 → Fk2 such that Φ(y) = y ·M , for any y ∈ Fk2. By L
we denote the linear subspace, generated by all rows of M . From condition
rangM = k− 1, we have #L = 2k−1 and in this context it is not difficult to
see, that the linear transformation Φ satisfies the following relations.

Φ−1(0) = {0, c}, Φ−1(v) =

{
∅, if v /∈ L;

{d, d⊕ c}, if v ∈ L and dM = v.
(16)

Proposition 5. ([6]) Let fΦ,h be the boolean function defined by rela-
tion (15), where Φ(y) = y ·M . Then curv(fΦ,h) = 2

3n
2 −1.

It should be pointed out that Boolean functions defined by (15) will be
balanced if and only if WfΦ,h

(0, 0) = 0, which according to [6, p. 64] it
happens when h(0) 6= h(c).

Proposition 6. Let fΦ,h be the Boolean function defined by the equality (15).
Then nd(fΦ,h) = 0.

Proof. For any u, û ∈ Fk2 the autocorrelation function of fΦ,h is defined as
∆fΦ,h

(u, û) =
∑

x,y∈Fk2

(−1)fΦ,h(x,y)⊕fΦ,h(x⊕u,y⊕û).

Let us consider the function fΦ,h(x, y) ⊕ fΦ,h(x ⊕ u, y ⊕ û). Using the
properties of the scalar product and the fact that Φ is a linear transformation
we obtain fΦ,h(x, y) ⊕ fΦ,h(x ⊕ u, y ⊕ û) = 〈x,Φ(û)〉 ⊕ h(y) ⊕ h(y ⊕ û) ⊕
〈u,Φ(y ⊕ û)〉. So ∆fΦ,h

(u, û) has the following form

∆fΦ,h
(u, û) =

∑

x∈Fk2

(−1)〈x,Φ(û)〉∑

y∈Fk2

(−1)h(y)⊕h(y⊕û)⊕〈u,Φ(y⊕û)〉.

If û = 0 and u 6= 0 we have

∆fΦ,h
(u, 0) = 2k

∑

y∈Fk2

(−1)〈u,Φ(y)〉 = 2k+1
∑

v∈L
(−1)〈u,v〉.
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Because rangM = k − 1 ⇒ ∃ 0 6= u ∈ Fk2 : M · uT = 0T ⇒ ∀d ∈
Φ−1(v) 6= ∅, (d · M) · uT = 0 ⇒ ∀v ∈ L, 〈u, v〉 = 0 ⇒ ∆fΦ,h

(u, 0) =

2k+1
∑

v∈L
(−1)0 = 2k+1 ·#L = 22k.

Now, from relation max
(0,0)6=(u,û)∈Fk2×Fk2

∆fΦ,h
(u, û) ≤ 22k and equality

∆fΦ,h
(u, 0) = 22k, which holds for some nonzero u ∈ Fk2, we conclude that

nd(fΦ,h) = 22k−2 − 1

4
max

(0,0)6=(u,û)∈Fk2×Fk2
∆fΦ,h

(u, û) = 22k−2 − 1

4
· 22k = 0.

From the proof of Proposition 6, we derive max
(0,0)6=(u,û)∈Fk2×Fk2

|∆fΦ,h
(u, û)| =

22k, which means that ls(fΦ,h) = 0. Also, from (15) we obtain that
dalg(fΦ,h) = dalg(h), when dalg(h) ≥ 3 and dalg(fΦ,h) = 2, if dalg(h) ≤ 2.

n curv(fΦ,h) nl(fΦ,h) dalg(fΦ,h)

even 2
3n
2 −1 2n−1 − 2

n
2

dalg(h), if dalg(h) ≥ 3;
2, if dalg(h) ≤ 2.

n ls(fΦ,h) nd(fΦ,h)

even 0 0

x y

〈·, ·〉 Φ

h

fΦ,h(x, y)

Figure 2: Cryptographic parameters of fΦ,h and its high level representation.

We present in Figure 2 some cryptographic characteristics of the class
fΦ,h. It can be seen that curv(fΦ,h) = O(2

3n
2 ) when n → ∞ and thus we

can expect a high value of nonlinearity parameter as indeed was obtained in
[6]. However, the algebraic degree of fΦ,h can not exceed the degree of the
function h in k variables. Moreover, this class has nonzero linear structures
and the nondegeneracy of these functions is zero which mean that Boolean
function fΦ,h are susceptible to a method of analysis based on algebraically
degenerate approximations [1].

Now we shall choose an arbitrary mapping Φ: Fk2 → Fk2 which satisfies
the following conditions

1. Φ(β) = Φ(β̂) = γ 6= 0 for some β, β̂, γ ∈ Fk2;

2. The mapping Φ̇ : Fk2 \ {β, β̂} → Fk2 \ {0, γ} such that Φ̇(x) = Φ(x) for
any x ∈ Fk2 \ {β, β̂} is injective.

Mappings Φ which satisfies conditions 1, 2 are particular cases of those
non-bijective k-bit functions without preimage for 0 used in [7] for generating
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highly nonlinear S-Boxes. Using these mappings we can construct a class of
Boolean function in n = 2k variables as follows

fΦ(x, y) = 〈Φ(x), y〉 , x, y ∈ Fk2. (17)

Proposition 7. Let fΦ be the Boolean function defined by relation (17)
where the mappings Φ satisfies conditions 1, 2 listed above. Then curv(fΦ) =
2

3n
2 − 2n.

Proof. Walsh coefficients WfΦ
(v, w) for any v, w ∈ Fk2 are equals to

WfΦ
(v, w) =

∑

(x,y)∈Fk2×Fk2

(−1)fΦ(x,y)⊕〈(x,y),(v,w)〉 =

=
∑

x∈Fk2

(−1)〈v,x〉
∑

y∈Fk2

(−1)〈y,Φ(x)⊕w〉 = 2k ·
∑

x∈Φ−1(w)

(−1)〈v,x〉.

Thus,

WfΦ
(v, w) =





2k · (−1)〈v,Φ−1(w)〉, if w /∈ {0, γ};
0, if w = 0;

2k ·
(

(−1)〈v,β〉 + (−1)〈v,β̂〉
)
, if w = γ.

(18)

For the sake of clarity It should be pointed out that when w = 0 we
have Φ−1(0) = ∅ and WfΦ

(v, 0) = 0 for any v ∈ Fk2. So, we conclude that
curv(fΦ) =

∑

(v,w)∈Fk2×Fk2

|WfΦ
(v, w)| = 2k ·2k ·(2k−2)+2k+1 ·2k−1 = 23k−22k =

2
3n
2 − 2n.

It follows, from the proof of Proposition 7, that WfΦ
(0, 0) = 0, i.e.,

all Boolean function of the form (17) are balanced. The next result shows
that these functions are not susceptible to a method of analysis based on
algebraically degenerate approximations presented in [1].

Proposition 8. Let fΦ be the Boolean function defined by the equality (17).
Then nd(fΦ) = 2n−2 − 2

n
2−1.

Proof. For any u, û ∈ Fk2 the autocorrelation function of fΦ is defined as
∆fΦ

(u, û) =
∑

x,y∈Fk2

(−1)fΦ(x,y)⊕fΦ(x⊕u,y⊕û). Using the properties of the scalar

product we obtain that fΦ(x, y)⊕fΦ(x⊕u, y⊕ û) = 〈Φ(x)⊕ Φ(x⊕ u), y〉⊕
〈Φ(x⊕ u), û〉. Then
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∆fΦ
(u, û) =

∑

x∈Fk2

(−1)〈Φ(x⊕u),û〉∑

y∈Fk2

(−1)〈Φ(x)⊕Φ(x⊕u),y〉.

If u = 0 and û 6= 0 we have

∆fΦ
(0, û) = 2k ·

∑

x∈Fk2

(−1)〈Φ(x),û〉 = 2k ·
(

(−1)〈Φ(β),û〉 + (−1)〈Φ(β̂),û〉)+

+2k ·
∑

β,β̂ 6=x∈Fk2

(−1)〈Φ(x),û〉 =

= 2k ·
(

2 · (−1)〈γ,û〉
)

+ 2k ·
∑

β,β̂ 6=x∈Fk2

(−1)〈Φ(x),û〉.

Let us find the value of
∑

β,β̂ 6=x∈Fk2 (−1)〈Φ(x),û〉. By condition 2 (listed above),
the mapping Φ̇ : Fk2 \ {β, β̂} → Fk2 \ {0, γ} such that Φ̇(x) = Φ(x) for any
x ∈ Fk2 \ {β, β̂} is injective. Let now Φ′ : Fk2 → Fk2 be a mapping defined as
follows

Φ′(x) =





0, if x = β;

γ, if x = β̂;

Φ̇(x), if x /∈ {β, β̂}.
(19)

Obviously, the mapping defined by (19) is a permutation on Fk2 ⇒∑
x∈Fk2 (−1)〈Φ

′(x),û〉 = (−1)〈Φ
′(β),û〉 + (−1)〈Φ′(β̂),û〉 +

∑
β,β̂ 6=x∈Fk2 (−1)〈Φ(x),û〉 =

0 ⇒ ∑
β,β̂ 6=x∈Fk2 (−1)〈Φ(x),û〉 = −

(
1 + (−1)〈γ,û〉

)
⇒ ∆fΦ

(0, û) =

2k
(
(−1)〈γ,û〉 − 1

)
and in this way, we obtain ∆fΦ

(0, û) ∈ {0,−2k+1}.
When u 6= 0 and û ∈ Fk2 we have

∆fΦ
(u, û) = (−1)〈Φ(β⊕u),û〉∑

y∈Fk2

(−1)〈Φ(β)⊕Φ(β⊕u),y〉 +

+(−1)〈Φ(β̂⊕u),û〉∑

y∈Fk2

(−1)〈Φ(β̂)⊕Φ(β̂⊕u),y〉 +

+
∑

β,β̂ 6=x∈Fk2

(−1)〈Φ(x⊕u),û〉∑

y∈Fk2

(−1)〈Φ(x)⊕Φ(x⊕u),y〉.

Because Φ is an injective function on Fk2 \ {β, β̂} ⇒ ∀β, β̂ 6= x ∈
Fk2,Φ(x) ⊕ Φ(x ⊕ u) 6= 0 ⇒ ∑

y∈Fk2 (−1)〈Φ(x)⊕Φ(x⊕u),y〉 = 0 ⇒ ∆fΦ
(u, û) =
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2k ·
(

(−1)〈Φ(β)⊕Φ(β⊕u),û〉δΦ(β⊕u)(Φ(β)) + (−1)〈Φ(β̂)⊕Φ(β̂⊕u),û〉δΦ(β̂⊕u)(Φ(β̂))
)
.

Thus, for a nonzero vector u ∈ Fk2 such that β̂ = β ⊕ u, ∆fΦ
(u, û) = 2k+1,

otherwise ∆fΦ
(u, û) = 0. In this way, we have ∆fΦ

(u, û) ∈ {0, 2k+1}.
From previous cases, we conclude that nd(fΦ) = 22k−2 −

1

4
max

(0,0)6=(u,û)∈Fk2×Fk2
∆fΦ

(u, û) = 22k−2 − 1

4
· 2k+1 = 2n−2 − 2

n
2−1.

From relation (14) we derive dalg(fΦ) = dalg(Φ) + 1 and from
the proof of Proposition 7, 8 we deduce nl(fΦ) = 2n−1 − 2

n
2 and

max
(0,0)6=(u,û)∈Fk2×Fk2

|∆fΦ
(u, û)| = 2k+1 respectively, the latter implies that

ls(fΦ) = 2n−2 − 2
n
2−1.

n curv(fΦ) nl(fΦ) dalg(fΦ) ls(fΦ)

even 2
3n
2 − 2n 2n−1 − 2

n
2 dalg(Φ) + 1 2n−2 − 2

n
2−1

n nd(fΦ)

even 2n−2 − 2
n
2−1

x y

Φ 〈·, ·〉

fΦ(x, y)

Figure 3: Cryptographic parameters of fΦ and its high level representation.

When the simplicity of this class of functions it is more than clear, which
can be observed in Figure 3, we can generate Boolean function with high
nonlinearity having curv(fΦ) ∼ 2

3n
2 when n → ∞, but the algebraic degree

of this function is far from optimal. However, parameters ls(fΦ), nd(fΦ) are
not equal to zero and, thus these functions can resist some methods of analysis
which exploit the low values of these parameters.

Let us consider the following construction studied in [16] which generalize
the particular case investigated in [6]. Choosing an arbitrary Boolean function
g ∈ Fk and a normal functionb ϕ ∈ B2k, we construct fϕ,g as follows

fϕ,g(x, y) =

{
g(y), if x = α;
ϕ(x, y), if x 6= α.

(20)

In the next proposition the exact value of curv(fϕ,g) is given.

Proposition 9. ([16]) Let fϕ,g be the Boolean function defined by rela-
tion (20). Then curv(fψ,g) = 2

3n
2 − 2n + 2

n
2 |Wg(0)|.

Let us point out, that all function of the form (20) will be balanced if
and only if when wH(g) = 2k−1.

bAn n-variable Boolean function is a normal function if it is constant (resp. affine) on at least one n
2 -

dimensional subspace.
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Proposition 10. Let fϕ,g be the Boolean function defined by relation (20)
with α = 0, any balanced Boolean function in k-variables g and ϕ(x, y) =
〈π(x), y〉, where π is any k-bit permutation such that π(0) = 0. Then
nd(fϕ,g) ≥ 2n−2 − 2

n
2−1.

Proof. For any u, û ∈ Fk2 the autocorrelation function of fϕ,g is defined as
∆fϕ,g(u, û) =

∑

x,y∈Fk2

(−1)fϕ,g(x,y)⊕fϕ,g(x⊕u,y⊕û).

If u = 0 and û 6= 0. Then

∆fϕ,g(0, û) =
∑

y∈Fk2

(−1)g(y)⊕g(y⊕û) +
∑

06=x∈Fk2
y∈Fk2

(−1)〈π(x),y〉⊕〈π(x),y⊕û〉 =

= ∆g(û) + 2k·
(∑

x∈Fk2

(−1)〈π(x),û〉 − (−1)〈π(0),û〉
)

=

= ∆g(û)− 2k,

where
∑

x∈Fk2 (−1)〈π(x),û〉 = 0 because π is a permutation and û 6= 0.
If u 6= 0 and û ∈ Fk2 we can use the following partition of Fk2 × Fk2 for

calculating the autocorrelation function, Fk2×Fk2 = {(0, y) | y ∈ Fk2}
⊔{(u, y)

| y ∈ Fk2}
⊔{(x, y) | 0, u 6= x ∈ Fk2 y ∈ Fk2}. Then we have

∆fϕ,g(u, û) =
∑

x=0
y∈Fk2

(−1)fϕ,g(0,y)⊕fϕ,g(u,y⊕û) +
∑

x=u
y∈Fk2

(−1)fϕ,g(u,y)⊕fϕ,g(0,y⊕û) +

+
∑

0,u6=x∈Fk2
y∈Fk2

(−1)fϕ,g(x,y)⊕fϕ,g(x⊕u,y⊕û) =

= 2 ·
∑

y∈Fk2

(−1)g(y)⊕〈π(u),y〉⊕〈π(u),û〉 +
∑

0,u6=x∈Fk2
y∈Fk2

(−1)〈π(x),y〉⊕〈π(x⊕u),y⊕û〉 =

= 2 · (−1)〈π(u),û〉Wg(π(u)) + T (u, û),

where T (u, û) =
∑

0,u6=x∈Fk2
y∈Fk2

(−1)〈π(x),y〉⊕〈π(x⊕u),y⊕û〉. Let us find the value of

T (u, û). Using the properties of the scalar product we have
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T (u, û) =
∑

0,u6=x∈Fk2

(−1)〈π(x⊕u),û〉∑

y∈Fk2

(−1)〈π(x)⊕π(x⊕u),y〉.

The function π is a permutation on Fk2 ⇒ ∀0, u 6= x ∈ Fk2, π(x)⊕ π(x⊕
u) 6= 0 ⇒ ∑

y∈Fk2 (−1)〈π(x)⊕π(x⊕u),y〉 = 0 ⇒ T (u, û) = 0 ⇒ ∆fϕ,g(u, û) =

2 · (−1)〈π(u),û〉Wg(π(u)).
Now, taking into account that max

û∈Fk2
∆g(û) ≤ 2k and max

u∈Fk2
Wg(u) ≤ 2k we

conclude that max
(0,0)6=(u,û)∈Fk2×Fk2

∆fϕ,g(u, û) ≤ 2k+1, hence the nondegeneracy

parameter of the class fϕ,g can be lower bounded as follows nd(fϕ,g) = 22k−2−
1

4
max

(0,0)6=(u,û)∈Fk2×Fk2
∆fϕ,g(u, û) ≥ 2n−2 − 2

n
2−1.

From the proof of Proposition 10 we can easy obtain that
max

(0,0) 6=(u,û)∈Fk2×Fk2
|∆fϕ,g(u, û)| ≤ 2k+1, hence ls(fϕ,g) ≥ 2n−2 − 2

n
2−1.

When ϕ(x, y) = 〈π(x), y〉 we present in Figure 4 some cryptographic
characteristics of the class fϕ,g. As can be observed from this figure,
curv(fϕ,g) ∼ 2

3n
2 when n → ∞, which means that functions fϕ,g live near

the set of maximally nonlinear functions (as the non-linearity parameter of
fϕ,g confirms it) offering at the same time the possibility to construct some
candidate with maximal algebraic degree.

n curv(fϕ,g) nl(fϕ,g) dalg(fϕ,g)

even 2
3n
2 − 2n 2n−1 − 2

n
2 + nl(g) n

2 + dalg(g)

n ls(fϕ,g) nd(fϕ,g)

even ≥ (2n−2 − 2
n
2−1) ≥ (2n−2 − 2

n
2−1)

x y

π 〈·, ·〉 g

fϕ,g(x, y)

Figure 4: Cryptographic parameters of fϕ,g and its high level representation.

2.3 A subclass of perfectly balanced Boolean functions without
right barrier

In this section we are interesting in the analysis of the curvature pa-
rameter for one simple subclass of the so-called perfectly balanced Boolean
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functions without right barrier. The property of being perfectly balanced was
formalized by Sumarokov S.N. (see, for example, [24]) and this kind of func-
tions were deeply studied in the following articles ([17, 24, 25, 26, 27, 28]). It
is worth noticing that, if the function f ∈ Fn is a perfectly balanced Boolean
function without left and right barriers, then it can be more resistant to the
so-called inversion attack (see, [13]) and when using it as filter function in
filtering generators, the statistical properties of sequences generated by them
can be improved.

For a natural number n consider the following construction

fg(x1, . . . , xn) = x1 ⊕ x2x3g(x4, . . . , xn)⊕ xn−1xn, (21)

where the function g is a Boolean function in n − 3 variables such that
g(1, . . . , 1) = 1. All functions of the form (21) conforms a particular subset
of the class of perfectly balanced Boolean functions without right barrier
considered in [24] and it is not difficult to see that dalg(fg) = dalg(g) + 2. In
the following proposition we determine the general expression of its Walsh
coefficients when xn−1, xn are not essential arguments.

Proposition 11. For any Boolean function g(x4, . . . , xn−2, xn−1, xn) ∈ Fn−3

which arguments xn−1, xn are not essential, the Walsh coefficientsWfg of the
function constructed by (21) are determined by the following relations

Wfg(a1, a2, a3, â, an−1, an) =





0, if a1 = 0;
6 · 2n−4δ0(â) + 4Wg(â), if a1 = 1, (a2, a3, an−1, an) ∈ A1;
−6 · 2n−4δ0(â)− 4Wg(â), if a1 = 1, (a2, a3, an−1, an) ∈ A2;
2 · 2n−4δ0(â)− 4Wg(â), if a1 = 1, (a2, a3, an−1, an) ∈ A3;
−2 · 2n−4δ0(â) + 4Wg(â), if a1 = 1, (a2, a3, an−1, an) ∈ A4.

,

where δ0(â) = δ0(a4) · · · δ0(an−2) for any â = (a4, . . . , an−2) ∈ Fn−5
2 ,

(a2, a3, an−1, an) ∈ F4
2, and sets Ai, i = 1, 2, 3, 4, are defined in the follow-

ing way A1 = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0)},A2 = {(0, 0, 1, 1)},A3 =
{(0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 1, 1)}
and A4 = {(0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0)}.

Proof. Walsh coefficients Wfg are equals to

Wfg(a1, . . . , an) =
∑

x1,x2,...,xn∈F2

(−1)x1⊕x2x3g(x4,...,xn)⊕xn−1xn⊕a1x1⊕···⊕anxn.

If a1 = 0, then obviously Wfg(a1, . . . , an) = 0. If a1 = 1, then we have

Wfg(a1, . . . , an) = 2Wg′(a2, . . . , an),
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where g′ = x2x3g(x4, . . . , xn)⊕xn−1xn. Let us find the valueWg′(a2, . . . , an).

Wg′(a2, . . . , an) =
∑

x2,x3,...,xn∈F2

(−1)x2x3g(x4,...,xn)⊕xn−1xn⊕a2x2⊕···⊕anxn =

=
∑

x4,...,xn∈F2

(−1)xn−1xn⊕a4x4⊕···⊕anxn

︸ ︷︷ ︸
x2=0,x3=0.

+

+
∑

x4,...,xn∈F2

(−1)xn−1xn⊕a3⊕a4x4⊕···⊕anxn

︸ ︷︷ ︸
x2=0,x3=1.

+

+
∑

x4,...,xn∈F2

(−1)xn−1xn⊕a2⊕a4x4⊕···⊕anxn

︸ ︷︷ ︸
x2=1,x3=0.

+

+
∑

x4,...,xn∈F2

(−1)g(x4,...,xn)⊕xn−1xn⊕a2⊕a3⊕a4x4⊕···⊕anxn

︸ ︷︷ ︸
x2=1,x3=1.

=

=
(
1 + (−1)a2 + (−1)a3

)
· T (a4, . . . , an) +

+(−1)a2⊕a3Wġ(a4, . . . , an),

where T (a4, . . . , an) =
∑

x4,...,xn∈F2

(−1)xn−1xn⊕a4x4⊕···⊕anxn and ġ is a Boolean

function in n− 3 variables such that ġ(x4, . . . , xn) = g(x4, . . . , xn)⊕xn−1xn.
By direct computations it is not hard to obtain the following relations for
T (a4, . . . , an) and Wġ(a4, . . . , an) respectively.

T (a4, . . . , an) =
[
1 + (−1)an−1 + (−1)an + (−1)an−1⊕an⊕1

]
2n−5δ0(â).

Wġ(a4, . . . , an) = Wg(x4,...,xn−2,0,0)(â) + (−1)an−1Wg(x4,...,xn−2,1,0)(â) +

+(−1)anWg(x4,...,xn−2,0,1)(â) + (−1)an−1⊕an⊕1Wg(x4,...,xn−2,1,1)(â),

where â = (a4, . . . , an−2) ∈ Fn−5
2 and δ0(â) = δ0(a4) · · · δ0(an−2). Thus, we

have

Wfg(a1, . . . , an) =

=
(
1 + (−1)a2 + (−1)a3

)[
1 + (−1)an−1 + (−1)an + (−1)an−1⊕an⊕1

]
×

×2n−4δ0(â) + 2(−1)a2⊕a3

[
Wg(x4,...,xn−2,0,0)(â) +

+(−1)an−1Wg(x4,...,xn−2,1,0)(â) + (−1)anWg(x4,...,xn−2,0,1)(â) +

R. A. de la Cruz Jiménez 236
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+(−1)an−1⊕an⊕1Wg(x4,...,xn−2,1,1)(â)
]
.

Now taking into account that arguments xn−1, xn are not essential for
g(x4, . . . , xn−2, xn−1, xn) ∈ Fn−3 we obtain

Wfg(a1, . . . , an) = 2n−4
(
1 + (−1)a2 + (−1)a3

)
×

×
[
1 + (−1)an−1 + (−1)an + (−1)an−1⊕an⊕1

]
δ0(â) +

+2(−1)a2⊕a3
[
1 + (−1)an−1 + (−1)an + (−1)an−1⊕an⊕1

]
×

×Wg(â).

So for any â = (a4, . . . , an−2) ∈ Fn−5
2 considering all possi-

ble values of (a2, a3, an−1, an) ∈ F4
2 we can obtain the expression of

Wfg(a1, a2, a3, β, an−1, an) written in the proposition.

Proposition 12. For any Boolean function g(x4, . . . , xn−2, xn−1, xn) ∈ Fn−3

which arguments xn−1, xn are not essential, the curvature of the function fg
constructed by (21) has the following upper bound

curv(fg) ≤ 3 · 2n + 64 · curv(g) (22)

Proof. By definition we have curv(fg) =
∑

a1,...,an∈F2

|Wfg(a1, . . . , an)|. Now,

using proposition 11 and the following property |x + y| ≤ |x| + |y|, which
holds for any x, y ∈ R we obtain

curv(fg) =
∑

a2,...,an∈F2

|Wfg(1, a2, . . . , an)|

≤
∑

a2,a3,an−1,an∈F2

|Wfg(1, a2, a3, 0, . . . , 0, an−1, an)|+

+
∑

a2,a3,...,an−2,an−1,an∈F2

∃ ai 6=0, i∈{2,...,n−2}

|Wfg(1, a2, . . . , an−1, an)| ≤

≤ (6 · 2n−4 + 4 · |Wg(0)|) · 4 + (2 · 2n−4 + 4 · |Wg(0)|) · 12 +

+
∑

a2,...,an−2∈F2

∃ ai 6=0, i∈{2,...,n−2}

4 · 16 · |Wg(a2, . . . , an−2)| ≤

≤ 3 · 2n + 64 · curv(g).
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Also from the proof of proposition 11 we deduce that

max
a1,a2,...,an∈F2

|Wfg(a1, a2, . . . , an)| ≥ 2 ·2n−4 +4 · max
a4,...,an−2∈F2

|Wg(a4, . . . , an−2)|,

hence the nonlinearity of fg ∈ Fn can be upper bounded as follows nl(fg) ≤
2n−1− 5 · 2n−4 + 4 ·nl(g). If denote e1 = (1, 0, . . . , 0) we obtain that fg(x)⊕
fg(x⊕ e1) = 1, this means that e1 is a linear structure for fg and ∆f(e1) =∑

x∈Fn2 (−1)fg(x)⊕fg(x⊕e1) = −2n, then from relation max06=u∈Fn2 |∆fg(u)| ≤ 2n,

we derive ls(fg) = 2n−2 − 1

4
max

06=u∈Fn2
|∆fg(u)| = 0.

n curv(fg) nl(fg) dalg(fg)

odd or ≤ (3 · 2n ≤ (2n−1 − 5 · 2n−4 dalg(g) + 2
even +64 · curv(g)) +4 · nl(g))

n ls(fg)

odd or
even 0

xn
xn−1

xn−2

...

g

x4

x3

x2

x1

fg(x1, x2, . . . , xn)

Figure 5: Cryptographic parameters of fg and its high level representation.

The values of some cryptographic parameters of the class fg and its high
level representation are given Figure 5. As we can see the curvature of these
functions is far from 2

3n
2 , moreover this class of function has nonzero linear

structures and is not optimal in terms of such parameters as algebraic degree
(in the case when arguments xn−1, xn are not essential for g) and nonlinearity
but has the property of being perfectly balanced without right barrier. In
addition, Boolean functions fg can be used as building blocks for constructing
perfectly balanced Boolean function without left and right barriers (see, [17,
Theorem 4]). We leave the task of finding the exact value of nondegeneracy
of functions fg as a future work.
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3 Variation of the curvature when changing randomly
one (multiple) value(s) in the value vector of a
Boolean function.

In this section for a given Boolean function f ∈ Fn we analyse the be-
havior of its curvature when changing randomly one (multiple) value(s) in
the value vector vf of f .

First of all, we shall fix an ordered family of all elements of the space
Fn2 , i.e, Fn2 = {u0, u1, . . . , u2n−1} = {(0, . . . , 0), (1, . . . , 0, 0), . . . , (1, . . . , 1)}.
Changing randomly one value in vf can be analytically expressed as adding to
a given function f another Boolean function, which take the value 1 in those
position of vf where the bit was changed and 0 in the remaining values. The
whole process can be synthesized using the well-known indicator function
as f ⊕ δui, where δi(u) = δui(u) has only one nonzero value at the point
ui ∈ Fn2 , i ∈ {0, . . . , 2n − 1}.

The Walsh-Adamard transform for the Boolean function f ⊕ δui ∈ Fn
has the following form

Wf⊕δui(u) =
∑

x∈Fn2
x 6=ui

(−1)f(x)⊕〈u,x〉 − (−1)f(ui)⊕〈ui,u〉 =

= Wf(u)− 2 · (−1)f(ui)⊕〈ui,u〉.

Thus, |Wf(u)|−2 ≤ |Wf⊕δui(u)| ≤ |Wf(u)|+2. If now selecting two vectors
ui, uj ∈ Fn2 for which f(ui) 6= f(uj), where 1 ≤ i < j ≤ 2n we obtain by
using recursively relation (23) the following equality

Wf⊕δui⊕δuj (u) =Wf(u)− 2 ·
[
(−1)f(ui)⊕〈ui,u〉 + (−1)f(uj)⊕〈uj ,u〉

]
.

Hence, |Wf(u)|−4 ≤ |Wf⊕δui⊕δuj (u)| ≤ |Wf(u)|+4. In this way we have
proved the following proposition.

Proposition 13. Let f be a Boolean function of the set Fn. Then

1. For any ui ∈ Fn2 , i ∈ {0, 1, . . . , 2n − 1},

|curv(f ⊕ δui)− curv(f)| ≤ 2 · 2n. (23)

2. For some ui, uj ∈ Fn2 such that f(ui) 6= f(uj), 1 ≤ i < j ≤ 2n,
∣∣curv(f ⊕ δui ⊕ δuj)− curv(f)

∣∣ ≤ 4 · 2n. (24)
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The second item of proposition 13 tell us that interchanging arbitrary
values 0, 1 in vf the value of parameter curv(f ⊕ δui ⊕ δuj) may be increased
which could be useful when searching highly nonlinear balanced Boolean
functions f ∈ Fn, maximizing the value of this parameter.

One other case in which the variation of curv(f), f ∈ Fn can be analysed
when changing randomly one value in vf was examined in [19] considering
Boolean functions as points on the hypersphere in the Euclidean space. In
this case we need introduce the following notation. For some function g, we
denote D(g) = {f ∈ Fn | sgn(Wf(u)) = (−1)g(u) for all u ∈ Fn2}, where the
function sgn(·) is the sign function of a number r ∈ R, defined as follows

sgn(r) =





1, if r > 0;
0, if r = 0;
−1, if r < 0.

As the authors of [19, p. 53] stated , if f ∈ D(g) for some Boolean function
g, then the following relation holds

curv(f ⊕ δui) = curv(f)− 2 · (−1)f(ui)Wg(ui). (25)

In particular, the curvature remains unchanged if the function f varies
at a point ui at which Wg(ui) = 0, for some i ∈ {0, 1, . . . , 2n − 1}.

If f = ϕ̃ is a Bent function and g = ˜̃ϕ = ϕ — the dual of f , i.e., a Boolean
function for whichWϕ(u) = (−1)ϕ̃(u) ·2n

2 holds for all u ∈ Fn2 , then from (25)
we obtain curv(ϕ̃ ⊕ δui) = 2

3n
2 − 2 · 2n

2 which means that for any change in
the value vector vϕ̃, the curvature of the resulting Boolean function ϕ̃ ⊕ δui
decrease by a factor of 2

n
2 .

4 Extending the curvature to S-Boxes

In this section we shall extend the curvature parameter to the case of
n-bit S-Boxes, i.e., vectorial Boolean functions from Fn2 to Fn2 , where typi-
cally n = 3, 4, 8. Also we investigate the behavior of some parameters and
matrices connected with the curvature of Boolean functions when studying
the nonlinear components of actual symmetric cryptographic primitives.

Recall that we can fix an ordered family of all elements of the space Fn2 ,
i.e, Fn2 = {u0, u1, . . . , u2n−1} = {(0, . . . , 0), (1, . . . , 0, 0), . . . , (1, . . . , 1)} and
consider an n-bit S-Box S as a vector of Boolean functions:

S = (s1, . . . , sn), si ∈ Fn, i = 1, . . . , n. (26)
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Functions si are called coordinate Boolean functions of the S-Box S and
it is well-known (see, [5, p. 76]) that most of the desirable cryptographic
properties of S can be defined in terms of their non-trivial linear combinations
(also-called S-Box component Boolean functions), denoted by Sb, and defined
as Sb = 〈b,S〉 = b(1)s1⊕. . .⊕b(n)sn where 0 6= b = (b(1), . . . , b(n)) ∈ Fn2 , b(i) ∈
F2, i ∈ {1, . . . , n}.

For a, b ∈ Fn2 the Walsh transformWS(a, b) of an n-bit S-Box S is defined
as WS(a, b) =

∑
x∈Fn2 (−1)〈b,S(x)〉⊕〈a,x〉 =

∑
x∈Fn2 (−1)Sb(x)⊕〈a,x〉 = WSb(a)

and the nonlinearity of S, denoted by NL(S), is defined as NL(S) =
min06=b∈Fn2 nl(Sb). Naturally, in the case of nonlinear transformation we are
interested in the behavior of the curvature of its non-trivial linear combina-
tions and also in analysing the following parameters

curvmin(S) = min
06=b∈Fn2

curv(Sb), (27)

curvmax(S) = max
06=b∈Fn2

curv(Sb), (28)

ρcurv(S) = curvmax(S)− curvmin(S). (29)

Parameters defined by (27),(28) are called here the minimum (maximum)
curvature of the n-bit S-Box S and can be used to characterize "how close" is
an S-Box component Boolean function to being linear or Bent. The parameter
ρcurv(S) characterize "how close" is the value curvmin(S) with respect to
curvmax(S).

For a given n-bit S-Box S if curvmin(S) = O(2n), when n → ∞ then
we can expect a lower value of its nonlinearity, if curvmin(S) = O(2

3n
2 ) when

n → ∞ and at the same time ρcurv(S) is very close to zero, then we can
expect a higher value of the nonlinearity of S.

For a natural number n = 22k, the curvature matrix of a nonlinear trans-
formation S, denoted byMcurv(S), is defined as follows

Mcurv(S) =
∥∥∥mi,j

∥∥∥
i,j∈Z2k

, (30)

where mi,j = curv
(
Sui·2k+j

)
= curv

( 〈
ui·2k+j,S

〉 )
. Obviously,Mcurv(S)

defines a 2k × 2k matrix over the set of positive integers — Z+ and pa-
rameters defined by (27),(28) can be expressed using this matrix as follows,
curvmin(S) = min

(0,0) 6=(i,j)∈Z2k×Z2k

mi,j and curvmax(S) = max
(0,0) 6=(i,j)∈Z2k×Z2k

mi,j.

For a Boolean function f ∈ Fn and any vector u ∈ Fn2 , we call derivative
in the direction u (or with the input difference u) of f , the Boolean function
Duf(x) = f(x)⊕ f(x⊕ u).
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It is well-known that there exist relations between the nonlinearity and
the derivatives of Boolean functions [5, p. 82]. For a nonlinear transformation
S : Fn2 → Fn2 , we call the curvature matrix of derivatives the following 2n×2n

matrix defined over Z+

Dcurv(S) =
∥∥∥di,j

∥∥∥
i,j∈Z2n

, (31)

where di,j = curv
(
DiSj

)
=
∑

u∈Fn2

|WDiSj(u)|.

For any u ∈ Fn2 , let us introduce the following sets L0(u) = {x ∈ Fn2 |
〈u, x〉 = 0}, L1(u) = {x ∈ Fn2 | 〈u, x〉 = 1}. Then, coefficients di,j, i, j ∈
{0, 1, . . . , 2n − 1} can be redefined as follows

di,j =
∑

u∈Fn2

∣∣∣W(DiSj)L0(u)
(0)−W(DiSj)L1(u)

(0)
∣∣∣, (32)

where WfA(a) =
∑

x∈A (−1)fA(x)⊕〈a,x〉 is called the incomplete Walsh-
Adamard transform of partially defined Boolean function fA,A ⊆ Fn2 (see,
for example, [18, p. 273]).

From relation (32), we can rewrite coefficients di,j as follows

di,j =
∑

u∈Fn2

∣∣∣∣∣∣

∑

x∈L0(u)

(−1)Sj(x)⊕Sj(x⊕i) −
∑

x∈L1(u)

(−1)Sj(x)⊕Sj(x⊕i)

∣∣∣∣∣∣
. (33)

If define the incomplete autoccorelation function of partially defined
Boolean function fA,A ⊆ Fn2 as ∆fA(a) =

∑
x∈A (−1)fA(x)⊕fA(x⊕a), we can

see that coefficients di,j can be expressed in terms of absolute values of the
differences between autocorrelation functions of non-trivial linear combina-
tions Sj defined over sets Li(u), i = 0, 1, that is

di,j =
∑

u∈Fn2

∣∣∣∆(Sj)L0(u)
(i)−∆(Sj)L1(u)

(i)
∣∣∣. (34)

We shall use ours matrices Mcurv(S),Dcurv(S) when analysing the be-
havior of the curvature for component Boolean functions of a given S-Box
S.

4.1 Case studies: Some known S-Boxes used in block ciphers

In this section we perform an analysis of those parameters related to
the curvature of an n-bit S-Box, introduced in the previous section. As case
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studies, we investigate the behavior of the curvature parameter of 8-bit non-
linear components used in actual block ciphers such as AES [21], ForkAE
[11], Picaro [22], Kuznyechik [9] and Khazad [2].

In [6] were computed the middle values θfn = 1
#Fn

∑
f∈Fn curv(f), θgn =

1
#Gn

∑
g∈Gn curv(g), where Gn is the sub-class of Fn containing all bal-

anced Boolean functions. When n = 8, these magnitudes are equals to
θf8 = 3264, 945 and θg8 = 3245, 845 respectively and will be used as use-
ful quantities in the study of the curvature of some actual S-Boxes. To better
illustrate the behavior of matricesMcurv(S), Dcurv(S) when looking at their
coefficients, we shall use, instead of looking at matrices itself, its visual repre-
sentationsc (similar to [3, 30]) with the library Matplotlib provided by SAGE
[23], since it has been shown the usefulness of this approach to find some
unexpected patterns of a given S-Box.

It should be noted that, in what follows when analysing the visual
representation of matrix Mcurv(S) for any n-bit S-Box S, the coefficient
m0,0 = curv

(
Su0

)
will not be plotted because it always take the value 2n.

4.1.1 AES S-Box

Figure 6: Visual representations of matricesMcurv(SAES) and Dcurv(SAES).

The 8-bit permutation of the block cipher AES, denoted here by
SAES, was designed by using the finite field inversion function having
NL(SAES) = 112 and coordinate functions with the following curvatures
(3456, 3456, 3456, 3456, 3456, 3456, 3456, 3456). Moreover, curvmin(SAES) =

cThe visualization of Mcurv(S) is performed by using the function matrix plot of SAGE. As matrix
Dcurv(S) is too big to be displayed when n = 8, the visual representation of Dcurv(S) it is simply a picture
where each curvature value has a color associated to it.

R. A. de la Cruz Jiménez 243
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curvmax(SAES) = 3456, ρcurv(SAES) = 0 which means that there is no vari-
ation in the curvature of its component functions and as we can see in the
left side of Figure 6 these values are slightly far from the middles values θf8
and θf8 . When displaying the matrix Dcurv(SAES) we don’t find any patterns
in the graphical visualization of this matrix.

4.1.2 ForkAE S-Box

The S-Box used in the authenticated cipher ForkAEd (see, for example,
[11]) is a permutation on F8

2 and according to designers arguments (see, [4])
it was designed to provides a good tradeoff between security and area cost.
However, the 8-bit coordinates functions of this S-Box have the following
curvatures (1152, 512, 512, 1152, 512, 512, 1536, 1920) and NL(SForkAE) =
64 , curvmin(SForkAE) = 512, curvmax(SForkAE) = 3072, ρcurv(SForkAE) =
2560.

Figure 7: Visual representations of matricesMcurv(SFork) and Dcurv(SFork).

It can be observed from the left side of Figure 7 that there are a few
component functions having curvatures close to the expected middle values,
but there are many non-trivial linear combinations which have curvatures
much lower than θf8 and θg8, in fact because of the value curvmin(·) = 512
is close to the lower bound we can not expect a high nonlinearity of this
nonlinear bijective transformation. Also, when examining Dcurv(SFork) we
can find a lot of coefficients with low values, which are responsible for the
patterns detected in the visual representation of this matrix.

dCurrently ForkAE is a 2nd round candidate in the NIST lightweight authenticated encryption stan-
dardization process.
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4.1.3 Picaro S-Box

The 8-bit nonlinear transformation of Picaro block cipher, denoted here
by SPicaro, is not bijective, however according to designers philosophy (see,
[22]), because of its low implementation complexity, has an advantage when
protecting the whole cipher against side-channel attacks. This S-Box have

Figure 8: Visual representations of matricesMcurv(SPicaro) and Dcurv(SPicaro).

NL(SPicaro) = 94 and coordinate functions with the following curvatures
(4096, 4096, 4096, 4096, 3352, 3424, 3424, 3440), moreover curvmin(SPicaro) =
2944, curvmax(SPicaro) = 4096, ρcurv(SPicaro) = 1152 and as we can see in the
left side Figure 8 there are several component function with maximal pos-
sible curvature which is normal because this nonlinear transformation was
obtained by concatenating the outputs of a Bent function and of another
function. Except 12 component functions with curvatures equal to 2944, there
are some non-trivial linear combinations which are not so far from the ex-
pected middle values θf8 and θg8. The visual representation of Dcurv(SPicaro)
displayed in the right side Figure 8 has strong patterns which existence is
due to low values (close to the lower bound of curv(·)) of the curvatures of
derivatives DiSj, i, j ∈ 0, . . . , 255, where S = SPicaro.

4.1.4 Kuznyechik S-Box

The Kuznyechik S-Box, denoted here by SKuz, has the so-
called TU-decomposition (see, [3]) and NL(SKuz) = 100. The
eight coordinate Boolean functions exhibits the following curvatures
(3248, 3320, 3840, 3200, 3232, 3344, 3224, 3200) and for this nonlinear bijec-
tive transformation we have curvmin(SKuz) = 2992, curvmax(SKuz) = 3840
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and ρcurv(SKuz) = 848.

Figure 9: Visual representations of matricesMcurv(SKuz) and Dcurv(SKuz).

It can be observed in left side of Figure 9 that there are several component
functions (15 of them, to be exact) with curvatures equal to 3840e which
despite the decomposition founded in [3], indicate the presence of component
functions living near the set of Bent functions. Except one isolated function
having a curvature value equal to 2992, the curvatures of the remaining
component functions are very close to the expected middle values θf8 and
θg8. Interestingly when visualizing the matrix Dcurv(SKuz) the same patterns
founded in [30] for the so-called column frequency matrix of this S-Box are
presented in the representation, displayed in the right side of Figure 9.

4.1.5 Khazad S-Box

The S-Box of Khazad block cipher [2], denoted here by SKhazad, is an
involution over F8

2 with NL(SKhazad) = 96 and has an SPN structure, where
the small nonlinear components selected in this design were chosen by using
some form of hill climbing among the set of the differentially 4-uniform per-
mutation with best non-linearity. Coordinate functions of this involution have
the following curvatures (3256, 3280, 3352, 3240, 3176, 3208, 3264, 3256) and
curvmin(SKhazad) = 3088, curvmax(SKhazad) = 3400 and ρcurv(SKhazad) = 312.

It can be observed in left side of Figure 10 that almost all component
functions have curvatures very close to the middle values θf8 and θg8 and we

eThis value, when n = 8, can be expressed as 2
3n
2 − 2n, and in this case coincide with the curvature

parameter of some well-known classes studied in this work, which use Bent function as building blocks.
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Figure 10: Visual representations of matricesMcurv(SKhazad) and Dcurv(SKhazad).

can not find any pronounced patterns in the visual representation of matrix
Dcurv(SKhazad) displayed in the right side of Figure 10.

5 Conclusion

In this work we have obtained exact formulas and bounds for the cur-
vature and nondegeneracy of some classes of Boolean functions and results
shows that there exist several classes having a curvature values very close
to 2

3n
2 , but some of them exhibits low values of nondegeneracy which im-

plies that these functions are susceptible to a method of analysis based on
algebraically degenerate approximations [1]. In addition, we have determined
other relevant cryptographic parameters such as non-linearity, algebraic de-
gree and distance to linear structures. Also, we have analysed the variation of
the curvature when changing randomly one or multiples values in the output
of a Boolean function.

Because of their representations as a vector of Boolean functions, we
have extended the curvature parameter to S-Boxes, introducing the mini-
mum (maximum) curvature and two matrices related with this parameter,
which are useful when studying the behavior of the curvature of component
functions presented in the nonlinear layers of actual symmetric algorithms.

There are some questions related to the curvature of Boolean functions
which looks very interesting, among them:

– Can we connect parameters curvmin(·), curvmax(·) and matrices
Mcurv(·),Dcurv(·) with some methods of analysis of block ciphers?
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– Is it possible to use parameters curvmin(·), curvmax(·) and ρcurv(·) in some
heuristic approach for designing highly nonlinear S-Boxes?

Acknowledgements. The author would like to thank Oleg V. Kamlovskii
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final version of this article.
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[13] Golić J.D., “On the security of nonlinear filter generators.”, LNCS, FSE 1996., 1039,
ed. Gollmann D., Springer, Berlin, Heidelberg, 1996.

[14] Kamlovskiy, O. V., “The number of occurrences of elements in the output sequences of filter
generators”, Prikladnaya diskretnaya matematika, 3:21 (2013), 11–25.

[15] Kamlovskiy, O. V, “Estimating the number of solutions of systems of nonlinear equations
with linear recurring arguments by the spectral method”, Discretnaya Matematika, 28:2
(2016), 27–43.

[16] Kamlovskiy, O. V, “The sum of modules of Walsh coefficients of some balanced Boolean
functions”, Mat. Vopr. Kriptogr., 8:4 (2017), 75–98.

[17] Logachev O. A., Smyshlyaev S. V., Yashenko V. V., “New methods of investigation of
perfectly balanced Boolean functions”, Discretnaya Matematika, 21:2 (2009), 51–74.

[18] Logachev O. A., Sal’nikov A. A., Smyshlyaev S. V., Yashenko V. V., Boolean functions in
coding theory and cryptology, URSS, Moscow, Russia, 2015, (in Russian) 576 p.

R. A. de la Cruz Jiménez 248
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Abstract

In this paper we will analyze the properties of some sequences generated by linear
shift registers with primitive characteristic polynomial and Latin squares. For this
particular kind of sequences it is theoretically computed its period and distribution
as well as other parameters of interest, and practically we show the results on en-
tropy and distribution for particular instances. In addition, a new method for the
construction of Latin squares which can be used in the generation of such sequences
is presented.

Keywords: Latin square, shift register, period, distribution, entropy.

1 Introduction

Generating good randomness is an important part of many cryptographic
operations, because even the simplest cryptosystems use data that should be
unpredictable to attackers. A widely used method to ensure randomness is the
generation of pseudo-random sequences by deterministic mechanisms, which
are used as seeds, keys, initialization vectors, nonces, etc. for cryptographic
applications. Several statistical tests are applied to pseudo-random sequences
to attempt to evaluate its quality, mostly based on the 3 classic metrics known
as Golomb’s Randomness Postulates [1].

It is extremely important that pseudo-random sequences look as much
as possible to have a truly random behavior, this way the real distribution
of its elements needs to be close to the uniform distribution. In this sense
Linear Congruential Generators [1] with the appropriate parameters achieve
highly pseudo-random sequences. An interesting problem is the generation of
pseudo-random sequences with uniformly distributed elements that appear
more times than in sequences generated by a linear congruential.

Another common way to generate good pseudo-random sequences is using
a Linear Feedback Shift Register with primitive polynomial [2]; however, in

CTCrypt 2021 250



On the Properties of Some Sequences Generated by Shift Registers and Latin Squares

this case sequences where the value 1 appears once more than the value 0 are
obtained, as for example in the family of generators WG [3]. In this paper
we combine shift registers and Latin squares to construct a deterministic
function that can be used in the generation of pseudo-random sequences with
uniformly distributed elements. There are several ways to construct sequences
such that its elements are uniformly distributed; a well known strategy is to
use a linear congruential [1] and another alternative is presented in [4, 5] in
which cases the sequences are constructed on a ring.

Our advantage over the aforementioned methods is that we generate the
sequences over a finite field and the elements appear uniformly distributed
more times than in the sequences constructed by linear generators.

The rest of this paper is organized as follows. In section 2 we present
the deterministic mechanism used to generate the sequences of our attention
and we establish some approaches to evaluate the quality of such sequences.
In section 3 some theoretical results related to period, distribution and cor-
relation are presented while section 4 shows practical results about entropy
and distribution. In addition, a new method for constructing a class of Latin
squares which can be used in the generation of the sequences of our attention
is proposed in section 5. The paper finish in section 6 with the conclusions.

2 Sequences and evaluation criteria

Let P = GF (q) be the finite field of q elements where q = qt1 for some
prime q1 and t ∈ N. Let P ∗ and F (x) be the multiplicative group of P and
a primitive polynomial of degree k in P [x].

Consider π0, . . . , πq−1 different permutations in the symmetric group Sq
that form a q× q Latin square [6], then using the primitive polynomial F (x)
we construct a filter generator [7] in such a way that the output sequence v
is determined by the rule R1 as following

v(i) = πi mod q[c0u(i)+ · · ·+ck−1u(i+k−1)]+cku(i)+ · · ·+c2k−1u(i+k−1)

where u is the linear recursive sequence associated to F (x), cj ∈ P ∗ for all
0 ≤ j ≤ k − 1 and cj ∈ P for all k ≤ j ≤ 2k − 1.

On the other hand let γ ∈ P be a primitive element, then for a ∈ P we
can form a Latin square

πi(x) = ax+ γi(1− δi,0)
where δi,0 = 1 if i = 0 else δi,0 = 0. Here v is determined by the rule

v(i) = (ac0 + ck)u(i) + · · ·+ (ack + ck−1)u(i+ k − 1) + γi mod q ∀i ∈ N
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and there must be an index j ∈ {0, . . . , k − 1} such that (acj + cj+k) 6= 0.
If this condition is not satisfied then always v(i) = γi mod q and the two
sequences v and u are independent. That sequences are not of our interest.

2.1 How to evaluate vvv ?

To evaluate the quality of the sequences of our interest, generated by the
filter generator presented above, different approaches can be used. In this
paper are analyzed the period, distribution, correlation and entropy of v, the
sequence generated by means of the rule R1, for which we will use the next
measures where T (v) denotes the period of v, ~z = (z1, z2) and z, z1, z2 ∈ P

Nv(z) = |{0 6 i 6 T (v)− 1 : v(i) = z}| (1)
N(u, v) = |{0 6 i 6 T (v)− 1 : v(i) = u(i)}| (2)

N(~z, u, v) = |{0 6 i 6 T (v)− 1 : v(i) = z1, u(i) = z2}| (3)
Nv(z, l) = |{0 ≤ i ≤ l − 1 : v(i) = z}| (4)

Here (1) quantifies the number of appearances of z in v, (2) quantifies
the number of coincidences between the two sequences u and v, (3) quantifies
the dependency between the two sequences u and v and (4) quantifies the
number of occurrences of z in a subsequence of v of length l.

The definition of period as well as some related properties can be found
in [1, 2]. For the correlation and other approaches it is required first to define
the additive character of P as

χ : P → C∗

χ(x) = e2·π·i·trPP0(x)/q1

where trPP0
(x) is the trace of x ∈ P over the prime field P0 = GF (q1). In [7]

it can be seen that

∑

c∈P
χ(cx) =





0 if x ∈ P ∗

q if x = 0

Other measure for randomness used in our paper is entropy [8], also called
Shannon’s entropy. Let ξ be a discrete random variable and (p1, . . . , pi, . . .)
its probability distribution, then entropy of ξ is defined as

Hξ = −
∑

i≥1

pilog2(pi)
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3 Theoretical results

3.1 Period

Proposition 1. The period of the sequence v generated by the rule R1 is

T (v) =





q if (u(0), · · · , u(k − 1)) = (0, · · · , 0)

q(qk − 1) if (u(0), · · · , u(k − 1)) 6= (0, · · · , 0)

Proof. Assuming (u(0), · · · , u(k−1)) = (0, · · · , 0) for all i ∈ N we have
that v(i) = πi mod q[0] + 0 = πi mod q[0]. Since the permutations π0, . . . , πq−1

form a Latin square the first q elements of v are different and later elements
begin to repeat, therefore T (v) = q.

Suppose now that (u(0), · · · , u(k − 1)) 6= (0, · · · , 0). For the sequence v
it is expected that v(i+ q(qk − 1)) = v(i), then T (v)|q(qk − 1). Let us now
show that for any r < q the value r(qk − 1) cannot be the period. Analyzing
the elements in positions 0, qk − 1, · · · , (q − 1)(qk − 1) we can see that

0 ≡ 0 mod q
qk − 1 ≡ q − 1 mod q

2(qk − 1) ≡ q − 2 mod q
...

(q − 1)(qk − 1) ≡ 1 mod q

this way the different permutations used by the rule R1 to generate the
elements v(0), v(qk − 1), · · · , v((q − 1)(qk − 1)) are π0, πq−1, · · · , π1. Thus,
taking into account that qk − 1 is the period of u and q(qk − 1) ≡ 0 mod q
we have that T (v) = q(qk − 1). N

3.2 Distribution

Proposition 2. The sequence v generated by the rule R1 satisfies

Nv(z) =





1 if (u(0), · · · , u(k − 1)) = (0, · · · , 0)

qk − 1 if (u(0), · · · , u(k − 1)) 6= (0, · · · , 0)

for all z ∈ P .
Proof. Assuming (u(0), · · · , u(k−1)) = (0, · · · , 0) from the proof of the

proposition 1 all elements v(0), · · · , v(q− 1) are different and T (v) = q, this
way Nv(z) = 1.
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Suppose now that (u(0), · · · , u(k− 1)) 6= (0, · · · , 0), then we can form a
matrixM with q rows and qk − 1 columns in the following way

M =




v(0) v(1) · · · v(qk − 2)
v(qk − 1) v(qk) · · · v(2qk − 3)
· · · · · · · · · · · ·

v((q − 1)(qk − 1)) v((q − 1)(qk − 1) + 1) · · · v(q(qk − 1)− 1)




this way from the proof of the proposition 1 it is easy to see that each possible
element appears only once in every column of M, then it follows that the
value of Nv(z) coincides with the number of columns. N

From this point we can find the probability distribution in a piece of
v of length l 6 qk − 1 using the measure Nv(z, l) defined in the previous
section. let’s assume that each element in the subsequence v′ of v of length l
is independently from each other with probability p = 1/q and let ξ be the
random variable that characterizes the event of how many times an element
can appear in v′, then ξ is a binomially distributed random variable

P (ξ = s) =

(
l

s

)
ps(1− p)l−s

with expected value E(ξ) = lp. This way we can approximate Nv(z, l), the
number of occurrences of z in the subsequence v′, to the expected value E(ξ).
For instance Nv(z, l) ≈ (qk − 1)/q if l = qk − 1 and Nv(z, l) ≈ 1 if l = q.

3.3 Correlation

Proposition 3. The sequence v generated by the rule R1 satisfies

N(u, v) =





1 if (u(0), · · · , u(k − 1)) = (0, · · · , 0)

qk − 1 if (u(0), · · · , u(k − 1)) 6= (0, · · · , 0)

Proof. Assuming (u(0), · · · , u(k− 1)) = (0, · · · , 0) then u(i) = 0 for all
0 ≤ i ≤ T (v)− 1. On the other hand, from proposition 1 we have T (v) = q

and from proposition 2 we have Nv(0) = 1, thus N(u, v) = 1.
Suppose now that (u(0), · · · , u(k − 1)) 6= (0, · · · , 0) and consider the

matrixM defined in the proof of the proposition 2, then it is easy to note
that each column determines a permutation in Sq, so as T (u) = qk − 1 each
element of u match a single element of v for each column ofM. Therefore it
is clear that N(u, v) = qk − 1. N
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Corollary 1. For any linear recursive sequence u with primitive character-
istic polynomial of degree k, not necessarily F (x), the sequence v generated
by the rule R1 satisfied N(u, v) = qk − 1.
Proposition 4. If (u(0), · · · , u(k−1)) 6= (0, · · · , 0) then for all ~z = (z1, z2)
where z1, z2 ∈ P we have N(~z, u, v) = Nu(z1).

Proof. For the sequences u and v it is satisfied

N(~z, u, v) =

T (v)−1∑

i=0

(
1

q

∑

t1∈P
χ(t1(u(i)− z1))

)(
1

q

∑

t2∈P
χ(t2(v(i)− z2))

)

=
1

q2

∑

~t∈P 2

χ(−~t~z)

T (v)−1∑

i=0

χ(t1u(i) + t2v(i))

=
T (v)

q2
+

1

q2

∑

~t∈P 2\{~0}
χ(−~t~z)

T (v)−1∑

i=0

χ(t1u(i) + t2v(i))

=
T (v)

q2
+

1

q2

∑

t1∈P ∗
χ(−t1z1)

T (v)−1∑

i=0

χ(t1u(i))+

+
1

q2

∑

t2∈P ∗
χ(−t2z2)

T (v)−1∑

i=0

χ(t2v1(i))+

+
1

q2

∑

~t∈P ∗2
χ(−~t~z)

T (v)−1∑

i=0

χ(t1u(i) + t2v(i))

Let us denote by A, B and C each of these addends and introduce

u1(i) = c0u(i) + · · ·+ ck−1u(i+ k − 1)

u2(i) = (t2ck + t1)u(i) + t2ck+1u(i+ 1) + · · ·+ t2c2k−1u(i+ k − 1)

then

C =
1

q2

∑

~t∈P ∗2
χ(−~t~z)

T (v)−1∑

i=0

χ(t1u(i) + t2v(i))

=
1

q2

∑

~t∈P ∗2
χ(−~t~z)

T (v)−1∑

i=0

χ(u2(i) + πi mod q[u1(i)]

from proposition 2 and the properties of the additive character we have

C =
(qk − 1)

q2

∑

~t∈P ∗2
χ(−~t~z)

∑

x∈P
χ(x) = 0
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Let’s see now A

A =
1

q2

∑

t1∈P ∗
χ(−t1z1)

T (v)−1∑

i=0

χ(t1u(i))

=
1

q2

∑

t1∈P ∗
χ(−t1z1)q

T (u)−1∑

i=0

χ(c1u(i))

= −T (u)

q
+
T (u)

q
+

1

q

∑

t1∈P ∗
χ(−t1z1)

T (u)−1∑

i=0

χ(t1u(i))

= −T (u)

q
+

1

q

∑

t1∈P
χ(−t1z1)

T (u)−1∑

i=0

χ(t1u(i))

= −T (u)

q
+Nu(z1)

Now taking into account that Nv(z) = T (u) for all z ∈ P

B =
T (v)

q2
+

1

q2

∑

t2

χ(−t2z2)

T (v)−1∑

i=0

χ(t2v(i))

=
1

q


1

q

∑

t2∈P
χ(−t2z2)

T (v)−1∑

i=0

χ(t2v(i))


 =

Nv(z2)

q
=
T (u)

q

This way N(~z, u, v) = A+B + C = Nu(z1). N

Corollary 2. If (u(0), · · · , u(k − 1)) 6= (0, · · · , 0) then for all ~z = (z1, z1)
where z1 ∈ P we have N(~z, u, v) = qk − 1.

Proof. Since z1 ∈ P the number of possible ~z = (z1, z1) is q, then from
proposition 4 we have

N(~z, u, v) = (q − 1)Nu(z) +Nu(0) = (q − 1)qk−1 + qk−1 − 1 = qk − 1. N

Because proposition 4 establishes some kind of dependency between the
two sequences u and v it is natural to ask about the independence hypothesis
[10]. To carry out this analysis we will take into account the following table
with the values of N(~z, u, v) where each element in P is expressed as power
of a primitive element γ.
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u \ v 0 γ γ2 · · · γq−1
∑

1 0 qk−1 − 1 qk−1 − 1 qk−1 − 1 · · · qk−1 − 1 q(qk−1 − 1)

2 γ qk−1 qk−1 qk−1 · · · qk−1 qk

3 γ2 qk−1 qk−1 qk−1 · · · qk−1 qk

...
...

...
...

... . . . ...
...

q γq−1 qk−1 qk−1 qk−1 · · · qk−1 qk

∑
qk − 1 qk − 1 qk − 1 · · · qk − 1 T (v)

Table 1: values of N(~z, u, v) for the sequence v generated by the rule R1. The last row
contains the sum of all the values in each column and the last column contains the sum
of all the values in each row.

For the different data in table 1 let us find χ̂2
n, where n = q(qk − 1),

determined by the expression

χ̂2
n = n

(
q∑

i=1

q∑

j=1

ν2
ij

νi.νj.
− 1

)

where νi. values are the qk − 1 elements. Then it can be seen that
q∑

i=1

q∑

j=1

ν2
ij

νi.νj.
=

1

qk − 1

q∑

i=1

q∑

j=1

ν2
ij

νi.

=
1

qk − 1

(
q∑

j=1

ν2
1j

ν1.
+

q∑

i=2

q∑

j=1

ν2
ij

νi.

)

=
1

qk − 1

(
q∑

j=1

(qk−1 − 1)2

q(qk−1 − 1)
+

q∑

i=2

q∑

j=1

(qk−1)2

qk

)

=
1

qk − 1

(
qk−1 − 1 + (q − 1)qqk−2

)
=
qk − 1

qk − 1
= 1

Thus χ̂2
n = q(qk − 1)(1− 1) = 0.

From the previous statement it follows that χ̂2
n < χ2

1−α;(q−1)2 whatever
0 ≤ α ≤ 1, then the null hypothesis H0 is satisfied, which means that both,
u and v are statistically independent, even when v is generated by u. In
other words, if we observe the random variable ξ = (ξ1, ξ2) with distribution
function Fξ(x, y), since H0 is always satisfied then Fξ(x, y) = Fξ1(x)Fξ2(y).
This result ensures that v is uniformly distributed.
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4 Practical results

In the previous section a theoretical analysis was carried out on the distri-
bution in the subsequence (v(0), . . . , v(l− 1)) where l 6 qk− 1. This section
shows practical experiments about the distribution, validating the theoretical
results previously shown, and we also use entropy to quantify the randomness
of the generated sequences.

We carry out 216− 1 practical experiments corresponding to the possible
non-zero internal states of the filter generator constructed from the rule R1

according to the following parameters:

– P = GF (28) ' GF (2)[y]/y8 + y7 + y5 + y + 1

– F (x) = x2 + (y + 1)x+ (y7 + y4 + y2 + y)

– π0 = (0, 1, · · · , 255), π1 = (1, 2, · · · , 0), · · · , π255 = (255, 0, · · · , 254)

where for each of these experiments the sequence v was completely generated
and 256 subsequences of length l = 216 − 1 were analyzed.

First we present the entropy analysis based on the criterion that pseudo-
random sequences must have entropy close enough to 8 for these parame-
ters. To quantify entropy the RStudio software [9] and the Chao-Shen (CS),
Dirichlet (D), Empirical (E), Miller-Madow (MM), Nemenman-Shafee-Bialek
(NSB), Plugin (Pl) and Shrink (S) estimators were used. Table 2 shows the
mean entropy values for the 216− 1 experiments carried out, and we can see
in all cases how these values are always above 7.997.

CS D E MM NSB Pl S
7.99763 7.99764 7.99771 7.99733 7.99743 7.99746 7.99741

Table 2: mean entropy values for all sequences generated by the rule R1.

Now we present the practical results related to distribution for the 216−1
experiments carried out based on the criterion that pseudo-random sequences
must have distribution close enough to the uniform distribution. To check this
in practice the Pearson’s chi-square test [10] was used.

In all experiments the null hypothesis H0 was accepted and the entropy
was greater than 7.99, sufficiently close to the expected entropy for uniformly
distributed sequences. We also check the success rate for an element in the
subsequence (v(il), . . . , v((i+1)l−1)) where 0 ≤ i ≤ 255, obtaining 255.992
for an expected value of 255.996 according to the theoretical analysis.

We conclude that, in practice, all analyzed sequences satisfy the entropy
and distribution acceptance criteria for pseudo-randomness.
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5 Construction of Latin squares

To carry out the experiments presented in the previous section a basic
Latin square was selected. Although the properties of the output sequences
of the proposed filter generator are independent of the Latin square chosen,
with the exception of those that were discarded in section 2, we present here
a new method to construct Latin squares which can be used, for instance, to
extend the lifetime of the initial state of the linear feedback shift register.

We stress we are not solving the problem of generating random Latin
squares; we only construct a particular class of Latin squares for their use in
the generation of sequences by means of the rule R1.

From now on we will consider the function mod i in Zi = {1, 2, · · · , i}
where i ≥ 1 defined as follows

(x+ y) mod i =

{
x+ y , x+ y ≤ i

x+ y − i , x+ y > i

Then using the fact that x ≡ 1 mod 1 for all x ∈ Z we are able to present
the following proposition.

Proposition 5. Let (x1, x2 · · · , xq−1) be such that xj ∈ Zj and let y be a
permutation of S(Zq), then the different elements

zij = ((· · · (xj + xj+1) mod (j + 1) + · · ·+ xq−1) mod (q − 1) + y[i]) mod q

determine a unique q × q Latin square for all 1 ≤ i, j ≤ q.

Proof. To prove the previous proposition it is enough to show that the
elements zij form unique permutations by rows and by columns.

Let’s fix the index i of the rows, then we can see that

ziq = y[i] and zi(q−1) = (xq−1 + y[i]) mod q

so as xq−1 ∈ Zq−1 then zi(q−1) 6= ziq.

zi(q−2) = ((xq−2 + xq−1) mod (q − 1) + y[i]) mod q
= (x′q−1 + y[i]) mod q

where x′q−1 = (xq−2 +xq−1) mod (q− 1), so as xq−2 ∈ Zq−2 then x′q−1 6= xq−1

and zi(q−2), zi(q−1), ziq are different elements. Following the previous idea we
can see that zi1, zi2, · · · , ziq are all different elements, therefore the i-th row
(zi1, zi2, · · · , ziq) determines a permutation whose uniqueness is evident.
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Let us now show that the columns also form permutations. Let’s see that
the column q-th is given by the elements

ziq = y[i]

that form a permutation. The column (q − 1)-th is given by the elements

zi(q−1) = (xq−1 + y[i]) mod q

that form a permutation. The column (q − 2)-th is given by the elements

zi(q−1) = ((xq−2 + xq−1) mod (q − 1) + y[i]) mod q

that form a permutation. Following this idea, for all fixed j the elements zij
form a permutation. N

6 Conclusion

In this paper a method was presented to construct uniformly distributed
sequences on any finite field using the properties of the linear feedback shift
registers with primitive characteristic polynomial and Latin squares. The
theoretical results show that the elements generated by this method appear
with the same frequency in the sequence exactly qk − 1 times each of these,
where k is the degree of the primitive polynomial.

Other theoretical analysis were performed for the distribution of elements
in subsequences of length l ≤ qk − 1 and the correlation between the output
sequence v and the recursive sequence u, showing that both are statistically
independent even when v is determined by means of u.

On the other hand practical experiments show that the output sequences
have a mean entropy value greater than 7.99, very close to the expected
entropy for uniformly distributed sequences. Other practical analyzes show
that the generated sequences satisfy the Golomb’s randomness postulates,
however, further correlation and distribution analysis must still be done and
a bound for the range of these sequences must be found.
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10th Workshop on Current Trends in Cryptology

On Derivatives of Boolean Bent Functions
Alexander Shaporenko

Sobolev Institute of Mathematics, Novosibirsk, Russia
Novosibirsk State University, Novosibirsk, Russia

JetBrains Research, Novosibirsk, Russia
shaporenko.alexandr@gmail.com

Abstract

In this paper, the property of affine functions to be derivatives of bent functions
is studied. The importance of Boolean bent functions in symmetric cryptography
stems from linear cryptanalysis of stream ciphers. In that context bent functions
are the ones which are the worst approximated by affine functions. There are also
connections between bent functions and distinct objects of coding theory such as
Reed-Muller and Kerdock codes. Recall, that a bent function is a Boolean function
f in n variables (n is even) such that for any nonzero vector y its derivativeDyf(x) =
f(x)⊕f(x⊕y) is balanced, i.e., it takes values 0 and 1 equally often. Whether every
balanced function is a derivative of a some bent function or not is an open problem.
In this paper, special case of this problem was studied. It was proven that every
nonconstant affine function in n (even) variables is a derivative of (2n−1− 1)|Bn−2|2
bent functions, where Bn is a set of all bent functions in n variables. Iterative lower
bound for the number of bent functions is presented.

Keywords: Boolean functions, bent functions, derivatives of a bent function, lower bound for
the number of bent functions.

1 Introduction

A Boolean function in even number of variables is called bent if it has
maximal nonlinearity [1]. Nonlinearity is an important property in cryptogra-
phy. Ciphers using functions with high nonlinearity as components are more
resistant to linear cryptanalysis [2] because bent functions are badly approx-
imated by affine functions. Bent functions were used in design of the block
cipher CAST as coordinate functions of S-blocks [3]. The nonlinear feedback
polynomial of the NFSR (nonlinear feedback shift register) of the stream ci-
pher Grain is constructed as the sum of a linear function and a bent function
[4]. There are also connections between bent functions and distinct objects of
coding theory such as Reed-Muller and Kerdock codes [5]. In coding theory,
there is a well-known task of determining the covering radius for the Reed-
Muller code RM(l, n). This task is related (if the code has order 1) to the
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task of finding the most nonlinear Boolean functions [6, 7]. Special sets of
quadratic bent functions allow one to construct Kerdock codes [8] that are
optimal and have large code distances that grow with the code lengths [9, 10].
This very optimality of Kerdock codes is caused by extremal properties of
bent functions.

Another definition of a bent function is the following. It is a Boolean
function f in n variables (n is even) such that for any nonzero vector y its
derivative Dyf(x) = f(x)⊕ f(x⊕ y) is balanced, i.e., it takes values 0 and
1 equally often [5]. In [11] it was shown that every balanced function is a
derivative of a some bent function for n 6 6 (n even). Whether it is true for
every even n is an open problem. We will study this problem for the case of
affine functions.

2 Necessary definitions and statements

Let Z2 = {0, 1}. Denote by Zn2 the n-dimensional vector space over Z2.
Let us denote by ⊕ the addition modulo 2. We will also use the following
inner product:

〈x, y〉 = x1y1 ⊕ . . .⊕ xnyn.
A function f : Zn2 → Z2 is called a Boolean function in n variables.

A Boolean function f is called affine if it can be represented as la,b(x) =
〈a, x〉 ⊕ b, where a ∈ Zn2 and b ∈ Z2. A Boolean function is called balanced
if it takes values 0 and 1 equally often.

Let us recall a well known fact.

Lemma 1. An affine function la,b(x) = 〈a, x〉 ⊕ b, where a ∈ Zn2 (nonzero)
and b ∈ Z2, is balanced.

The Hamming weight wt(f) of a Boolean function f is the number of
vectors x ∈ Zn

2 such that f(x) = 1. For nonconstant affine functions it is
equal to 2n−1. We denote by dist(f, g) the Hamming distance between two
Boolean functions f and g; it is the number of positions in which their vectors
of values differ:

dist(f, g) = |{x ∈ Zn2 : f(x) 6= g(x)}|.
Every Boolean function f in n variables can be associated with its support :

supp(f) = {x ∈ Zn2 : f(x) = 1}.
A Boolean function Dyf(x) = f(x)⊕ f(x⊕ y) is called a derivative of a

Boolean function f in n variables in the direction y, where y ∈ Zn2 .
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Lemma 2. A Boolean function f in n variables is a derivative of a some
Boolean function g in n variables in nonzero direction y if and only if f(x)⊕
f(x⊕ y) = 0 for all x ∈ Zn2 .

Proof. (⇒) One can see that Dyg(x) = g(x)⊕ g(x⊕ y) = Dyg(x⊕ y) for all
x ∈ Zn2 . Therefore, f(x) = f(x⊕ y) for all x ∈ Zn2 .

(⇐) Let i be the first nonzero coordinate of y. Define a Boolean function
g in the following way g(x) = xif(x) for all x ∈ Zn2 . Then

Dyg(x) = xif(x)⊕ (xi ⊕ 1)f(x⊕ y) = f(x) for all x ∈ Zn2 .

Therefore, f is a derivative of g in the direction y.

The nonlinearity of a Boolean function f in n variables is the Hamming
distance Nf from this function to the set of all affine functions, i.e., Nf =

min
a∈Zn2 ,b∈Z2

dist(f, la,b).

A bent function is a Boolean function in an even number of variables that
has the maximal nonlinearity, i.e., Nf = 2n−1 − 2n/2−1. Denote by Bn a set
of all bent functions in n variables.

The Walsh-Hadamard transform of a Boolean function f in n variables
is the integer-valued function on Zn2 defined as

Wf(y) =
∑

x∈Zn2

(−1)f(x)⊕〈x,y〉, for every y ∈ Zn2 .

For a bent function f , the dual function f̃ in n variables is defined by the
equalityWf(y) = 2n/2(−1)f̃(y). This definition is correct sinceWf(y) = ±2n/2

for any vector y if f is a bent function [5].

Lemma 3. (see, for instance, [5]) A Boolean function f in n variables is bent
if and only if for any nonzero vector y its derivative Dyf(x) = f(x)⊕f(x⊕y)
is balanced or equivalently it holds

∑

x∈Zn2

(−1)f(x)⊕f(x⊕y) = 0, for any nonzero y.

Lemma 4. Let la,b(x) = 〈a, x〉⊕ b, where a ∈ Zn2 , a is nonzero, and b ∈ Z2.
There are 2n−1−1 nonzero directions for which la,b is a derivative of a some
Boolean function. Namely, these directions are exactly those nonzero vectors
y such that 〈a, y〉 = 0.

Proof. If 〈a, y〉 = 0 then

la,b(x)⊕ la,b(x⊕ y) = 〈a, x〉 ⊕ b⊕ 〈a, x⊕ y〉 ⊕ b = 〈a, y〉 = 0.
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Therefore, it follows from Lemma 2 that the function la,b is a derivative
of a some Boolean function in the direction y. It is known that there exist
2n−1 different nonzero vectors y such that 〈a, y〉 = 0 if a is nonzero. Since
〈a, 0〉 = 0 as well, the statement is proved.

Lemma 5. Let l be a nonconstant affine function that is a derivative of bent
functions g and g′ in distinct nonzero directions y and y′, respectively. Then
g 6= g′.

Proof. Suppose that g = g′ is a bent function such that Dyg(x) = Dy′g(x) =
l(x) for y 6= y′. Then for every x ∈ Zn2 it holds

Dyg(x)⊕Dy′g(x) =

= g(x)⊕ g(x⊕ y)⊕ g(x)⊕ g(x⊕ y′) =

= g(x⊕ y)⊕ g(x⊕ y′) =

= g(x⊕ y)⊕ g(x⊕ y ⊕ (y′ ⊕ y)) =

= Dy′⊕yg(x⊕ y) = 0,

which contradicts Lemma 3.

3 Affine functions as derivatives of bent functions

In what follows we suppose that n is even.

Theorem 1. Any nonconstant affine function la,b in n variables is a deriva-
tive of (2n−1 − 1)|Bn−2|2 bent functions in n ≥ 4 variables.

Proof. Let la,b(x) = 〈a, x〉⊕ b be an affine function in n ≥ 4 variables, where
a ∈ Zn2 is nonzero and b ∈ Z2. Suppose that la,b is a derivative of some
Boolean function in the direction y′.

Let i be the number of the first nonzero coordinate of y′ and j be the
number such that j 6= i and xj is an essential variable for la,b. Let us show
that such j always exists. Suppose the opposite. Then la,b(x) = xi ⊕ b and
Dy′la,b(x) = la,b(x) ⊕ la,b(x ⊕ y′) = 1, for every x ∈ Zn2 , which by Lemma 2
contradicts the fact that la,b is a derivative of g in the direction y′.

Without loss of generality, let i = 1 and j = 2. It follows from Lemma 2
that la,b(x) = la,b(x⊕ y′) and hence

x ∈ supp(la,b) ⇐⇒ x⊕ y′ ∈ supp(la,b). (1)

Note that for any Boolean function g in n variables that has `a,b as its
derivative in the direction y′ it holds that

g(x)⊕ g(x⊕ y′) = la,b(x). (2)
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It follows from (1) and (2) that any Boolean function g, such that Dy′g(x) =
`a,b(x), has the following representation

g(0, x2, x̄) = f0(x̄), (0, x2, x̄) ∈ supp(la,b),

g(1, x2 ⊕ y′2, x̄⊕ ȳ′) = f0(x̄)⊕ 1, (1, x2 ⊕ y′2, x̄⊕ ȳ′) ∈ supp(la,b),

g(0, x2, x̄) = f1(x̄), (0, x2, x̄) 6∈ supp(la,b),

g(1, x2 ⊕ y′2, x̄⊕ ȳ′) = f1(x̄), (1, x2 ⊕ y′2, x̄⊕ ȳ′) 6∈ supp(la,b),

where

z̄ = (z3, . . . , zn), for zk ∈ Z2

and f0, f1 are some Boolean functions in n− 2 variables. Therefore, by con-
sidering different Boolean functions in n − 2 variables as f0 and f1, we can
get all Boolean functions in n variables that have `a,b as its derivative in the
direction y′.

Let f0 and f1 be bent functions and g be defined as above. Denote by
M = {x ∈ Zn2 : x1 = 0}. Thus, x ∈M ⇐⇒ x⊕ y′ ∈ Zn2\M .

Let us show that g is bent by checking that Dyg(x) is balanced for every
nonzero y 6= y′.

Suppose that b = 0. Then la,b(x⊕ y) = la,b(x)⊕ la,b(y) and from (1) and
(2) we have

∑

x∈Zn2

(−1)g(x)⊕g(x⊕y) =

=
∑

x∈M
x∈supp(la,b)

(−1)g(x)⊕g(x⊕y) + (−1)g(x⊕y′)⊕g(x⊕y⊕y′)+

+
∑

x∈M
x 6∈supp(la,b)

(−1)g(x)⊕g(x⊕y) + (−1)g(x⊕y′)⊕g(x⊕y⊕y′) =

=
∑

x∈M
x∈supp(la,b)

(−1)g(x)⊕g(x⊕y) + (−1)g(x)⊕g(x⊕y)⊕la,b(x)⊕la,b(x⊕y)+

+
∑

x∈M
x 6∈supp(la,b)

(−1)g(x)⊕g(x⊕y) + (−1)g(x)⊕g(x⊕y)⊕la,b(x)⊕la,b(x⊕y) =
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=
∑

x∈M
x∈supp(la,b)

(−1)g(x)⊕g(x⊕y) + (−1)g(x)⊕g(x⊕y)⊕la,b(y)+

+
∑

x∈M
x 6∈supp(la,b)

(−1)g(x)⊕g(x⊕y) + (−1)g(x)⊕g(x⊕y)⊕la,b(y).

There are two cases:

Case 1. If la,b(y) = 1. Then
∑

x∈Zn2

(−1)g(x)⊕g(x⊕y) =

=
∑

x∈M
x∈supp(la,b)

(−1)g(x)⊕g(x⊕y) + (−1)g(x)⊕g(x⊕y)⊕1+

+
∑

x∈M
x 6∈supp(la,b)

(−1)g(x)⊕g(x⊕y) + (−1)g(x)⊕g(x⊕y)⊕1 = 0.

Case 2. If la,b(y) = 0. Then la,b(x⊕ y) = 1 ⇐⇒ la,b(x) = 1.
Suppose that y1 = 0. Then

g(0, x2 ⊕ y2, x̄⊕ ȳ) = f0(x̄⊕ ȳ), (0, x2, x̄) ∈ supp(la,b),

g(0, x2 ⊕ y2, x̄⊕ ȳ) = f1(x̄⊕ ȳ), (0, x2, x̄) 6∈ supp(la,b),

and
∑

x∈Zn2

(−1)g(x)⊕g(x⊕y) =

=
∑

x∈M
x∈supp(la,b)

(−1)g(x)⊕g(x⊕y) + (−1)g(x)⊕g(x⊕y)+

+
∑

x∈M
x 6∈supp(la,b)

(−1)g(x)⊕g(x⊕y) + (−1)g(x)⊕g(x⊕y) =

= 2
( ∑

x∈M
x∈supp(la,b)

(−1)g(x)⊕g(x⊕y) +
∑

x∈M
x 6∈supp(la,b)

(−1)g(x)⊕g(x⊕y)
)

=

= 2
( ∑

x∈M
x∈supp(la,b)

(−1)f0(x̄)⊕f0(x̄⊕ȳ) +
∑

x∈M
x 6∈supp(la,b)

(−1)f1(x̄)⊕f1(x̄⊕ȳ)
)
. (3)

Let us show that ȳ 6= 0. Since y is nonzero, then ȳ = 0 only if y2 = 1.
But in that case la,b(y) = 1 since x2 is an essential variable for la,b and b = 0.
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Note that if (a1, a2, x̄) ∈ supp(la,b) then (a1, a2⊕1, x̄) 6∈ supp(la,b), where
a1, a2 ∈ Z2, since x2 is essential for la,b. Therefore,

{x̄ : (0, x2, x̄) ∈ supp(la,b)} = {x̄ : (0, x2, x̄) 6∈ supp(la,b)} = Zn−2
2 , (4)

and since f0 and f1 are bent it follows from Lemma 3 that
∑

x∈Zn2

(−1)g(x)⊕g(x⊕y) =

= 2
( ∑

x∈M
x∈supp(la,b)

(−1)f0(x̄)⊕f0(x̄⊕ȳ) +
∑

x∈M
x 6∈supp(la,b)

(−1)f1(x̄)⊕f1(x̄⊕ȳ)
)

=

= 2
( ∑

x̄∈Zn−22

(−1)f0(x̄)⊕f0(x̄⊕ȳ) +
∑

x̄∈Zn−22

(−1)f1(x̄)⊕f1(x̄⊕ȳ)
)

= 0.

Suppose that y1 = 1. Then

g(1, x2 ⊕ y2, x̄⊕ ȳ) = f0(x̄⊕ ȳ ⊕ ȳ′)⊕ 1, (0, x2, x̄) ∈ supp(la,b),

g(1, x2 ⊕ y2, x̄⊕ ȳ) = f1(x̄⊕ ȳ ⊕ ȳ′), (0, x2, x̄) 6∈ supp(la,b),

and
∑

x∈Zn2

(−1)g(x)⊕g(x⊕y) =

=
∑

x∈M
x∈supp(la,b)

(−1)g(x)⊕g(x⊕y) + (−1)g(x)⊕g(x⊕y)+

+
∑

x∈M
x 6∈supp(la,b)

(−1)g(x)⊕g(x⊕y) + (−1)g(x)⊕g(x⊕y) =

= 2
( ∑

x∈M
x∈supp(la,b)

(−1)g(x)⊕g(x⊕y) +
∑

x∈M
x 6∈supp(la,b)

(−1)g(x)⊕g(x⊕y)
)

=

= 2
( ∑

x∈M
x∈supp(la,b)

(−1)f0(x̄)⊕f0(x̄⊕ȳ⊕ȳ′)⊕1 +
∑

x∈M
x 6∈supp(la,b)

(−1)f1(x̄)⊕f1(x̄⊕ȳ⊕ȳ′)). (5)

Therefore, if ȳ′ 6= ȳ, then from (4) and since f0 and f1 are bent it follows
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from Lemma 3 that
∑

x∈Zn2

(−1)g(x)⊕g(x⊕y) =

= 2
( ∑

x∈M
x∈supp(la,b)

(−1)f0(x̄)⊕f0(x̄⊕ȳ⊕ȳ′)⊕1 +
∑

x∈M
x 6∈supp(la,b)

(−1)f1(x̄)⊕f1(x̄⊕ȳ⊕ȳ′)) =

= 2
( ∑

x̄∈Zn−22

(−1)f0(x̄)⊕f0(x̄⊕ȳ⊕ȳ′)⊕1 +
∑

x̄∈Zn−22

(−1)f1(x̄)⊕f1(x̄⊕ȳ⊕ȳ′)) = 0.

If ȳ′ = ȳ, then from (4) we have that
∑

x∈Zn2

(−1)g(x)⊕g(x⊕y) =

= 2
( ∑

x̄∈Zn−22

(−1)f0(x̄)⊕f0(x̄)⊕1 +
∑

x̄∈Zn−22

(−1)f1(x̄)⊕f1(x̄)
)

=

= 2
(
− 2n−2 + 2n−2) = 0.

It follows from Lemma 3 that g is bent.
If b = 1 then

∑

x∈Zn2

(−1)g(x)⊕g(x⊕y) =

=
∑

x∈M
x∈supp(la,b)

(−1)g(x)⊕g(x⊕y) + (−1)g(x)⊕g(x⊕y)⊕la,b(y)⊕1+

+
∑

x∈M
x6∈supp(la,b)

(−1)g(x)⊕g(x⊕y) + (−1)g(x)⊕g(x⊕y)⊕la,b(y)⊕1,

and to show that g is bent it is sufficient to switch Cases 1 and 2. It is worth
to elaborate on the case when b = 1, `a,b(y) = 1 and y1 = 0. If ȳ = 0 then
from (3) we get

∑

x∈Zn2

(−1)g(x)⊕g(x⊕y) =

= 2
( ∑

x∈M
x∈supp(la,b)

(−1)f0(x̄)⊕f0(x̄⊕ȳ) +
∑

x∈M
x 6∈supp(la,b)

(−1)f1(x̄)⊕f1(x̄⊕ȳ)
)

=

= 2
( ∑

x∈M
x∈supp(la,b)

(−1)f0(x̄)⊕f0(x̄) +
∑

x∈M
x 6∈supp(la,b)

(−1)f1(x̄)⊕f1(x̄)
)

= 2n
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and hence Dyg(x) is not balanced. Let us show that this case is not possible.
Since y is nonzero, then ȳ = 0 only if y2 = 1. But in that case la,b(y) =
1⊕ b = 0 since x2 is an essential variable for la,b and b = 1.

Now let us show that if g is bent then f0 and f1 are bent. Suppose the
opposite. Let f0 is not bent. Then it follows from Lemma 3 that there is exist
a nonzero vector ȳ such that Dȳf0(x̄) is not balanced.

Note that there is always a nonzero vector y = (0, y2, ȳ) 6∈ supp(la,b), since
x2 is essential for la,b and hence either (0, a, ȳ) 6∈ supp(la,b) or (0, a⊕ 1, ȳ) 6∈
supp(la,b), where y2, a ∈ Z2.

Suppose that b = 0. Then from (3), (4) and since g is bent
∑

x∈Zn2

(−1)g(x)⊕g(x⊕y) =

= 2
( ∑

x∈M
x∈supp(la,b)

(−1)f0(x̄)⊕f0(x̄⊕ȳ) +
∑

x∈M
x 6∈supp(la,b)

(−1)f1(x̄)⊕f1(x̄⊕ȳ)
)

=

= 2
( ∑

x̄∈Zn−22

(−1)f0(x̄)⊕f0(x̄⊕ȳ) +
∑

x̄∈Zn−22

(−1)f1(x̄)⊕f1(x̄⊕ȳ)
)

= 0,

and hence
∑

x̄∈Zn−22

(−1)f0(x̄)⊕f0(x̄⊕ȳ) = −
∑

x̄∈Zn−22

(−1)f1(x̄)⊕f1(x̄⊕ȳ). (6)

From (1) we know that (1, y2 ⊕ y′2, ȳ ⊕ ȳ′) 6∈ supp(la,b). Therefore, from (5),
(4) and since g is bent

∑

x∈Zn2

(−1)g(x)⊕g(x⊕y⊕y′) =

= 2
( ∑

x∈M
x∈supp(la,b)

(−1)f0(x̄)⊕f0(x̄⊕ȳ)⊕1 +
∑

x∈M
x 6∈supp(la,b)

(−1)f1(x̄)⊕f1(x̄⊕ȳ)
)

=

= 2
( ∑

x̄∈Zn−22

(−1)f0(x̄)⊕f0(x̄⊕ȳ)⊕1 +
∑

x̄∈Zn−22

(−1)f1(x̄)⊕f1(x̄⊕ȳ)
)

= 0,

and hence
∑

x̄∈Zn−22

(−1)f0(x̄)⊕f0(x̄⊕ȳ) =
∑

x̄∈Zn−22

(−1)f1(x̄)⊕f1(x̄⊕ȳ). (7)

Consequently, (6) and (7) contradict each other, sinceDȳf0(x̄) is not balanced.
If b = 1 it is sufficient to consider a nonzero vector (0, y2 ⊕ 1, ȳ) ∈

supp(la,b).
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Note that for different {f0, f1} and {f ′0, f ′1} we get different g. Since f0

and f1 are arbitrary bent functions in n− 2 variables there are |Bn−2|2 bent
functions g for which la,b is a derivative in the direction y′.

It follows from Lemma 5 that for different directions y′ we get differ-
ent bent funcions that have la,b as its derivative. Therefore, it follows from
Lemma 4 that there are (2n−1−1)|Bn−2|2 bent functions that have la,b as the
derivative.

4 Iterative lower bound

Theorem 1 gives us an iterative lower bound.

Theorem 2. For even n ≥ 2 it holds |Bn+2| > (2n+2 − 2)|Bn|2.

Proof. Let l a be nonconstant affine function in n+2 variables. It follows from
Theorem 1 that there are (2n+1 − 1)|Bn|2 bent functions in n + 2 variables
that have l as its derivative. Therefore, |Bn+2| > (2n+1 − 1)|Bn|2.

Let us show that it is not possible for some bent function to have both l
and l ⊕ 1 as its derivatives. Suppose that g(x) is a bent and Dy = l(x) and
Dy′ = l(x)⊕ 1 for y 6= y′. Then for every x ∈ Zn2

Dyg(x)⊕Dy′g(x) =

= g(x)⊕ g(x⊕ y)⊕ g(x)⊕ g(x⊕ y′) =

= g(x⊕ y)⊕ g(x⊕ y′) =

= g(x⊕ y)⊕ g(x⊕ y ⊕ (y′ ⊕ y)) =

= Dy′⊕yg(x⊕ y) = l(x)⊕ l(x)⊕ 1 = 1,

which contradicts Lemma 3. Thus, we can multiply our bound by 2.

Let us compare this iterative lower bound with other known. We have
this iterative lower bound from [12]

|Bn+2| > 6|Bn|2 − 8|Bn|

but it is not better than the following one.

Proposition 1. (Climent et al, [13]) For even n ≥ 2 it holds

|Bn+2| > 6|Bn|2 + 2n+2(2n − 3)|Bn|.

The Iterative lower bound from Proposition 1 is worse than one from
Theorem 2 for every even n ≤ 8. See Table 1.
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Variables 4 6 8 10
Bent 896 5 425 430 528 29× 193 887 869 660 028 067 003 488 010 240 ≈ 2106.29 ?

Proposition 1 512 5 562 368 176 611 863 208 449 277 952 ≈ 268 ≈ 2215

Theorem 2 896 49 774 592 7 476 565 289 195 207 131 136 ≈ 272.6 ≈ 2222.5

Proposition 3 512 322 961 408 ≈ 287.35 ≈ 2262.16

Table 1: Number of bent functions constructed with different methods

Proposition 2. (Canteaut et al, [14], Tokareva [15]) Let functions f0, f1,
and f2 be bent functions in n variables. Then function g defined as

g(0, 0, x) = f0(x), g(0, 1, x) = f1(x),

g(1, 0, x) = f2(x), g(1, 1, x) = f3(x),

is a bent function in n+ 2 variables if and only if f3 is a bent function in n
variables and f̃0 ⊕ f̃1 ⊕ f̃2 ⊕ f̃3 = 1.

Bent functions that can be obtained by Proposition 2 are called bent
iterative functions. Let BIn+2 denote the class of all such functions in n+ 2
variables.

The following iterative lower bound is based on Proposition 2. It was
proven by the author [15] in 2011. For now it is the best iterative lower
bound for the number of bent functions.

Proposition 3. (Tokareva, [15]) For even n ≥ 2 it holds

|Bn+2| > |BIn+2| ≥ |Bn|4/|Xn|,

where Xn is the set of all Boolean functions in n variables that can be rep-
resented as the sum of two distinct bent functions.

The Iterative lower bound from Theorem 2 is not better than one from
Proposition 3 when n ≥ 6. See Table 1.

5 Conclusion and open problems

In [11] it was shown that every balanced function f in n variables is a
derivative of a some bent function for n 6 6 (n even). Whether it is true for
nonaffine balanced functions for every even n is an open problem.

Iterative lower bound from Theorem 2 theoretically can be improved if we
consider more then two affine functions l and l⊕1. Unfortunately, it is hard to
keep track of bent functions that were already counted because it is possible
that Dyg(x) = l(x) and Dy′g(x) = h(x), where h 6= l, h 6= l ⊕ 1 and y 6= y′.
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We also can consider bent functions that do not have affine derivatives. Such
functions of degree 3 were studied for example in [14]. Although, the number
of such functions was not presented.
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Abstract

Functions of the form Fn2 → Zq, where q > 2 is a positive integer, are known as
generalized Boolean functions. Bent functions within this generalization are called
generalized bent (gbent). A gbent function is said to be regular if it is possible to
define its dual gbent function. A duality mapping is the mapping that transforms
every regular gbent function to its dual gbent. A regular gbent function is said to
be self-dual if it coincides with its dual. In this paper we define the action of linear
operator C2n → C2n on the set of all generalized Boolean functions in n variables via
their sign functions. The characterization of unitary operators that transform the set
of all generalized Boolean functions in n variables into itself is provided. Further all
such operators that commute with the duality mapping and preserve self-duality of a
gbent function are found. Based on this result the known classification of quaternary
self-dual bent functions is clarified. We also study the properties if sign functions of
self-dual gbent functions.

Keywords: Duality mapping, Generalized bent function, Self-dual bent

1 Introduction

The study of Boolean functions having strong cryptographic properties
is the domain of current interest, see monographies [2, 4] for detail. Boolean
bent functions were introduced by O. Rothaus [26] in 1976. Due to maximal
nonlinearity they have a number of applications in cryptography and coding
theory. They were used as building blocks of stream (Grain, 2004) and block
(CAST, 1997) ciphers and, for instance, in 2000 T. Wada [34] established
a connection between bent functions and binary constant-amplitude code-
words. But despite the long history of research in this area there are still
many open problems. Among them the exact number of bent functions as
well as their complete classification that seem elusive to be solved for now.
One can find more details on bent functions in books [33, 22].
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Bent functions were initially generalized by P. V. Kumar et al. in 1985
by considering functions of the form Znq → Zq with corresponding defini-
tion of bentness, see [12]. Bent functions from a finite Abelian group into
a finite Abelian group were studied in [29] by V. I. Solodovnikov and by
O.A. Logachev, A.A. Sal’nikov, V.V. Yashchenko in [18]. Having applications
of functions from Fn2 to Z4 in code-division multiple access (CDMA) systems,
K.-U Schmidt in [27] (initially appeared in preprint from 2006) generalized
the notion of bentness for functions of the form Fn2 → Zq, where q > 2 is a
positive integer and studied these functions for the case q = 4. The consid-
ered functions are named generalized bent (gbent) functions. Note that this
generalization deals with the mappings of the form Fn2 → Zq called gener-
alized Boolean functions, that are also studied from the view of obtaining
linear codes with special properties, see [24]. These functions also have ap-
plications to the analysis of quantum circuits [6]. In recent years generalized
bent functions obtained much attention, in particular, for the case q = 2k. In
papers [20, 30] different constructions and properties of generalized bent func-
tions were obtained. The connection between concepts of strong regularity of
(edge-weighted) Cayley graph associated to a generalized Boolean function
and gbent functions was pointed in [25]. The complete characterization of
generalized bent functions from different perspectives was recently presented
in works [31, 7, 23]. A comprehensive survey on existing generalizations of
bent functions can be found in [32].

The duality mapping is a mapping that transforms every (regular gen-
eralized) bent function to its dual (generalized) bent. For the Boolean case for
every bent function its dual bent function is uniquely defined. It is important
to note that the duality mapping is the unique known isometric mapping of
the set of bent functions into itself that cannot be extended to a isometry of
the whole set of all Boolean functions that preserves bentness. The action of
the duality mapping on bent functions within generalizations is increasingly
nontrivial since it is typically defined only for the part of bent functions from
corresponding generalization which are called regular, while more accurate
work with them also demands for intermediate notation like weak regularity
that also appears in this scope.

Self-dual bent functions that are fixed points of the duality mapping form
a remarkable class of bent functions since they have the direct relation to their
dual bent functions. The definition of self-duality initially was in paper [18]
by O.A. Logachev, A.A. Sal’nikov and V.V. Yashchenko. In more details
these functions were explored by C. Carlet et al. in 2010 in work [1], where a
number of constructions and properties were given and the classification for
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small number of variables was provided. Next steps for the classification of
qubic self-dual bent functions in 8 variables were made in [5], while quadratic
self-dual bent functions were completely characterized in [8]. Constructions
and properties of self-dual Boolean bent functions were studied in [10, 13, 21].
The overview of the known metrical properties of self-dual bent functions can
be found in [17]. The extension of the concept of self-duality for different gen-
eralizations of bent functions was made in several papers. The classification
of quadratic self-dual bent functions of the form Fnp → Fp, p odd prime, was
made by X.-D. Hou in [9]. In paper [3] the self-duality for bent functions
within the same generalization type was studied by A. Çeşmelioğlu et al.
In 2018 in paper [28] L. Sok. et al. studied quaternary self-dual bent func-
tions of the form Fn2 → Z4 from the viewpoints of existence, construction,
and symmetry. The relation between sign functions of quaternary self-dual
bent function in n variables and two self-dual bent functions in n variables
was found. Based on this it was proved that there are no quaternary self-dual
bent functions in odd number of variables.

In this paper we define the action of linear operator C2n → C2n on the
generalized Boolean functions in n variables via their sign functions. We
study the interconnection between unitary operators that transform the set
of all generalized Boolean functions in n variables into itself and the duality
mapping. The paper os organised as follows. In Section 2 necessary definitons
and notation are given. In Section 3 properties of sign functions of self-dual
gbent functions are considered. The main results are in Section 4, namely,
Section 4.1, where unitary operators under consideration are characterized,
in Sections 4.3 and 4.4 the operators that commute or anti-commute with
duality mapping, hence preserve self-duality or replacing self-dual and anti-
self-dual gbent functions, respectively, are described. The question whether
the duality mapping can be described by the considered set of operators is
partially studied in Section 5 The conclusion is in Section 6.

2 Notation

Let Fn2 be a set of binary vectors of length n. For x, y ∈ Fn2 denote 〈x, y〉 =
n⊕
i=1

xiyi, where the sign ⊕ denotes a sum modulo 2. Denote, following [11],

the orthogonal group of index n over the field F2 as

On =
{
L ∈ GL (n,F2) : LLT = In

}
,
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where LT denotes the transpose of L and In is an identical matrix of order
n over the field F2.

A generalized Boolean function f in n variables is any map from Fn2 to
Zq, the integers modulo q. The set of generalized Boolean functions in n
variables is denoted by GF q

n, for the case q = 2 we use Fn. Let ω = e2πi/q. A
sign function of f ∈ GF q

n is a complex valued function F = ωf , we will also
refer to it as to a complex vector

(
ωf0, ωf1, . . . , ωf2n−1

)
of length 2n, where

(f0, f1, . . . , f2n−1) is a vector of values of the function f .
The Hamming weight wtH(x) of the vector x ∈ Fn2 is the number of

nonzero coordinates of x. The Hamming distance distH(f, g) between gen-
eralized Boolean functions f, g in n variables is the cardinality of the set
{x ∈ Fn2 |f(x) 6= g(x)}. The Lee weight of the element x ∈ Zq is wtL(x) =
min {x, q − x}. The Lee distance distL(f, g) between f, g ∈ GF q

n is

distL(f, g) =
∑

x∈Fn2

wtL (δ(x)) ,

where δ ∈ GF q
n and δ(x) = f(x) + (q − 1)g(x) for any x ∈ Fn2 . For Boolean

case q = 2 the Hamming distance coincides with the Lee distance.
The (generalized) Walsh–Hadamard transform of f ∈ GF q

n is the complex
valued function:

Hf(y) =
∑

x∈Fn2

ωf(x)(−1)〈x,y〉.

A generalized Boolean function f in n variables is said to be generalized
bent (gbent) if

|Hf(y)| = 2n/2,

for all y ∈ Fn2 [27]. If there exists such f̃ ∈ GF q
n that Hf(y) = ωf̃(y)2n/2 for

any y ∈ Fn2 , the gbent function f is said to be regular and f̃ is called its dual.
Note that f̃ is generalized bent as well. A regular gbent function f is said
to be self-dual if f = f̃ , and anti-self-dual if f = f̃ + q/2. Consequently, it
is the case only for even q. So throughout this paper we assume that q is a
positive even integer. Corresponding sets of gbent functions are denoted by
SB+

q (n) and SB−q (n).
The duality mapping is a mapping that transforms every regular gbent

function to its dual one. Thus, it is essentially defined only on regular gbent
functions.
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3 Eigenvectors of the duality mapping

In this section properties of sign functions of (anti-)self-dual gbent func-
tions will be studied and the connection with the duality mapping will be
explicitely pointed.

Let In be the identity matrix of size n and Hn = H⊗n1 be the n-fold tensor
product of the matrix H1 with itself, where

H1 =

(
1 1
1 −1

)
.

This matrix is known as Sylvester Hadamard matrix. It is known the
Hadamard property of this matrix

HnH
T
n = 2nI2n,

where HT
n is transpose of Hn (it holds HT

n = Hn by symmetricity of Hn).
Denote Hn = 2−n/2Hn.

By using Sylvester Hadamard matrix it is possible to define the duality
mapping as follows

ωf −→ Hnω
f = ωf̃ ,

where f is a regular gbent function in n variables. Thus, sign functions if
self-dual gbent functions are eigenvectors of the aforementioned linear oper-
ator that correspond to the eigenvalue 1. At the same time sign functions
if anti-self-dual gbent functions are eigenvectors of the aforementioned lin-
ear operator that correspond to the eigenvalue (−1). In terms of subspaces
these facts imply that sign functions belong to the spaces Ker

(
Hn − I2n

)
=

Ker
(
Hn−2n/2I2n

)
and Ker

(
Hn+I2n

)
= Ker

(
Hn+2n/2I2n

)
correspondingly.

Recall an orthogonal decomposition of R2n in eigenspaces of Hn from [1]
(Lemma 5.2):

R2n = Ker
(
Hn + 2n/2I2n

)
⊕Ker

(
Hn − 2n/2I2n

)
,

where the symbol ⊕ denotes a direct sum of subspaces. Consider the same
decomposition

C2n = Ker
(
Hn + 2n/2I2n

)
⊕Ker

(
Hn − 2n/2I2n

)
,

for a complex space C2n. It is known that

dim
(
Ker (Hn + I2n)

)
= dim

(
Ker
(
Hn − I2n

))
= 2n−1,
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where dim(V ) is the dimension of the subspace V ⊆ C2n. Moreover, since Hn

is symmetric (Hermitian), the subspaces Ker
(
Hn + I2n

)
and Ker

(
Hn − I2n

)

are mutually orthogonal.
In [15] it was proved that provided n > 4, the linear span of sign functions

of self-dual as well as anti-self-dual Boolean bent functions Boolean bent
functions in n variables has dimension 2n−1. The same result can be also
given for gbent functions:

Proposition 1. Let n > 4 be an evem number, then the linear span of sign
functions of (anti-)self-dual gbent functions in n variables has dimension
2n−1.

Proof. It is enough to mention that since q is even it holds (−1) =
ωq/2 ∈

{
ω, ω2, . . . , ωq−1

}
, therefore the set of sign fuctions of (anti-)self-dual

Boolean bent functions in n variables is a subset of the set of sign functions
of (anti-)self-dual gbent functions in n variables.

It is worth to note that the example of the basis of the subspace
Ker
(
Hn − I2n

)
can be constructed by using the functions obtained via it-

erative constructions from [1] and [15].
When n = 2 there are two self-dual Boolean bent functions, namely x1x2

and x1x2⊕ 1, which have sign functions (1, 1, 1,−1) and (−1,−1,−1, 1) re-
spectively. These sign functions are linearly dependent vectors in R4. The set
SB−(2) consists of functions x1x2 ⊕ x1 ⊕ x2 and x1x2 ⊕ x1 ⊕ x2 ⊕ 1 with
sign functions (1,−1,−1,−1) and (−1, 1, 1, 1) respectively. These sign func-
tions are linearly dependent vectors in R4 as well. Generalization comprises
solution of the system

1

2




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1







ωd1

ωd2

ωd3

ωd4


 =




ωd1

ωd2

ωd3

ωd4


 ,

where variables are numbers d1, d2, d3, d4 ∈ Zq in fact. It is clear that the
only solution pattern is

(
ωd, ωd, ωd, ωd+q/2

)
= ωd · (1, 1, 1,−1) ∈ C4,

where d ∈ Zq. It means that any two sign functions of self-dual gbent func-
tions from SB+

q (2) are linearly dependent over C and
∣∣SB+

q (2)
∣∣ = q.

The next result is a generalization of the similar one from [15].
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Theorem 1. Let n > 4 be an even number and f ∈ SB+
q (n).

For sign function ωf =
(
F 00, F 01, F 10, F 11

)
, where F 00, F 01, F 10, F 11 ∈{

1, ω, ω2, . . . , ωq−1
}2n−2, it holds

〈
F 00, F 01

〉
+
〈
F 10, F 11

〉
= 0,〈

F 00, F 10
〉

+
〈
F 01, F 11

〉
= 0.

Proof. Let f ∈ SB+
q (n), then by Proposition 1 there exist vectors

α = (α1, α2, . . . , α2n−3) ∈ C2n−3,

β = (β1, β2, . . . , β2n−3) ∈ C2n−3,

γ = (γ1, γ2, . . . , γ2n−2) ∈ C2n−2,

such that

ωf =
2n−3∑

i=1

αiF
n
i +

2n−3∑

j=1

βjG
n
j +

2n−2∑

k=1

γk (FG)nk ,

where the sets SF = {Fn
i }2n−3

i=1 , SG =
{
Gn
j

}2n−3

j=1
and SFG = {(FG)nk}

2n−2

k=1 are
the sets of sign functions of iteratively constructed self-dual Boolean bent
functions that form a basis of the eigenspace of the Sylvester Hadamard
matrix (see [15]). Namely, the sets SF, SG, SFG consist of sign functions

Fn
i = (Fi, Fi, Fi,−Fi) ,

Gn
j = (Gj,−Gj,−Gj,−Gj) ,

(FG)nk = (Ak,−Bk, Bk, Ak) ,

where sign functions Fi, Ak ∈ Ker
(
Hn−2 − I2n−2

)
and Gj, Bk ∈ Ker

(
Hn−2 +

I2n−2
)
, i, j = 1, 2, . . . , 2n−3, k = 1, 2, . . . , 2n−2, are sign functions that form

the bases of the eigenspaces of the matrix Hn−2. Define the vectors

F =
2n−3∑

i=1

αiFi, G =
2n−3∑

j=1

βjGj, A =
2n−2∑

k=1

γkAk, B =
2n−2∑

k=1

γkBk.

Under this notation the sign function ωf has the form

ωf =




F 00

F 01

F 10

F 11


 =




F + G + A
F−G−B
F−G + B
−F−G + A


 ∈

{
1, ω, ω2, . . . , ωq−1

}2n
.

A. Kutsenko and A. Gorodilova 280



The Duality Mapping and Unitary Operators Acting on the Set of All Generalized Boolean...

For any j = 1, 2, . . . , 2n−2 denote
(
F + G

)
j

+ Aj = ωtj ,
(
F−G

)
j
−Bj = ωrj ,

(
F−G

)
j

+ Bj = ωlj ,

−
(
F + G

)
j

+ Aj = ωkj ,

where tj, rj, lj, kj ∈ Zq. Then

Aj =
1

2

(
ωtj + ωkj

)
,

Bj =
1

2

(
ωlj − ωrj

)
,

(
F + G

)
j

=
1

2

(
ωtj − ωkj

)
,

(
F−G

)
j

=
1

2

(
ωrj + ωlj

)
.

Note that
〈G,A〉 = 〈F,B〉 = 0.

By using this we obtain the expression for the first inner product
〈
F 00, F 01

〉
+
〈
F 10, F 11

〉
= 〈F + G + A,F−G−B〉
+ 〈F−G + B,−F−G + A〉
= 〈F,F〉 − 〈F,G〉 − 〈F,B〉
+ 〈G,F〉 − 〈G,G〉 − 〈G,B〉
+ 〈A,F〉 − 〈A,G〉 − 〈A,B〉
− 〈F,F〉 − 〈F,G〉+ 〈F,A〉
+ 〈G,F〉+ 〈G,G〉 − 〈G,A〉
− 〈B,F〉 − 〈B,G〉+ 〈B,A〉
= 〈A,F〉+ 〈F,A〉 − 〈G,B〉 − 〈B,G〉
= 〈A,F + G〉+ 〈A,F + G〉+ 〈B,F−G〉+ 〈B,F−G〉

(1)
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while the second one has the form
〈
F 00, F 10

〉
+
〈
F 01, F 11

〉
= 〈F + G + A,F−G + B〉
+ 〈F−G−B,−F−G + A〉
= 〈F,F〉 − 〈F,G〉+ 〈F,B〉
+ 〈G,F〉 − 〈G,G〉+ 〈G,B〉
+ 〈A,F〉 − 〈A,G〉+ 〈A,B〉
− 〈F,F〉 − 〈F,G〉+ 〈F,A〉
+ 〈G,F〉+ 〈G,G〉 − 〈G,A〉
+ 〈B,F〉+ 〈B,G〉 − 〈B,A〉
= 〈A,F〉+ 〈F,A〉+ 〈G,B〉+ 〈B,G〉
= 〈A,F + G〉+ 〈A,F + G〉 − 〈B,F−G〉 − 〈B,F−G〉

(2)

Consider inner in details the following inner products

〈A,F + G〉 =
2n∑

j=1

Aj

(
F + G

)
j

=
1

4

2n∑

j=1

(
ωtj + ωkj

)(
ωtj − ωkj

)

=
1

4

2n∑

j=1

(
1− 1 + ωkjωtj − ωtjωkj

)
=

1

2
Im

(
2n∑

j=1

ωkjωtj

)
i,

〈A,F + G〉 = −1

2
Im

(
2n∑

j=1

ωkjωtj

)
i,

〈B,F−G〉 =
2n∑

j=1

Bj

(
F−G

)
j

=
1

4

2n∑

j=1

(
ωlj − ωrj

)(
ωlj + ωrj

)

=
1

4

2n∑

j=1

(
1− 1 + ωljωrj − ωrjωlj

)
=

1

2
Im

(
2n∑

j=1

ωljωrj

)
i,

〈B,F−G〉 = −1

2
Im

(
2n∑

j=1

ωljωrj

)
i,

therefore, both (1) and (2) are zero numbers.
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4 Unitary operators and eigenvectors of the duality
mapping

In this section we define an action of linear operator C2n → C2n on a
(generalized) Boolean function in n variables and characterize all unitary
operators which transform the set of all (generalized) Boolean functions in n
variables into itself and preserve self-duality, thus generalizing in some way
the results from [16] on isometric mappings which preserve self-duality of a
Boolean bent function and those, which define bijections between the sets of
self-dual and anti-self-dual Boolean bent functions.

4.1 Linear operators and generalized Boolean functions

Throught this section we will use standard basis of the space C2n, which
consists of the vectors {ei}2n

i=1 ⊂ C2n, where ei has 1 on th i-th position, the
rest are zeros.

Let ϕ : C2n → C2n be linear operator with matrix A in standard basis
of the space C2n. We shall say that ϕ transforms the generalized Boolean
function f ∈ GF q

n with sign function F to the generalized Boolean function
f ′ ∈ GF q

n if the sign function F ′ of f ′ is equal to AF , that is F ′ = AF =
ϕ (F ). This also comprises the definition of the duality mapping via the
Sylvester Hadamard matrix (see Section 3).

Recall that a linear operator ϕ is said to be unitary if ϕϕ† = ϕ†ϕ = id,
where ϕ† is a Hermitian adjoint operator of ϕ. The matrix of ϕ is called
unitary in this case. Denote by U qn the set of unitary operators C2n → C2n

which transform the set of generalized Boolean functions in n variables GF q
n

into itself.
The next result characterizes the set U qn. The matrix is called monomial

or generalized permutation if it has exactly one nonzero entry in every row
(column).

Theorem 2. Operators from U qn are characterized by monomial matrices
with nonzero elements from the set

{
1, ω, ω2, . . . , ωq−1

}
and only them.

Proof. It is obvious that operators with monomial matrices of such form
transform the set of q-ary generalized Boolean functions in n variables into
itself. Moreover every such matrix is unitary.

Now assume ϕ ∈ U qn and let U = (uij)
2n

i,j=1 be its matrix in the canonical
basis. Denote by v0 ∈ C2n a vector with all ones and by vi ∈ C2n, i =
1, 2, . . . , 2n, a vector which has 1 on the i-th position, the rest are (−1). Let
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vij ∈ C2n, i, j = 1, 2, . . . , 2n, (i 6= j), be a vector which has 1 on the i-th and
j-th positions, the rest are (−1)

Fix some i, j, k ∈ {1, 2, . . . , 2n} , (i < j). Denote (Uv0)k = ωd0, (Uvi)k =
ωdi, (Uvj)k = ωdj and (Uvij)k = ωdij for some d0, di, dj, dij ∈ Zq. Their
addition yields

(Uv0)k + (Uvi)k = 2uki = ωd0 + ωdi,

(Uv0)k + (Uvj)k = 2ukj = ωd0 + ωdj ,

(Uv0)k + (Uvij)k = 2 (uki + ukj) = ωd0 + ωdij .

After grouping of these items we see that

uki =
ωd0 + ωdi

2
, ukj =

ωd0 + ωdj

2
, uki + ukj =

ωd0 + ωdij

2
,

that is
ωd0 + ωdi + ωd0 + ωdj = ωd0 + ωdij ,

or, equivalently,
ωd0 + ωdi + ωdj = ωdij .

Its is clear that it is the case only if ωdij coincides with one of three
numbers ωd0, ωdi, ωdj and the rest two are the same numbers with opposite
signs, that is always possible since q is even.

Basically there are two variants:
Case 1: If ωdij = ωd0 and ωdi + ωdj = 0, then the k-th row of U is

Uk =

(
uk1, . . . , uk,i−1,

ωd0 − ωdj
2

, uk,i+1, . . . , uk,j−1,
ωd0 + ωdj

2
, uk,j+1, . . . , uk,2n

)
.

But in this case

|uki|2 + |ukj|2 =
1

4

(∣∣ωd0 − ωdj
∣∣2 +

∣∣ωd0 + ωdj
∣∣2
)

=
1

4

[(
ωd0 − ωdj

) (
ωd0 − ωdj

)
+
(
ωd0 + ωdi

) (
ωd0 + ωdj

)]

=
1

4

(
ωd0ωd0 − ωd0ωdj − ωdjωd0 + ωdjωdj

)

+
1

4

(
ωd0ωd0 + ωd0ωdj + ωdjωd0 + ωdjωdj

)

=
1

4

(
2 · ωd0ωd0 + 2 · ωdjωdj

)
=

1

4
(2 + 2) = 1,

and since U is unitary that implies ‖Uk‖2 = 1 for any k ∈ {1, 2, . . . , 2n}, we
derive that all components of Uk except, maybe,

uki =
ωd0 − ωdj

2
,
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ukj =
ωd0 + ωdj

2
,

are necessarily equal to zero.
Case 2: Without loss of generality assume that ωdij = ωdi and ωd0 +ωdj =

0, then ukj = 0.
Thus for any distinct i, j ∈ {1, 2, . . . , 2n} either at least one of items

uki, ukj of the k-th row Uk is zero or in this row there are at most two
nonzero items, whose form was considered in Case 1.

If for any row only Case 2 is met, the matrix is obviously monomial. So
assume that some row of U , say k-th (in fact, then U has at least two rows
of such form), has the form which is described in Case 1.

Consider vector (sign function) F ∈ C2n whose coordinates for l =
1, 2, . . . , 2n are defined by

Fl =





ωr1, l = i,

ωr2, l = j,

1, otherwise,

where r1, r2 ∈ Zq such that r1 < r2 and r2 − r1 6= q/2, denote ∆r = r2 − r1.
We have

(UF )k = ukiω
r1 + ukjω

r2 = ωr1
(
ωd0 − ωdj

2
+
ωd0 + ωdj

2
ω∆r

)
= ωs+r1,

for some s ∈ Zq. It is clear that it holds if and only if

ωd0 − ωdj
2

+
ωd0 + ωdj

2
ω∆r = ωs.

Recall some trigonometric identities. For any real α, β it holds:

cosα + cos β = 2 cos

(
α + β

2

)
cos

(
α− β

2

)
,

cosα− cos β = −2 sin

(
α + β

2

)
sin

(
α− β

2

)
,

sinα± sin β = 2 sin

(
α± β

2

)
cos

(
α∓ β

2

)
,

sin (α± β) = sinα cos β ± cosα sin β,

sin 2α = 2 cosα sinα.
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Consider doubled real part of ωs:

2Re (ωs) = cos

(
2πd0

q

)
− cos

(
2πdj
q

)

+ cos

(
2π (d0 + ∆r)

q

)
+ cos

(
2π (dj + ∆r)

q

)

= 2 cos

(
π (2d0 + ∆r)

q

)
cos

(
π∆r

q

)

− 2 sin

(
π (2dj + ∆r)

q

)
sin

(
π∆r

q

)
,

and doubled imaginary part of ωs:

2Im (ωs) = sin

(
2πd0

q

)
− sin

(
2πdj
q

)

+ sin

(
2π (d0 + ∆r)

q

)
+ sin

(
2π (dj + ∆r)

q

)

= 2 sin

(
π (2d0 + ∆r)

q

)
cos

(
π∆r

q

)

+ sin

(
π∆r

q

)
cos

(
π (2dj + ∆r)

q

)
.

For simplicity denote α = π∆r/q, β = π (2d0 + ∆r) /q and γ =
π (2dj + ∆r) /q. Since ωs is a root of unity, its norm is equal to 1, hence

Re2 (ωs) + Im2 (ωs) = cos2 α cos2 β − 2 cosα sinα cos β sin γ + sin2 α sin2 γ

+ cos2 α sin2 β + 2 cosα sinα sin β cos γ + sin2 α cos2 γ

= cos2 α
(
cos2 β + sin2 β

)
+ sin2 α

(
cos2 γ + sin2 γ

)

+ 2 cosα sinα (sin β cos γ − cos β sin γ)

= 1 + sin (2α) sin (β − γ) = 1,

that is
sin (2α) sin (β − γ) = 0.

Let the firt sine is zero, that is

2α =
2π∆r

q
= πm,

for some m ∈ Z. Then ∆r = mq/2 but since ∆r ∈ {1, 2, . . . , q − 1}, it is
the case only for ∆r = q/2, that is a contradiction with the choice of r1, r2.
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If the second sine is zero, namely

β − γ =
2π (d0 − dj)

q
= πm′,

for some m′ ∈ Z, again we have either d0 = dj or |d0 − dj| = q/2 since
|d0 − dj| ∈ {0, 1, . . . , q − 1}. But then either ωd0−ωdj = 0 or ωd0 +ωdj = 0,
that is in the k-th row there is exactly one nonzero element.

List below some apparent properties of U qn which can be derived from
Theorem 2:

Proposition 2. Every operator from U qn preserves Lee and Hamming dis-
tance between generalized Boolean functions and Euclidian distance between
their sign functions.

Proposition 3. The cardinality of U qn is the following

|U qn| = 2n! · q2n.

4.2 Matrix representation and connection with Markov’s theo-
rem for Boolean case

A mapping ϕ of the set of all Boolean functions in n variables to itself
is called isometric if it preserves the Hamming distance between functions,
that is

distH(ϕ(f), ϕ(g)) = distH(f, g),

for any f, g ∈ Fn. The set of all isometric mappings of the set of all Boolean
functions in n variables to itself in [16] was denoted by In.

From Markov’s theorem (1956) it follows that the general form of isomet-
ric mappings of all Boolean functions in n variables to itself is

f(x) −→ f(π(x))⊕ g(x),

where π is a permutation on the set Fn2 and g ∈ Fn [19].
Theorem 2 can be reformulated in terms of mappings of (generalized)

Boolean functions:

Theorem 3. The action of any operator from U qn on the set GF q
n is uniquely

represented in the form

f(x) −→ f (π(x)) + g(x),

where π is a permuation on Fn2 and g ∈ GF q
n.

A. Kutsenko and A. Gorodilova 287



The Duality Mapping and Unitary Operators Acting on the Set of All Generalized Boolean...

Following [16] denote such operator by ϕπ,g ∈ U qn. So, for binary case we
immediately obtain correspondence between U2

n and In:
Corollary 1. For q = 2 there is an one-to-one correspondence between
the set U qn and the set of isometric mappings of all Boolean functions in n
variables into itself (In), defined by Markov’s theorem.

Thus the considered set U qn is a some kind of generalization of the set In
comprising the framework of sign functions.

Denote by {vk}2n−1
k=0 all binary vectors of length n considered in the lexi-

cographical order.
By Theorem 2, provided that the (standard) basis is fixed, there is an one-

to-one correspondence between U qn and the set of monomial matrices of order
2n × 2n with nonzero elements from the set

{
1, ω1, ω2, . . . , ωq−1

}
. Indeed,

consider arbitrary mapping ϕπ,g ∈ U qn. Let it transforms a function f ∈ GF q
n

with sign function

F =
(
ωf(v0), ωf(v1), . . . , ωf(v2n−1)

)
∈ C2n,

to f ′ ∈ GF q
n with sign function

F ′ =
(
ωf
′(v0), ωf

′(v1), . . . , ωf
′(v2n−1)

)
∈ C2n,

that is F ′ = UF , where U is a matrix of ϕπ,g. Namely this matrix is




j
...
0
...

k . . . 0 . . . ωg(vk−1) . . . 0 . . .
...
0
...




,

in which in the k-th row a nonzero element ωg(vk−1) is in the j-th column,
where (j − 1) is a number with binary representation π (vk−1). So the k-th
component of the vector F ′ = UF is equal to

ωf
′(vk−1) = ωf(π(vk−1)) · ωg(vk−1) = ωf(π(vk−1))+g(vk−1),

for any k ∈ {1, 2, . . . , 2n}, that is equivalent to

f ′ (x) = f (π (x)) + g (x) , x ∈ Fn2 .
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4.3 Unitary operators preserving eigenspaces of the duality map-
ping

Assume that n > 4 is an even integer.
In this subsection we characterize operators from U qn which preserve

(anti-)self-duality of gbent function.
At first, similar to [16], the question of how the property of preserving

self-duality is connected with preserving anti-self-duality is studied.

Proposition 4. For an operator ϕπ,g ∈ U qn with a matrix U the following
conditions are equivalent:

1) ϕπ,g preserves self-duality;

2) ϕπ,g preserves anti-self-duality;

3) UHn = HnU .

Proof. It is enough to note that by Proposition 1 for n > 4 there ex-
ist a subset {fi}2n−1

i=1 ⊆ SB+
q (n) with linearly independent sign functions

{Fi}2n−1

i=1 ⊆ Ker (Hn − I2n) and a subset {gi}2n−1

i=1 ⊆ SB−q (n) with linearly
independent sign functions {Gi}2n−1

i=1 ⊆ Ker (Hn + I2n).
The rest of the proof, comprising these subsets of (anti-)self-dual gbent

functions, follows as in [16] (Proposition 2).

In paper [16] isometric mappings of all Boolean functions in n variables
into itself which preserve self-duality were completely characterized, namely
it was proved that isometric mapping f(x)→ f(π(x))⊕ g(x) preserves self-
duality if and only if

π(x) = L (x⊕ c) , x ∈ Fn2 , g(x) = 〈c, x〉 ⊕ d, x ∈ Fn2 ,

where L ∈ On, c ∈ Fn2 , wtH(c) is even, d ∈ F2. It was also shown that
isometric mapping of all Boolean functions in n variables into itself preserves
self-duality if and only if it preserves anti-self-duality.

The next result characterizes operators from U qn that preserve (anti-)self-
duality of gbent function.

Theorem 4. Operator ϕπ,g ∈ U qn preserves (anti-)self-duality of generalized
bent function if and only if

π(x) = L (x⊕ c) , g(x) =
q

2
〈c, x〉+ d, x ∈ Fn2 , x ∈ Fn2 ,

where L ∈ On, c ∈ Fn2 , wtH(c) is even, d ∈ Zq.
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Proof. Let f ∈ SB+
q (n)∪SB−q (n) that is f̃ = f+ q

2ε for some ε ∈ F2. Consider
a function g(x) = f (L (x⊕ c)) + q

2〈c, x〉 + d, where L ∈ On, c ∈ Fn2 , wt(c)
is even, d ∈ Zq. Its generalized Walsh–Hadamard transform is

Hg(y) =
∑

x∈Fn2

ωg(x)(−1)〈x,y〉 =
∑

x∈Fn2

ωf(L(x⊕c))+ q
2 〈c,x〉+d+ q

2 〈x,y〉

= ωd
∑

x∈Fn2

ω
q
2 〈x,y⊕c〉+f(L(x⊕c)) = ωd

∑

z∈Fn2

ω
q
2〈L−1z⊕c,y⊕c〉+f(z)

= ωd+ q
2 〈c,y〉+

q
2 〈c,c〉

∑

z∈Fn2

ω
q
2 〈z,L(y⊕c)〉+f(z)

= ωd+ q
2 〈c,y〉2n/2ωf̃(L(y⊕c)) = 2n/2ωf(L(y⊕c))+ q

2 〈c,y〉+d+ q
2ε

= 2n/2ωg(y)+ q
2ε = 2n/2ωg̃(y),

hence g̃(y) = g(y) + q
2ε for any y ∈ Fn2 , so the opposite direction follows.

Assume that U is a matrix of the operator ϕπ,g ∈ U qn preserving (anti-
)self-duality. Let the considered mapping has form

f(x) −→ f (π(x)) + g(x),

where π is a permuation on Fn2 and g ∈ GF q
n.

Now consider the relation UHn = HnU , imposed by Proposition 4 in
details. Recall that

Hn =




(−1)〈v0,v0〉 (−1)〈v0,v1〉 . . . (−1)〈v0,v2n−1〉

(−1)〈v1,v0〉 (−1)〈v1,v1〉 . . . (−1)〈v1,v2n−1〉
... ... . . . ...

(−1)〈v2n−1,v0〉 (−1)〈v2n−1,v1〉 . . . (−1)〈v2n−1,v2n−1〉


 .

and U is the matrix




π (vi)

0
...
0

(k + 1) 0 . . . 0 ωg(vk) 0 . . . 0
0
...
0




,

in which in the row with number (i + 1) ∈ {1, 2, . . . , 2n} a nonzero element
is in the (j + 1)-th column, where j is a number with binary representation
π (vk).
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Fix arbitrary k, j ∈ {0, 1, . . . , 2n − 1}, we have

(UHn)k+1,j+1 = ωg(vk)(−1)〈π(vk),vj〉.

In order to obtain (HnU)k+1,j+1 consider matrix U in the following form




(j + 1)

0
...
0

π−1 (vj) 0 . . . 0 ωg(π
−1(vj)) 0 . . . 0
0
...
0




.

Then it clear that

(HnU)k+1,j+1 = (−1)〈vk,π−1(vj)〉ωg(π−1(vj)).

Thus for any k, j ∈ {0, 1, . . . , 2n − 1} we get the relation

ωg(vi)(−1)〈π(vi),vj〉 = (−1)〈vk,π−1(vj)〉ωg(π−1(vj)),

or, equivalently, for any x, y ∈ Fn2 it is

g (x) +
q

2
〈π (x) , y〉 =

q

2

〈
x, π−1 (y)

〉
+ g

(
π−1 (y)

)
, (3)

considered by modulo q.
Put zero vector y = 0 ∈ Fn2 in (3). Then we obtain that g is an affine

generalized Boolean function:

g(x) =
q

2

〈
x, π−1 (0)

〉
+ g

(
π−1 (0)

)
.

Put the expression for g in (3):

q

2

〈
x, π−1 (0)

〉
+ g

(
π−1 (0)

)
+
q

2
〈π (x) , y〉

=
q

2

〈
x, π−1 (y)

〉
+
q

2

〈
π−1 (y) , π−1 (0)

〉
+ g

(
π−1 (0)

)
,

and after elimination of coinciding terms
q

2

〈
x, π−1 (0)

〉
+
q

2
〈π (x) , y〉 =

q

2

〈
x, π−1 (y)

〉
+
q

2

〈
π−1 (y) , π−1 (0)

〉
. (4)
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Since the equality (4) should be considered by modulo q, we only care
about the parity of components of both sides, thus, for any x, y ∈ Fn2 having
the following equality

〈
x, π−1 (0)

〉
⊕ 〈π (x) , y〉 =

〈
x, π−1 (y)

〉
⊕
〈
π−1 (y) , π−1 (0)

〉
.

At first one can notice that the permutation π must be affine. The reason
is that the left part is linear in variable y while the right part is linear in
variable x. So let π(x) = L(x⊕ c), x ∈ Fn2 , for some L ∈ GL(n) and c ∈ Fn2 .
Then

〈x, c〉 ⊕ 〈L(x⊕ c), y〉 =
〈
x, L−1y ⊕ c

〉
⊕
〈
L−1y ⊕ c, c

〉
,

〈L(x⊕ c), y〉 =
〈
x, L−1y

〉
⊕
〈
L−1y, c

〉
⊕ 〈c, c〉 ,

For y = 0 ∈ Fn2 we have 〈c, c〉 = 0, hence wtH(c) must be an even
number. Take it into account and continue

〈Lx, y〉 ⊕ 〈Lc, y〉 =
〈
x, L−1y

〉
⊕
〈
L−1y, c

〉
,

〈(
L⊕

(
L−1

)T)
(x⊕ c) , y

〉
= 0.

The last one holds for any x, y ∈ Fn2 , therefore it should be L−1 = LT ,
that is L ∈ On.

Finally, we can obtain a form of the function g:

g(x) =
q

2
〈c, x〉+ g (c) , x ∈ Fn2 ,

where g(c) can be an arbitrary element of Zq.
Thus the collection of all aforementined necessary conditions for the pa-

rameters L ∈ GL(n), c ∈ Fn2 , d ∈ Zq, yields:




L ∈ On,
wtH (c) is even,
g(x) = q

2 〈c, x〉+ d, x ∈ Fn2 ,
(5)

that concludes the proof.

4.4 Unitary operators which define bijections between the
eigenspaces of the duality mapping

Assume that n > 4 is an even integer.
In this subsection we characterize operators from U qn which define one-

to-one correspondence between the sets of self-dual and anti-self-dual gbent
functions.
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Proposition 5. An operator ϕπ,g ∈ U qn with matrix U defines a bijection
between SB+

q (n) and SB−q (n) if and only if UHn = −HnU .

Proof. The opposite direction is clear since if HnA = −AHn, then for any
sign functions F,G of f ∈ SB+

q (n) and g ∈ SB−q (n) respectively it holds

Hn (AF ) = −A (HnF ) = −AF,

Hn (AG) = −A (HnG) = AG,

hence the mapping is a bijection between SB+
q (n) and SB−q (n).

By Proposition 1 one can find subsets {fi}2n−1

i=1 ⊆ SB+(n) with linearly in-
dependent sign functions {Fi}2n−1

i=1 ⊆ Ker (Hn − I2n) and {gi}2n−1

i=1 ⊆ SB−(n)

with linearly independent sign functions {Gi}2n−1

i=1 ⊆ Ker (Hn + I2n) as in the
proof of Proposition 4.

The rest of the proof, comprising these subsets of (anti-)self-dual gbent
functions, follows as in [16] (Proposition 3).

In paper [16] isometric mappings of all Boolean functions in n variables
into itself which define bijections between the sets of self-dual and anti-self-
dual Boolean bent functions in n variables were completely characterized,
namely it was proved that isometric mapping f(x)→ f(π(x))⊕g(x) bijection
between SB+(n) and SB−(n) if and only if

π(x) = L (x⊕ c) , x ∈ Fn2 ,

and
g(x) = 〈c, x〉 ⊕ d, x ∈ Fn2 ,

where L ∈ On, c ∈ Fn2 , wtH(c) is odd, d ∈ F2. These conditions almost equal
to (5), except the parity of wtH(c).

The next result characterizes operators from U qn that comprise one-to-one
correspondence between SB+

q (n) and SB−q (n).

Theorem 5. Operator ϕπ,g ∈ U qn defines a bijections between SB+
q (n) and

SB−q (n) if and only if

π(x) = L (x⊕ c) , g(x) =
q

2
〈c, x〉+ d, x ∈ Fn2 ,

where L ∈ On, c ∈ Fn2 , wtH(c) is odd, d ∈ Zq.

Proof. Let f ∈ SB+
q (n)∪SB−q (n) that is f̃ = f+ q

2ε for some ε ∈ F2. Consider
a function g(x) = f (L (x⊕ c)) + q

2〈c, x〉 + d, where L ∈ On, c ∈ Fn2 , wt(c)
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is even, d ∈ Zq. Its generalized Walsh–Hadamard transform is

Hg(y) =
∑

x∈Fn2

ωg(x)(−1)〈x,y〉 =
∑

x∈Fn2

ωf(L(x⊕c))+ q
2 〈c,x〉+d+ q

2 〈x,y〉

= ωd
∑

x∈Fn2

ω
q
2 〈x,y⊕c〉+f(L(x⊕c)) = ωd

∑

z∈Fn2

ω
q
2〈L−1z⊕c,y⊕c〉+f(z)

= ωd+ q
2 〈c,y〉+

q
2 〈c,c〉

∑

z∈Fn2

ω
q
2 〈z,L(y⊕c)〉+f(z)

= ωd+ q
2 〈c,y〉2n/2ωf̃(L(y⊕c)) = 2n/2ωf(L(y⊕c))+ q

2 〈c,y〉+d+ q
2ε

= 2n/2ωg(y)+ q
2ε = 2n/2ωg̃(y),

hence g̃(y) = g(y) + q
2ε for any y ∈ Fn2 . The opposite direction is proved.

Assume that U is a matrix of the operator ϕπ,g ∈ U qn which defines
a bijections between SB+

q (n) and SB−q (n). As well as in the proof of the
Theorem 4, we use that

(UHn)k+1,j+1 = ωg(vk)(−1)〈π(vk),vj〉,

(HnU)k+1,j+1 = (−1)〈vk,π−1(vj)〉ωg(π−1(vj)),

for any k, j ∈ {0, 1, . . . , 2n − 1}.
From Proposition 5 it follows that UHn = −HnU that implies

(UHn)k+1,j+1 = − (HnU)k+1,j+1 for any k, j ∈ {0, 1, . . . , 2n − 1}, hence the
following relation must hold

−ωg(vk)(−1)〈π(vk),vj〉 = (−1)〈vk,π−1(vj)〉ωg(π−1(vj))

or, equivalently,

g (x) +
q

2
〈π (x) , y〉+

q

2
=
q

2

〈
x, π−1 (y)

〉
+ g

(
π−1 (y)

)
, (6)

for any x, y ∈ Fn2 considered by modulo q.
The rest of the proof is similar to the proof of Theorem 4 with only the

difference in

〈L(x⊕ c), y〉 =
〈
x, L−1y

〉
⊕
〈
L−1y, c

〉
⊕ 〈c, c〉 ⊕ 1,

and the expression for the function g:

g(x) =
q

2
〈c, x〉+ g (c) +

q

2
, x ∈ Fn2 ,

where g(c) can be an arbitrary element of Zq.
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Again, the collection of all aforementined necessary conditions, including
parameters L ∈ GL(n), c ∈ Fn2 , d ∈ Zq, yields:





L−1 = LT ,

wtH (c) is odd,
g(x) = q

2 〈c, x〉+ d, x ∈ Fn2 ,

that concludes the proof.

4.5 The Rayleigh quotient of (generalized) Boolean function

In this subsection operators from the set U qn, which preserve and change
the sign of the Rayleigh quotient (Rayleigh ratio) of the Sylvester Hadamard
matrix defined for every generalized Boolean function in n variables, are
studied.

In [1] the Rayleigh quotient Sf of a Boolean function f ∈ Fn was defined
as

Sf =
∑

x,y∈Fn2

(−1)f(x)⊕f(y)⊕〈x,y〉 =
∑

y∈Fn2

(−1)f(y)Wf(y),

and when f ∈ Bn the normalized Rayleigh quotient Nf is a number

Nf =
∑

x∈Fn2

(−1)f(x)⊕f̃(x) = 2−n/2Sf .

It is known [1] (Theorem 3.1) that the value of Sf is at most 23n/2 with
equality if and only if f is self-dual bent, and at least

(
−23n/2

)
with equality

if and only if f is anti-self-dual bent.
All isometric mappings from the set In that preserve the Rayleigh quo-

tient of every Boolean function in n variables (or change its sign) were char-
acterized in [16]. It was made by showing the direct link between perserving
the Rayleigh quoient and preserving the self-duality. Also it was proved that
bijectivity between the sets SB+(n) and SB−(n) is correlated with the change
of sign of the Rayleigh quoient.

In [28] the authors studied the Rayleigh quotient of generalized Boolean
(bent) functions from GF4

n. For a generalized Boolean function f ∈ GF4
n

they defined
R(f) = 2−n

∑

x,y∈Fn2

if(x)−f(y)(−1)〈x,y〉,

and proved, see [28] (Theorem 7), the bound −2n/2 6 R(f) 6 2n/2 with
equalities if and only if f is self-dual quaternary bent (+2n/2) or self-dual
quaternary bent (−2n/2).
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Define the Rayleight quotient Rf of (generalized) Boolean function f ∈
GF q

n as follows
Rf = 2−n

∑

x,y∈Fn2

ωf(x)−f(y)(−1)〈x,y〉.

The matrix-vector representation the Rayleight quotient for a generalized
Boolean function f ∈ FGqn with sign function F is

Rf = 2−n
∑

x∈Fn2

ωf(x)
∑

y∈Fn2

ωf(y)(−1)〈x,y〉 =
〈F,HnF 〉
〈F, F 〉 .

By the same technique as in the proof of [28] (Theorem 7) it is possible
to prove that the same bound −2n/2 6 Rf 6 2n/2 holds with equalities met
if and only if f is self-dual gbent (+2n/2) or anti-self-dual gbent (−2n/2).

The mentioned correlation with preserving of self-duality and bijectivity
for Boolean case also stands for the Rayleigh quotient of generalized Boolean
function.

Theorem 6. For n > 4 an operator ϕπ,g ∈ U qn
– preserves the Rayleigh quotient if and only if it preserves (anti-)self-
duality;

– changes the sign of the Rayleigh quotient if and only if it is a bijection
between the sets SB+

q (n) and SB−q (n).

The proofs of these statements are similar to those provided in [16] (The-
orems 3 and 4) and are omitted.

Thus the exact form of operators, which preserve the Rayleigh quotient
or change its sign, are described by Theorems 4 and 5.

It also follows that

Corollary 2. An operator ϕπ,g ∈ U qn, which preserves the Rayleigh quotient
or changes the sign of the Rayleigh quotient, also preserves gbentness.

4.6 Classification of quaternary self-dual bent functions in 4 vari-
ables

By using the mappings from Theorem 4 we can clarify, for instance, the
known classification of quaternary self-dual bent functions in 4 variables given
in [28] and formed by 8 classes.
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Representative from equivalence class Size
0220202022000000 24

2022220222020200 16

0330313133110110 48

0330302132010110 24

3123231322030300 96

1321213122010100 96

2123230332121210 48

0220213023100000 48

Number of quaternary self-dual bent functions in four variables 400

Table 1: Classification of quaternary self-dual bent functions in 4 variables from [28]

Namely, the representatives with vectors of values (0330302132010110)
and (3123231322030300) from the classes 4 and 5 respectively are related by
the transformation

f(x) −→ f(L(x⊕ c)) +
q

2
〈c, x〉+ d,

where

L =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , c = (1001), d = 3.

The representatives with vectors of values (2022220222020200)
and (2123230332121210) from the classes 2 and 7 respectively are re-
lated by the transformation

f(x) −→ f(L(x⊕ c)) +
q

2
〈c, x〉+ d,

where

L =




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


 , c = (0101), d = 1.

Thus, the classification of quaternary self-dual bent functions in 4 vari-
ables is given in the Table 2.
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Representative from equivalence class Size
0220202022000000 24

2022220222020200 64

0330313133110110 48

0330302132010110 120

1321213122010100 96

0220213023100000 48

Number of quaternary self-dual bent functions in four variables 400

Table 2: Classification of quaternary self-dual bent functions in 4 variables

5 The duality mapping and unitary operators

In this section for the case of even n we study the question if there exists
an operator from the set U qn, that transforms every regular gbent function to
its dual gbent function.

Theorem 7. If n is an even number, then in U qn there is no such operator
which assigns the dual bent function to every regular bent function from the
set GBqn.

Proof. Consider the following set of gbent functions:

B =
{q

2
f |f ∈ Bn

}
⊂ GBqn.

It is clear that all gbent functions from B are regular ones with the values
from the set {0, q/2}. Assume the desired operator exists, let it be

ϕπ,g : f(x) −→ f (π(x)) + g(x),

for some permutation π and generalized Boolean function g ∈ GF q
n. Then,

in order to transform gebnt functions from the set B to their duals, the
function g also must have values in {0, q/2}. It means that in fact we have a
reduction to Boolean case, since all considered generalized Boolean functions,
namely that ones from the set B and the function g, have values from the
set {0, q/2}.

Then non-existence of isometric mapping of the set of all Boolean func-
tions in n variables into itself which assigns to every bent functions its dual
implies non-existence of the considered unitary operator. It is known [14]
that there is no such isometric mapping, hence the result follows.
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Thus, Theorem 7 is a generalization of the known result of non-existence
for the Boolean case, but here we consider all mappings from the set U qn.

It is interesting to study the same question for the case of an odd number
of variables n.

6 Conclusion

In this paper the action of linear operators of the form C2n → C2n on
the generalized Boolean functions in n variables via their sign functions was
defined. The interconnection between unitary operators that transform the
set of all generalized Boolean functions in n variables into itself and the
duality mapping was studied. The known classification of quaternary self-dual
bent functions is clarified. It follows that the set U qn can be seen as an initial
expansion of the set of automorphisms of the Boolean functions in n variables
to generalized Boolean functions. For the future study it can be interesting to
go beyond the set U qn that is to consider operators that transform some desired
subsets of Boolean functions into itself but not neccesarily all generalized
Boolean functions. Examples of such problems deal with gbent or self-dual
gbent functions. The question of determing the connection between the set U qn
and duality mapping for odd n is an open one.
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Abstract

We review methods proposed for attacking supersingular isogeny-based cryp-
tosystems and apply them to Forsythia – a recently proposed for standardization in
Russia key exchange protocol. In particular, we show that the parameters choosen
for Forsythia and SIKE are adequate or even too conservative with respect to a
novel security model taking into account the success probability of cryptanalytic
algorithms.

Keywords: Supersingular isogeny key exchange, parallel collision search, Pollard’s rho, SIDH,
Forsythia, SIKE.

1 Introduction

Supersingular-isogeny based cryptography, being one of the youngest
branches of post-quantum cryptography, has emerged from the early works of
Couveignes (1997), Charles-Goren-Lauter (2005), Rostovtsev and Stolbunov
(2006) into a practical and quite well-studied field. The paper by De Feo,
Jao and Plût [3] was the first to describe SIDH — an efficient and secure
key exchange protocol. Basing upon SIDH, a key encapsulation mechanism
named SIKE [9] was proposed for the NIST post-quantum standardisation
competition and has reached the third round as an alternative candidate.

Following the initiation of the process of search for the post-quantum
cryptographic mechanisms prototypes for possible standardisation in Russia,
the Forsythia protocol [8] was proposed. The protocol is basically a version
of SIDH with its own parameters sets, as well as its own starting curve.
The main goal of this paper is to study various practical security models
proposed for assessment of the parameters of supersingular isogeny-based
cryptosystems, and to show that the parameters chosen for Forsythia provide
adequate security levels.

We start with a brief description of isogeny-based cryptosystems.
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2 Isogeny-based cryptosystems

The protocol is performed by two parties: an initiator A and a responder
B.

Parameters

The basic parameters of the protocol are as follows:

– a prime p, p = leAA l
eB
B · f − 1, where lA, lB are small primes (e.g., 2 and

3), (lA, f) = (lB, f) = 1;

– the field GF (p2);

– a supersingular elliptic curve E0(GF (p2)) (starting curve). We have
#E0(GF (p2)) = (leAA l

eB
B · f)2. By construction (see [3]), E[leAA ] has

leA−1
A (lA + 1) cyclic subgroups of order leAA , every one of them defining
an isogeny (being the kernel of an isogeny), the same holds for E[leBB ].

Recall that isomorphic curves have the same j-invariant. Since the con-
struction of an isomorphism between two elliptic curves is a simple task,
the isogeny problem is actually the problem of finding isogeny between two
classes of isomorphic curves, each of them being represented by a j-invariant.

SIDH: the key exchange protocol

Fix the public parameters:

– a prime p, p = leAA l
eB
B · f − 1, where lA, lB are small primes (e.g., 2 and

3), (lA, f) = (lB, f) = 1;

– the field GF (p2);

– a supersingular elliptic curve E0(GF (p2)) (starting curve);

– the bases {PA, QA} and {PB, QB} which generate E0[l
eA
A ] and E0[l

eB
B ]

respectively, that is, 〈PA, QA〉 = E0[l
eA
A ] and 〈PB, QB〉 = E0[l

eB
B ].

The party A chooses a random element nA ∈R Z/leAA Z and constructs an
isogeny ϕA : E0 → EA with the kernel KA := 〈PA + [nA]QA〉. The party
A also computes the image {ϕA(PB), ϕA(QB)} and sends these points to B
alongside with the elliptic curve EA (that is, its description).

The party B chooses a random element nB ∈R Z/leBB Z and constructs an
isogeny ϕB : E0 → EB with the kernel KB := 〈PB + [nB]QB〉. The party
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B also computes the image {ϕB(PA), ϕB(QA)} and sends these points to A
alongside with the elliptic curve EB (that is, its description).

The party A, having received from B the tuple EB, ϕB(PA), ϕB(QA), con-
structs an isogeny ϕ′A : EB → EAB with the kernel 〈ϕB(PA) + [nA]ϕB(QA)〉;
the party B proceeds in the same manner. The shared key is the j-invariant
of the curve

EAB = ϕ′B(ϕA(E0)) = ϕ′A(ϕB(E0)) = E0/ 〈PA + [nA]QA, PB + [nB]QB〉 .

The practical security of the protocol relies on the hardness of the follow-
ing problem.

Problem 1. Computational Supersingular Isogeny – CSSI: let φ1 : E0 → E1

– an isogeny with the kernel R1 + [n1]S1, where n1 is chosen uniformly at
random from the interval [1, le11 ]. Given E1 and images φ1(R2), φ1(S2) of the
points, find the generator of 〈R1 + [n1]S1〉.

Forsythia: an instantiation of SIDH

Forsythia1 is a post-quantum key exchange protocol proposed for stan-
dardisation in Russia. It is basically an instantiation of SIDH with the fol-
lowing features:

– the scheme is based upon the original SIDH protocol [3];

– the scheme supports ephemeral-only key exchange;

– the scheme has its own starting curve E19(GF (p)) : y2 = x3−23 ·19x+
2 · 192, which is chosen as proposed in [12];

– the scheme provides three levels of security by specifying three charac-
teristics of the base field:

– for 80 bits of security: p271 = 2132 · 385 · 11− 1;

– for 128 bits of security: p415 = 2208 · 3129 · 5− 1;

– for 256 bits of security: p754 = 2372 · 3239 · 7− 1.

Remark 1. We note that the powers of 2 in all the pi are even, thus allowing
us to efficiently employ 4-isogenies in the implementation of the protocol.

1Forsythia is a genus of flowering plants in the olive family Oleaceae. The name was choosen to be in
the line with the names of standardized Russian key exchange protocols Limonnik and Echinacea which
stand for flowering (medicinal) plants.
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Remark 2. We note that Forsythia should only be used in the ephemeral-
only key exchange settings, otherwise, an efficient attack from [6] allows
an anctive adversary to recover the static secret key in O(log p) sessions.
An application of the Fujisaki-Okamoto transformation, allow to convert
Forsythia to both a CCA-secure and secure against the attacks from [6];
however, this transformation requires a significant overhead. An authenti-
cated key exchange scheme implementing the Fujisaki-Okamoto transforma-
tion was proposed, for example, in [7].

Having described Forsythia, we proceed with a review of attacks on
isogeny-based cryptosystems.

3 Attacks on isogeny-based cryptosystems

We omit the indices A,B for brevity. Thus, a simplified case of the CSSI
problem may be stated as follows. Let us have a (secret) le-isogeny φ : E →
E/G for a subgroup G ⊂ E of the order le ≈ p1/2. The problem is to find
the generator of G (or, equivalently, the isogeny φ).

Basic method

Since every supersingular elliptic curve E(GF (p2)) has (l + 1)le−1 cyclic
subgroups of order le, the brute-force attack requires O(le) or O(p1/2) test-
ings.

Meet-in-the-middle

We follow the discussion in [1]. Suppose for simplicity that e is even.
We construct a pair of trees such that the leaves of the first define classes of
isomorphisms of the curves, le/2-isogenous to E; leaves of the second – classes
of isomorphisms of the curves, le/2-isogenous to E/G. Each set contains no
more that (l + 1)le/2−1 classes.

By brute force testing we detect le/2-isogenies φ1 : E → E ′ and φ2 :
E/G→ E ′′ such that there exists an isomorphism ψ : E ′ → E ′′. At last, we
have le-isogeny φ = φ̂2 ◦ ψ ◦ φ1.

Required memory is estimated by O(p1/4) cells, time — O(p1/4) opera-
tions.
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Parallel collision search

Parallel collision search (van Oorschot–Wiener method) of [14] is effi-
ciently applied to the CSSI problem in [1, 2].

The most efficient methods for collision search of a pseudorandom func-
tion f are iterational in the sense that they are based upon the calculation
of sequences of the form xi = f(xi−1), i ∈ N, hence the range of f must be
contained within its domain.

The main idea of the method is that every processor generates its own
sequence xi = f(xi−1) until a distinguished point xd, which satisfies an eas-
ily verifiable condition (fo example, a fixed number of lower bits are zero),
is found. xd is saved to a common memory at the address computed as a
function of the distinguished point. If a distinguished point is found twice —
we have a collision of f .

Let S = {0, 1} × {0, . . . , (l + 1)le/2−1 − 1}, E0 = E, E1 = E/G. Each
pair (i, y) ∈ S defines a subgroup of elliptic curve Ei.

Example 1. For l = 2 (cf. [1]) the correspondence between the pairs (i, y) =
(i, (b, k)) ∈ {0, 1}×{0, 1, 2}×{0, . . . , le/2−1−1} and cyclic subgroups 〈Ri〉 ⊂
Ei is given by

Ri =

{
Pi + [b2e/2−1 + k]Qi, if b = 0, 1

[2k]Pi +Qi, if b = 2,

where 〈Pi, Qi〉 = Ei[2
e/2].

Let h : S → E0(GF (p2)) ∪ E1(GF (p2)), h : (i, y) 7→ Ri, and let the
iteration function f : S → S be a function that on an input pair (i, y)
computes an isogeny le/2 with the degree 〈Ri〉, computes the j-invariant
j(Ei/ 〈Ri〉) and maps it to S by some pseudorandom function g : GF (p2)→
S.

There exist an unique “golden” collision for f , which provides a solution of
the CSSI problem ([2, §2.3]). The complexity of finding the “golden” collision
is estimated in [14] as

T =
2.5

m

√
|S|3/w · t; (1)

m is the number of processors, |S| is the size of the scope of iteration function,
w is the size of memory availiable, t is the complexity of iteration function.

We have that |S| ≈ p1/4, and hence the complexity is estimated as

O

(
p3/8

m w1/2

)
(2)
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operations of computation of the iteration function (in our case the compu-
tation of a le/2-isogeny) (cf. [2]).

Quantum computer

The claw-finding algorithm of [13] for given functions g1 : X1 → Y ,
g2 : X2 → Y finds (x1, x2) ∈ X1 ×X2 such that g1(x1) = g2(x2).

Suppose that #X1 ≈ #X2 ≈ N , #Y � N , then the time required is
O(N 2/3) operations with O(N 2/3) memory cells.

In the case of CSSI, X1 is the set of le/2-isogenies from E = E1; X2 is
the set of le/2-isogenies from E/G = E2, gi(φ) = j(φ(Ei)). We have #X1 =
#X2 ≈ p1/4, hence the time required – O(p1/6) (and O(p1/6) memory).

Grover’s method, applied to the CSSI problem in [10], requires O(p1/4)
operations, memory requirements are just – O(1).

A recent paper [11] describes a quantum variant of the golden collision
search method with the complexity O(p3/14) gates and O(p1/14) memory.

The analysis of quantum algorithms in [10] implies that in the realis-
tic model of quantum computer (with memory less than 264 cells) Grover’s
method is more efficient.

4 Costs of attacks and security considerations

Definition 1. At this stage, we define quantum (respectively, classical) se-
curity of the scheme as the length of the key of an (abstract) block cipher,
for which the complexity of finding the secret key is equivalent to the com-
plexity of solving the CSSI problem with a quantum (respectively, classical)
computer.

Following [1, 10], we conclude that the best classical method for the CSSI
problem is the parallel collision search, the best quantum method — Grover’s
algorithm. The parameters proposed for Forsythia in [8] were calculated ac-
cording to these estimations.

Following [4], we suppose that a key sampling of the Kuznyechik block
cipher requires ≈ 220 quantum gates. The approach of [10] gives a lower
estimate for the CSSI problem sampling as 223 quantum gates.

Thus, we have that Grover’s algorithm has equivalent complexity esti-
mates for a Forsythia instance with a parameter p and a block cipher with
the key length

nQ(p) ≈ log2 p/2 + 3. (3)
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The novel golden collision search algorithm has equivalent complexity for
a Forsythia instance with a parameter p and a block cipher with the key
length

nQ(p) ≈ 3/7 log2 p+ 3. (4)

In order to compute the security against classical attack, we denote the
number of classical operations required for the sampling of a block cipher
key t1. Suppose that a single iteration function (le-isogeny in our case) of the
parallel collision search requires t2 operations, we have that the equivalent
key length for Forsythia instance with a parameter p is

nC(p) = 3/8 log2 p+ log2 t2 − log2 t1 − 1/2 log2w. (5)

Thus, in order to achieve n bits of security, we have to take p such that
min{nC(P ), nQ(p)} ≥ n.

5 The choice of parameters

The prime characteristic of the base field p is chosen as p = 2e23e3f − 1
such that the factors 2, 3 are balanced: e2 ≈ e3 · log2 3, and the factor f is
a small integer. Also we require that

(−19
p

)
= −1 (this is necessary for the

starting curve E19 to be supersingular, cf. [12]).

p Formula Classical security Quantum security
(Grover)

Quantum security
(Golden collision)

p271 2132 · 385 · 11− 1 82 130 119
p415 2208 · 3129 · 5− 1 135 202 180
p754 2372 · 3239 · 7− 1 262 371 326

Remark 3. Classical security was computed by (5) for a hypothetical super-
computer with memory availiable w ≈ 264 cells (for comparison, the super-
computer Fugaku, which heads the current Top500 list [15], has ≈ 223 cores
and ≈ 249 memory cells) with t2 = 222, t1 = 210.

Remark 4. We use the best estimates for quantum golden collision security
calculated with the software from [11]. We suppose that the quantum circuits
are limited by 264 gates.

6 Security with respect to success probability

Consider now the security definition from a recent talk by S. Galbraith
[5].
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Definition 2. Let X be a computational problem, with instances x produced
by an algorithm Gen(1λ). Let ε0 be some fixed upper bound on success proba-
bilities of interest (possibly a function of λ). Then X has λ-bit security level
if, for every adversary A, if A(x) runs in time t and succeeds with probability
ε < ε0 we have t/ε ≥ 2λ.

The probability P (t) of success of the parallel collision search method
over a search space S with #S = n after t iterations by all processors with
z memory cells is estimated (cf. [14, Lemma 2]) as

P (t) =

{
1− exp(−t2/(2n)), if t < z,

1− (1− z
n)t−z exp(−z2/(2n)), otherwise.

(6)

We assess the bit security of various Forsythia instances in the sense of
Definition 2 in the following manner. Consider now a hypothetical computer
with 264 memory cells. Let us suppose it is capable of running T = 280

operations (that is, an iteration function computations) to break Forsythia
with p415, p754 and T = 264 operations2 to break Forsythia with p271. The
computer runs the parallel collision search method. In order to reach the
acclaimed bit security, we have the upper bound on success probability ε0,
respectively, equal to 2−48, 2−176 and 2−16. Thus, in order to compute the
required base prime p for Forsythia, we perform the following.

1. Substitute n = p1/4 into equation (6) and rewrite it for a new variable
θ = t/

√
n:

P (θ) =

{
1− exp(−θ2/(2)), if θ < z/

√
n,

1− (1− z
n)θ
√
n−z exp(−z2/(2n)), otherwise.

(7)

2. Solve (7) for θ with P = ε0.

3. Compute the bit-size l of the p required to obtain the claimed security
level as

l = 4(log2 T − log2(θ)).

After computation, we have:
Claimed security
level

Forsythia prime
(bit-size)

Calculated prime
(bit-size)

80 bits 271 286
128 bits 415 414
256 bits 754 670

2Setting T = 280 in this case implies success probability equal to 1 and gives no useful information.
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Figure 1: The plot of P (θ) for p271.

Thus, we note that p415 and p754 still satisfy their claimed security levels,
while p271 (shown in bold) is just slightly below the security margin.

Repeating the calculations for SIKE parameters [9], with the memory
storage 280 availiable (as in [1]), we have:

Claimed NIST se-
curity level

SIKE prime (bit-
size)

Calculated prime
(bit-size)

I 434 414
III 610 541
V 751 670
Thus, we see that the SIKE primes are chosen somewhat conservatively

in the new model as well. Note that we have only considered SIKE primes
for security levels I, III and V, since these security levels are defined via the
complexity of analysis of a block cipher.

7 Conclusion

We have studied the security of the Forsythia isogeny-based key exchange
protocol in various models. We have shown that the parameters chosen for
Forsythia satisfy their claimed security levels in the “traditional” security
model and, except for p271, which is just slightly below the security margin,
in the novel security model of [5] against an adversary which may execute
280 (or 264) operations. We have also shown that the SIKE parameters for
NIST security levels I, III and V are chosen somewhat conservatively even
with respect to the new model.
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[3] De Feo L., Jao D., Plût J., “Towards Quantum-Resistant Cryptosystems From Supersingular
Elliptic Curve Isogenies”, J. Mathematical Cryptology, 8(3) (2014), 209-–247.

[4] Denisenko D., Marshalko G., Nikitenkova M., Rudskoy V., Shishkin V., “Estimation of
Grover’s algorithm implementation for searching GOST R 34.12-2015 block cipher keys”,
Jour. Exp. Theor. Phys., 155:4 (2019), 645, In Russian.

[5] Galbraith S., “Security levels in cryptography”, 2020,
https://www.math.auckland.ac.nz/˜sgal018/ACISP.pdf.

[6] Galbraith S., Petit C., Shani B., Ti Y.B., “On the Security of Supersingular Isogeny Cryp-
tosystems”, Cryptology ePrint Archive, 2016/859, 2016.

[7] Grebnev S., “Limonnitsa: making Limonnik-3 post-quantum”, Matem. Vopr. Kriptografii,
11:2 (2020), 25–42.

[8] Grebnev S., Klyucharev P., Koreneva A., Koshelev D., Taraskin O., Tulebaev A.,
“Forsythia: a supersingular isogeny-based key exchange protocol”, Working draft,
2021, https://www.ruscrypto.ru/resource/archive/rc2021/files/02\_grebnev_
klucharev_koreneva_koshelev_taraskin_tulebayev.pdf, In Russian.

[9] Jao D., Azarderakhsh R., Campagna M., Costello C., De Feo L., Hess B., Jalali A., Koziel B.,
LaMacchia B., Longa P., Naehrig M., Renes J., Soukharev V., Urbanik D., “Supersingular
Isogeny Key Encapsulation”, 2017, https://sike.org/#nist-submission.

[10] Jaques S., Schanck J.M., “Quantum cryptanalysis in the RAM model: Claw-finding attacks
on SIKE”, Cryptology ePrint Archive, 2019/103, 2019.

[11] Jaques S., Schrottenloher A., “Low-gate Quantum Golden Collision Finding.”, SAC 2020 –
Selected Areas in Cryptography, Oct 2020, Online, Canada, 2020, https://hal.inria.fr/hal-
03046039/document.

[12] Koshelev D., “Starting supersingular elliptic curve for isogeny-based cryptography”, 2020,
https://www.researchgate.net/profile/Dimitri_Koshelev, In Russian.

[13] Seiichiro T., “Claw Finding Algorithms Using Quantum Walk”, 2008,
http://arxiv.org/abs/0708.2584.

[14] van Oorschot P.C., Wiener M.J., “Parallel Collision Search with Cryptanalytic Applica-
tions.”, J. Cryptology, 12 (1999), 1-–28.

[15] “Supercomputer Fugaku”, 2020, https://www.top500.org/system/179807/.

S. Grebnev 312



10th Workshop on Current Trends in Cryptology

The Hadamard Square of Concatenated Linear
Codes

Ivan Chizhov1,2,3 and Alexandra Davletshina4

1Lomonosov Moscow State University, Russia
2Federal Research Center "Informatics and Control" of Russian Academy of Science, Russia

3JSC "NPK Kryptonite", Russia
4JSC "InfoTeCS", Russia

ichizhov@cs.msu.ru, sdav94@rambler.ru

Abstract

The paper is devoted to the Hadamard square of concatenated linear codes. Such
codes consist of codewords that are obtained by concatenation part of the codewords
from other codes. It is proved that if the sum of Hadamard squares’ dimensions of
the codes used in the concatenation is slightly less than the dimension of the entire
space, then the Hadamard square of the concatenated code is equal to the Cartesian
product of the Hadamard square of code-components.

It means that the cryptanalysis for many code-based post-quantum cryptographic
mechanisms built on concatenated codes is equivalent to the cryptanalysis of these
mechanisms built on code-components. So using the concatenation of codes from
different classes instead of one class of codes, generally speaking, does not increase
the cryptographic strength of the mechanisms.

Keywords: concatenated linear codes, Hadamard square, Hadamard product, Schur product,
component-wise product, McEliece public-key cryptosystem, post-quantum cryptography

1 Introduction

The Hadamard (Schur) product or the coordinate-wise product of linear
codes has been studied for a long time. In the beginning, it was used to
construct algebraic decoders correcting errors for some linear codes [18]. Re-
cently, it is increasingly used in cryptography. Many constructions of secret
sharing schemes and cryptographic protocols for secure multi-party computa-
tion [4] use the Hadamard product of linear codes. Attacks on post-quantum
code-based cryptographic mechanisms are one of the main applications of this
operation over linear codes. So, worth noting the attack [2] on the McEliece
cryptosystem based on Reed-Muller binary codes, or the attack [22] on the
same cryptosystem, but based on Reed-Solomon subcodes. Numerous exam-
ples of the Hadamard product application for constructing attacks on code-
based cryptosystem given in works [7, 8, 9, 10, 17]. For the first time, the
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efficient algorithm was constructed in [13] that distinguishes Goppa codes
from random binary codes using this operation.

For practical applications be essential to describe the Hadamard square
of the linear code and establish its properties as a linear code. For example,
in [3] it was proved that the Hadamard square of the linear code fills the
entire space with a probability close to one. This property is often used to
construct attacks on post-quantum public-key cryptosystems; for example,
see works [1, 7, 10, 17]. Some cryptographic mechanisms are based on linear
codes, the Hadamard square of which is not equal to the entire space. Then
the algebraic or combinatorial structure of the Hadamard square of the linear
code becomes important.

Recently, several attacks [5, 6, 11, 17] have been constructed on post-
quantum cryptographic mechanisms based on the concatenation of linear
codes from different classes. Such linear codes consist of codewords which are
obtained by combining part of the codewords from other codes. Moreover, for
these attacks to work correctly, it is required that the Hadamard square of
the combined code is equal to the Cartesian product of Hadamard squares of
the codes used in the combination. The researchers noted that this property
is fulfilled almost always in the experiments, but there is no theoretical for
this fact proved was provided.

In this paper, the theoretical gap is eliminated. And it is proved that
if the sum of the Hadamard squares’ dimensions of the codes used in the
concatenation is slightly less than the dimension of the entire space, then the
Hadamard square of the concatenated code is equal to the Cartesian product
of Hadamard squares of code-components.

2 The main result

Let V n
q be the linear space of all vectors of length n over GF (q). Block

linear [n, k]q-code over GF (q) or just code is a k-dimensional linear subspace
C of V n

q . In this case, n is called the length of the code, and k is called the
dimension of code. When the dimension of the code C ⊆ V n

q is not essential
to us, it will be called the [n]q-code C. Vectors c ∈ C are called codewords of
the code C.

We say that the [n]q-code C is generated by the (k × n)-matrix G with
elements from GF (q) if the linear combination of the rows of the matrix G
over GF (q) coincides with C. This fact we write as C = 〈G〉. Moreover, if
matrix G has the minimum rank among all matrices generating code C, then
it is called the generator matrix of the code C.
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The vector h = (h1, . . . , hn) ∈ V n
q is called parity check of the code C, if

for any vector c = (c1, . . . , cn) ∈ C holds equality

h1 · c1 + . . .+ hn · cn = 0,

here all operations are performed in the field GF (q). It is clear that the set
of all parity checks of code C is a linear subspace of V n

q , i.e. the linear code.
This code is called the dual code to code C. We denote the code dual to C as
C⊥.

The generator matrix H of code C⊥ is called the parity-check matrix of
code C. Note that from the definition of the parity-check matrix H of code
C, it follows that for any c ∈ C holds the equalities

HcT = 0, cHT = 0.

The minimum distance(see [16]) of the linear code C is called the number

dC = min
c∈C, c6=0

wt(c),

here wt(c) is the Hamming weight (the number of nonzero coordinates) of
the vector c. The minimum distance of code C⊥, which is dual to code C, is
denoted as d⊥C .

The Cartesian product of vectors c = (c1, . . . , cn) ∈ V n
q and b =

(b1, . . . , bm) ∈ V m
q is called vector

c× b = (c1, . . . , cn, b1, . . . , bm) ∈ V m+n
q .

Accordingly, the Cartesian product [n]q-code C and [m]q-code B is called
[n+m]q-code C × B consisting of vectors

C × B = {c× b|c ∈ C, b ∈ B}.
The concatenation cat(C1, . . . , Cu) of codes C1, . . . , Cu is called the set of

codes C, which are generated by a matrix of the form

(G1‖ . . . ‖Gu),

here ‖ is the concatenation of matrix columns, and the (k × ni)-matrix Gi

generates the code Ci, i = 1, 2, . . . , u. It is clear that C ∈ cat(C1, . . . , Cu) is
[n1 + . . .+ nu]q-code.

Also, for any code C ∈ cat(C1, . . . , Cu), the following inclusion is true

C ⊆ C1 × . . .× Cu.
Hadamard product of two vectors c, b ∈ V n

q is called the vector c ◦ b
obtained as a result of the component-wise product of coordinates of these
vectors:

c ◦ b = (c1, . . . , cn) ◦ (b1, . . . , bn) = (c1b1, . . . , cnbn).
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Definition 1. Let C and B are [n]q-codes. Then Hadamard product (Schur
product, component-wise product) C ◦ B of codes C and B will be called the
[n]q-code, consisting of the linear span of the following vectors {c ◦ b|c ∈
C, b ∈ B}. If C = B, then code C ◦ C = C2 is called Hadamard square of
code C.

For the Hadamard square of codes that are the concatenation of other
codes, the following proposition is true.

Proposition 1. Let C ∈ cat(C0, C1, . . . , Cu) for some codes C0, C1, . . . , Cu.
Then the following inclusion is true

C2 ⊆ C2
0 × C2

1 × . . .× C2
u. (1)

We will be interested in the following problem. Under what condition the
inclusion (1) turns into equality. The paper’s main result is the following 1.

Theorem 1. Let u be a positive integer, and for each i = 0, 1, . . . , u the
code Ci be a [ni]q-code. Let also [N, k]q-code C ∈ cat(C0, C1, . . . , Cu).

If d⊥C 6= 2, k ≥ 4, N ≤ k(k+1)
2 , N · logq(2− q−1) ≤ k(k−3)

2 and

N − logq
3k + 4

4
≥ dim C2

0 + dim C2
1 + . . .+ dim C2

u,

then we have
C2 = C2

0 × C2
1 × . . .× C2

u. (2)

3 Hadamard square and quadratic forms

It turns out to be a convenient interpretation of the Hadamard square of
the linear code with a point of view of quadratic forms over GF (q). Such an
approach allowed the authors of [3] to establish the behavior of the dimension
of Hadamard square of a random linear code.

Definition 2. A quadratic form over GF (q) is called homogeneous quadratic
polynomial over this field

q(x1, . . . , xk) =
∑

1≤i<j≤k
ai,jxixj +

k∑

i=1

bix
2
i ,

here ai,j ∈ GF (q), 1 ≤ i < j ≤ k, и bi ∈ GF (q), 1 ≤ i ≤ k.
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Let denotes by Qk(q) the set of all quadratic forms over GF (q) in k
variables. Consider a (k × n)-matrix G, let gi ∈ V k

q be the column of the
matrix G with index i. Define a mapping `G : Qk(q) → V n

q in the following
way:

`G(f) =
(
f(g1), . . . , f(gn)

)
.

In this case, the Hadamard square of the linear [n, k]q-code C generated by
the matrix G is the image of the linear operator `G (see, for example, [3, 19]):

C2 = Im `G. (3)

The following proposition attends directly from proposition 1.

Proposition 2. Let C ∈ cat(C0, C1, . . . , Cu) for some codes C0, C1, . . . , Cu.
Then we have

dim C2 = dim Im `(G0‖G1‖...‖Gu) ≤
u∑

i=0

dim Im `Gi, (4)

where (G0‖G1‖ . . . ‖Gu) is generator matrix of code C.
Moreover, equality in (4) is achieved if and only if

C2 = C2
0 × C2

1 × . . .× C2
u.

Let ker `G be a kernel of linear operator `G. Since dimQk(q) = k(k+1)
2 ,

then the equality

dim Im `G =
k(k + 1)

2
− dim ker `G

holds.
So the following proposition is true.

Proposition 3. Let C ∈ cat(C0, C1, . . . , Cu) for some codes C0, C1, . . . , Cu.
Then we have

dim ker `(G0‖G1‖...‖Gu) ≥
k(k + 1)

2
−

u∑

i=0

dim C2
i , (5)

where (G0‖G1‖ . . . ‖Gu) is generator matrix of code C.
Moreover, equality in (5) is achieved if and only if

C2 = C2
0 × C2

1 × . . .× C2
u.

Proof. The proof follows from the equality

dim ker `(G0‖G1‖...‖Gu) =
k(k + 1)

2
− dim Im `(G0‖G1‖...‖Gu),

and from proposition 2 given (3).
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4 The proof of main theorem

This section is devoted to the proof of the main results of the paper. Let
us first establish the truth of the most general theorem.

Theorem 2. Let Xi, i = 0, . . . , u, be (k × ni)-matrices over GF (q). Ma-
trix Xi, i = 0, . . . , u, generates linear code Ci. Denote by N = n0 +
n1 + . . . + nu. Let C be [N, k]q-code over GF (q) generated by the matrix
X = (X0‖X1‖ . . . ‖Xu). Let us require that the matrix X does not contain
identical columns.

If k ≥ 4, N ≤ k(k+1)
2 , N · logq(2− q−1) ≤ k(k−3)

2 and

N − logq
3k + 4

4
≥ dim C2

0 + C2
1 + . . .+ dim C2

u,

then we have
C2 = C2

0 × C2
1 × . . .× C2

u.

Proof. At first, we prove the useful technical lemma.

Lemma 1. Consider a discrete random variable ξ with a finite number of
values {a1, . . . , as}. Let pi be the probability of occurrence of the value ai.
We will assume that a1 is the minimum possible value of ξ. Let us denote
byMξ the mathematical expectation of the random variable ξ. IfMξ ≤ a1,
then for any i we have either pi = 0, or ai = a1.

Proof. Indeed, by definition

a1 ≥Mξ =
s∑

i=1

aipi ⇔ a1

s∑

i=1

pi ≥
s∑

i=1

aipi ⇔ 0 ≥
s∑

i=1

(ai − a1)pi.

Now pi ≥ 0 and ai − a1 ≥ 0 for i = 2, . . . , s, since a1 is minimum value of
random variable ξ. Therefore

∑s
i=1(ai − a1)pi = 0. But it is only possible if

for each i = 2, . . . , s, either pi = 0 or ai = a1.

Consider ker `X .
Let be given a uniform distribution on the set of (k ×N)-matrices X =

(X0‖ . . . ‖Xu), such that the matrix X has no zero columns and repeated
columns. Then ker `X will be a random variable defined on the set of random
matrices X. According to proposition 3 holds the following inequality

dim ker `X ≥
k(k + 1)

2
−

u∑

i=0

dim C2
i .
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This means that if we prove that

M dim ker `X ≤
k(k + 1)

2
−

u∑

i=0

dim C2
i ,

then from Lemma 1, it will follow that the random variable dim ker `X with
nonzero probability can take only the value

dim ker `X =
k(k + 1)

2
−

u∑

i=0

dim C2
i .

Therefore, according to proposition 3, the truth of the theorem will follow
from this.

Thus, it is necessary to estimate the mathematical expectation of a ran-
dom variable dim ker `X . Now | ker `X | = qdim ker `X , therefore, we will esti-
mate the mathematical expectation of the cardinality of ker `X . By definition
f ∈ ker `X , if and only if f(X0) = f(X1) = . . . = f(Xu) = 0.

Let If be a random variable that takes the value one if f(X0) = f(X1) =
. . . = f(Xu) = 0, and 0 in other cases. Then

| ker `X | =
∑

f∈Qk(q)

If .

Since the mathematical expectation is linear, the following equality is
true

M| ker `X | =
∑

f∈Qk(q)

MIf .

Notice that
MIf = 0 · Pr{If = 0}+ 1 · Pr{If = 1}.

Therefore
M| ker `X | =

∑

f∈Qk(q)

Pr{If = 1}.

Let for all f ∈ Qk(q) holds the inequality

Pr{If = 1} ≤ q−
∑u
i=0 dim C2i , (6)

then
M| ker `X | ≤ |Qk(q)| · q−

∑u
i=0 dim C2i .

However, then, taking into account | ker `X | = qdim ker `X , for dim ker `X , we
get

M dim ker `X ≤ dimQk(q)−
u∑

i=0

dim C2
i .
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Since dimQk(q) = k(k+1)
2 , we get

M dim ker `X ≤
k(k + 1)

2
−

u∑

i=0

dim C2
i .

So, to prove the theorem, it is necessary to establish that the inequality (6)
holds for any quadratic form f .

Consider the quadratic form f which takes the value 0 on the set of values
X, |X| = N . Let its weight be w. Then there are

(
qk−w
N

)
options for choosing

from set of arguments of subset Y = X0 ∪ X1 ∪ . . . ∪ Xu of cardinality
N = n0 + n1 + . . . + nu, on which form f takes 0. Then the fraction of
such subsets Y among all possible subsets of cardinality N will be equal to(
qk−w
N

)
/
(
qk

N

)
. This means that

Pr{If = 1|wt(f) = w} =

(
qk−w
N

)
(
qk

N

) .

Then by the law of total probability

P = Pr{If = 1} =

qk∑

w=0

Pr{wt(f) = w}Pr{If = 1|wt(f) = w}.

Suppose that f is chosen randomly and with equal probability from
Qk(q), then the probability Pr{wt(f) = w} can be calculated by the for-
mula

Pr{wt(f) = w} =
Qw

qdimQk(q)
=

Qw

qk(k+1)/2
,

where Qw is number of quadratic forms of weight w.
Then we get

P =

qk∑

w=0

Qw

qk(k+1)/2

(
qk−w
N

)
(
qk

N

) =
1

qk(k+1)/2
·
qk∑

w=0

Qw

(
qk−w
N

)
(
qk

N

) . (7)

Let

Q =

qk∑

w=0

Qw

(
qk−w
N

)
(
qk

N

) .

Further, Qw 6= 0 only for w = 0, qk − qk−1, qk − qk−1 − τqk−1−h(q − 1)
where h = 1, . . . , bk/2c and τ = 1,−1 (see [14, 15, 21]).

So, the following fractions need to be estimated
(
qk−1

N

)
(
qk

N

) ,
(
qk−1+qk−1−h(q−1)

N

)
(
qk

N

) ,

(
qk−1−qk−1−h(q−1)

N

)
(
qk

N

) .
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Lemma 2. If 0 < a < q, n > 0 and N > 0, then we have
(
a·qk−1
N

)
(
qk

N

) ≤ aNq−N .

Proof. Consider equalities
(
a·qk−1
N

)
(
qk

N

) =
(a · qk−1)!(qk −N)!

(a · qk−1 −N)!qk!
=

N∏

i=1

a · qk−1 −N + i

qk −N + i
.

Further,

a · qk−1 −N + i

qk −N + i
=
a · qk−1 − qk + qk −N + i

qk −N + i
= 1− qk−1(q − a)

qk −N + i
. (8)

Since a < q, the fraction qk−1(q− a)/(qk −N + i) is not negative, so the
smaller it is, the (8) is more. Thus, the maximum of expression (8) is reached
at i = N .

For 1 ≤ i ≤ N we have

1− qk−1(q − a)

qk −N − n+ i
≤ 1− qk−1(q − a)

qk
=
a

q
.

Therefore (
a·qk−1
N

)
(
qk

N

) ≤ aNq−N .

Let a takes one of the values 1, 1 ± q−h(q − 1), where 1 ≤ h ≤ bk/2c.
Since q ≥ 1, then 1 + q−h(q − 1) > 0. Further, for h ≥ 1, the inequality
1− q−h(q − 1) ≥ 1− q−1(q − 1) = q−1 > 0 holds.

Hence, according to Lemma 2, we have
(
qk−1

N

)
(
qk

N

) ≤ q−N ,

(
qk−1±qk−1−h(q−1)

N

)
(
qk

N

) ≤ q−N(1± q−h(q − 1))N .

Thus,

Q ≤ 1 + q−NQ0 + q−N
bk/2c∑

h=1

[
Q−h (1 + q−h(q − 1))N +Q+

h (1− q−h(q − 1))N
]
,

where Q0 = Qqk−qk−1, Q−h = Qqk−qk−1−qk−1−h(q−1) and Q+
h =

Qqk−qk−1+qk−1−h(q−1). Since 1 + q−h(q − 1) ≥ 1− q−h(q − 1) for h ≥ 1, then

Q ≤ 1 + q−NQ0 + q−N
bk/2c∑

h=1

[
Q−h +Q+

h

]
(1 + q−h(q − 1))N . (9)

I. Chizhov and A. Davletshina 321



The Hadamard Square of Concatenated Linear Codes

Let us estimate Q0 and Q−h +Q+
h for 1 ≤ h ≤ bk/2c.

According to works [14, 15, 21], holds

Q±h =
1

2
qh

2

(qh ∓ 1)

∏k
i=k−2h+1(q

i − 1)
∏h

i=1(q
2i − 1)

.

First, note that Q+
h ≤ Q−h , so we only estimate Q−h .

Choose any ε, k−1 ≤ ε ≤ 1
4 . Then 1 ≤ εk ≤ k/4. Let h ≤ ε · k. In this

case 2h < k − 2h+ 1. Then we get

Q−h ≤
1

2
qh

2

∏k
i=k−2h+1 q

i

(qh − 1)
∏h−1

i=1 (q2i − 1)
=

1

2

qh
2+2hk−h(2h−1)

(qh − 1)
∏h−1

i=1 (q2i − 1)
.

Now we use the inequality qx − 1 ≥ qx−1, which is valid for any x ≥ 1
and q ≥ 2.

(qh − 1) ·
h−1∏

i=1

(q2i − 1) ≥ qh−1 ·
h−1∏

i=1

q2i−1 = qh−1+2
∑h−1
i=1 i−

∑h−1
i=1 1 = qh(h−1).

Then for 2 ≤ h ≤ ε · k we get

Q−h ≤
1

2
· qh2+2hk−h(2h−1)−h(h−1) =

1

2
· q2h(k+1−h).

Let us find the extremum of φ(h) = 2h(k + 1 − h). For k + 1 ≥ 2h
derivative φ′(h) = 2(k + 1 − h) − 2h = 2(k + 1 − 2h) is not negative,
therefore φ(h) does not decrease on the interval [1, (k + 1)/2].

Hence, for 2 ≤ h ≤ ε · k ≤ k/4 < (k + 1)/2 we get 2h(k + 1 − h) ≤
2εk(k + 1− εk) = 2ε(1− ε)k2 + 2εk.

If h = 1, then

Q−1 =
1

2
q(q + 1)

∏k
i=k−1(q

i − 1)
∏1

i=1(q
2i − 1)

=
1

2
q(q + 1)

(qk − 1)(qk−1 − 1)

q2 − 1
≤ 1

2
· q2k.

Since 1 ≤ εk and ε < 1, then 2k ≤ 2ε(1− ε)k2 + 2εk.
Then for k−1 ≤ ε ≤ 1

4 and 1 ≤ h ≤ εk we get

Q±h ≤
1

2
· q2ε(1−ε)k2+2εk.

Thus for 1 ≤ h ≤ εk we get

Q−h +Q+
h ≤ q2ε(1−ε)k2+2εk.
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And for the remainingQ−h , h > εk, andQ0, we have the trivial inequalities

Q−h +Q+
h ≤ qk(k+1)/2, Q0 ≤ qk(k+1)/2.

Then from (9) for every k−1 ≤ ε ≤ 4−1 implies

Q ≤ 1+(1+(1/2−ε)k)q−Nqk(k+1)/2+q−Nq2ε(1−ε)k2+2εk
∑

h≤εk
(1+q−h(q−1))N .

Notice that 1 + q−h(q − 1) ≤ 2− q−1 = αq. Then

Q ≤ 1 + (1 + (1/2− ε)k)q−Nqk(k+1)/2 + ε · k · q−Nq2ε(1−ε)k2+2εkαNq .

Further, if k ≥ 4, then

1 +

(
1

2
− ε
)
k = 1− εk +

k

2
≤ k

2
.

. Thus,

Q ≤ 1 +
k

2
q−Nqk(k+1)/2 +

k

4
q−N(1−logq αq)q2ε(1−ε)k2+2εk. (10)

Let us choose ε so that
k(k + 1)

2
−N ≥ −N(1− logq αq) + 2ε(1− ε)k2 + 2εk. (11)

This is equivalent to the following inequality

N logq αq + (2ε(1− ε)− 1/2) k2 + (2ε− 1/2)k ≤ 0. (12)

The left side of the inequality is the square polynomial of ε. Not so hard to
prove that (12) holds on the union of intervals

(
−∞, 1

2
−
√
k + 1 + 2b− 1

2k

]⋃[
1

2
+

√
k + 1 + 2b+ 1

2k
,+∞

)
,

where b = N logq αq. The second half-interval cannot contain points of the
segment [k−1, 4−1] since 4−1 < 2−1. Therefore, let us require that the second
contains it. For this, it is enough that

k−1 ≤ 1

2
−
√
k + 1 + 2N logq αq − 1

2k
.

The last is equivalent to

N logq αq ≤
k(k − 3)

2
. (13)
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Thus, if (13) holds, then we have (11). From (11) and (10), the inequality
follows

Q ≤ 1 +
3k

2
q−Nqk(k+1)/2.

But then from (7) we get an estimate for the probability

P ≤ 3k

4
q−N + q−k(k+1)/2.

If N ≤ k(k + 1)/2 then q−N ≥ q−k(k+1)/2, therefore we finally get

P ≤ 3k + 4

4
q−N .

Then, to satisfy (6), it is necessary to require that

−N + logq
3k + 4

4
≤ −

u∑

i=0

dim C2
i ⇔ N − logq

3k + 4

4
≥

u∑

i=0

dim C2
i .

The theorem is completely proved.

Now, to prove the main theorem 1, let us apply the statement of The-
orem 2 to the generator matrix G = (G0‖G1‖ . . . ‖Gu) of the code C ∈
cat(C0, C1, . . . , Cu). The inequality d⊥C > 2 guarantees that G does not con-
tain identical columns. It is also by definition of set cat(C0, C1, . . . , Cu), for
i = 0, 1, . . . , u matrix Gi generates code Ci.

5 Application to cryptanalysis of some post-quantum
cryptographic mechanisms

Concatenated codes are sometimes used to construct post-quantum cryp-
tographic mechanisms based on error-correcting codes.

So in work [20], it is proposed to construct the McEliece cryptosystem,
use codes from the set cat(C0, C1, . . . , Cu), where Ci, i = 0, 1, . . . , u, is Reed–
Muller code RM(r,m).

An effective attack on this variant of the McEliece cryptosystem is pro-
posed in [5]. In this case, for the attack to succeed, equality (2) must hold for
code C. The authors of the attack could only verify the equality (2) experi-
mentally. Theorem 1 strictly allows proving this fact. So, for example, for the
original parameters proposed in [20], dim C2

i = dimRM(6, 10) = 848, k =
176, N = 4 · 1024 = 4096, we get

4096− log2

3 · 176 + 4

4
> 4096− 8 = 4088 > 4 · 848 = 3392,
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which guarantees the success of the attack [5].
In [12], authors propose to build the cryptosystem based on codes from

the family cat(RM(r,m),Γ), where Γ is a binary Goppa code. Moreover, the
codes RM(r,m) and Γ are chosen so that their dimensions coincide. In [6], an
attack on this cryptosystem is constructed in some adversary models. Among
other things, the attack uses the fact of equality (2). Let 2m is the length of
RM(r,m), n1 is the length of Γ, and k is the dimension of these codes. Since
it is not enough what is known about the Hadamard square of Γ, then we
restrict its dimension to n1. We get

2m + n1 − log2

3k + 4

4
≥ n1 + dimRM(2r,m).

So, if

dimRM(2r,m) ≤ 2m − log2

3k + 4

4
, (14)

then, in this case, it is possible to prove the efficiency of the attack from [6]
rigorously. For example, for the code RM(6, 10), the inequality (14) holds
since

848 ≤ 1024− log2 133 ≈ 1016.

Note also the attack from [11], where the McEliece cryptosystem is con-
structed on the class of codes cat(C0, C1, . . . , Cu) for a more general case of
choosing codes Ci. The center point of attack is equality (2). The authors
note that they have experimentally verified its implementation, including for
non-binary codes. It turned out that it is almost always fulfilled. Theorem 1
substantiates the experimental data from work [11].

Finally, consider the attack from [17]. It is devoted to the McEliece cryp-
tosystem built on the Reed–Muller code RM(r,m), in which random coor-
dinates are added to each codeword so that the code’s linearity is preserved.
In Section 5.2 in Remark 1, the authors note that they experimentally es-
tablished the following fact. If we add t random coordinates to the code
RM(r,m), then the Hadamard square of the new code B will have the di-
mension

dimB2 = dimRM(2r,m) + t.

Theorem 1 allows us to prove this fact. So code B can be considered a code
from the family cat(RM(r,m), C), where C is generated by a submatrix con-
taining only added random columns of generator matrix of B. However then
the length of C is equal to t, therefore dim C2 ≤ t. It means that if the
inequality (14) holds, then Theorem 1 implies the equality

dimB2 = dimRM(2r,m) + dim C2.
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It remains only to note that based on Theorem 2.2 of the article [3] for random
linear codes with high probability dim C2 = t. Moreover, for instance, when
the set of added columns has the maximum rank t, then dim C2 = t with
probability 1.

6 Conclusion remarks

The main theorem allows us to conclude that for some types of crypto-
graphic mechanisms, the use of concatenation of codes from different classes
instead of one class of codes, generally speaking, does not increase the cryp-
tographic strength of the mechanism.

The authors hope that using the proven fact that the Hadamard square
of the concatenated code is equal to the Cartesian product of Hadamard
squares of the code-components, it will be possible to clarify several known
attacks and build new attacks on post-quantum code-based cryptographic
mechanisms.

This work was partially supported by the Russian Foundation for Basic
Research under grant no. 18-29-03124.
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Abstract

This paper deals with elliptic curves in the short Weierstrass form over large
prime fields and presents algorithms for computing small odd multiples of a given
point P on a curve. Our algorithms make use of division polynomials and are more
efficient than the naive algorithm based on repeated additions with 2P . We show
how to perform scalar multiplication in the variable base settings using the precom-
puted small multiples. By employing the window method and avoiding conditional
branches, we achieve the constant-time property for the final scalar multiplication
algorithm. Small multiples are computed in either Jacobian or affine coordinates. To
obtain affine coordinates, we use Montgomery’s trick of simultaneous multiplicative
inversion of several field elements. The conversion to affine coordinates slows down
the precomputations but speeds up the main scalar multiplication loop. We show
that the conversion makes sense and gives an overall performance boost in practical
settings.

Keywords: elliptic curve, short Weierstrass form, division polynomial, scalar multiplication.

1 Preliminaries

Elliptic curves in the short Weierstrass form are historically the first
curves of ECC (Elliptic Curve Cryptography, [6]). They appeared in the
pioneering papers by V. Miller [12] and N. Koblitz [9], they formed the basis
of a dozen cryptography standards.

Comparing the efficiency of arithmetic operations, Weierstrass curves are
not the fastest. They are inferior to Montgomery and Edwards curves [13,
2, 3, 4], the current champions. Despite this, Weierstrass curves continue to
be widely used. It is not only due to legacy issues. Unlike Montgomery and
Edwards curves, Weierstrass curves can possess the cofactor-one property,
which makes them very convenient for use in various cryptographic protocols.
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Let F be a large prime finite field. An elliptic curve over F in the short
Weierstrass form is defined by the equation

E : y2 = x3 + ax+ b, a, b ∈ F, 4a3 + 27b2 6= 0.

Affine points of the curve, that is, pairs (x, y) ∈ F2 satisfying E, are added
using special rules. A resulting sum can be a special point at infinity, denoted
by O, and this point can also be a summand. The addition is defined in such
a way that affine points complemented by O form an abelian group. In this
group, O is zero and (x,−y) is the inverse of (x, y).

Let G be an affine point, G = 〈G〉 be the corresponding cyclic group, q
be an order of G and l be the length of q in bits. In cryptography, (E,G) are
chosen so that q is a large prime close to |F|. We further assume that this is
indeed the case.

The main operation of ECC is scalar multiplication, that is, computing
dP given P ∈ G \ {O} and d ∈ {1, 2, . . . , q − 1}. We consider the so-called
variable base settings, when P is volatile and precomputations with it are not
possible. These settings cover constructing shared secrets in Diffie-Hellman-
type protocols or verifying signatures of ElGamal and Schnorr types. The
scalar d is often secret.

Computations with points of an elliptic curve are reduced to computations
with their coordinates (elements of F), which are described by arithmetic
(over F) circuits. The main contribution to the circuit complexity is made by
the multiplicative operations: I — inversion, M — multiplication of arbitrary
elements, S — squaring. The notation iI + mM + sS means that a circuit
contains i operations I, m operations M and s operations S. For example, on
Weierstrass curves, the addition of affine points and their doubling can be
done with the complexity 1I+ 2M+ 1S and 1I+ 2M+ 2S respectively.

The operation I is the most expensive, for practical dimensions its com-
plexity is 80–100 times higher than that of M. To reduce the use of I, affine
points (x, y) are converted into projective points (X, Y, Z) ∈ F3. We use
Jacobian projective points: X/Z2 = x, Y/Z3 = y. The coordinate Z acts
as a normalizing factor that “absorbs” the inconvenient operation I. On a
Weierstrass curve with a = −3 (this is the optimal choice), the operations
J ← J + J (addition of Jacobian points providing the Jacobian result),
J ← 2J (doubling of Jacobian points), J ← J + A (addition of Jacobian
points with affine ones) can be done with the complexity 11M + 5S, 3M + 5S
and 7M+ 4S respectively.

There are many methods for scalar multiplication (d, P ) 7→ dP . In this
paper, we use the window method which consists of two stages:
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I. For a small window width w and a base B ⊆ {±1,±2, . . . ,±(2w − 1)},
the small multiples {nP : n ∈ B} are computed.

II. The resulting point dP is computed using point doublings and addi-
tions with small multiples. A sequence of multiples added at each step
is determined using a recording algorithm that processes the binary rep-
resentation of d. The bits of d are processed either from right (less
significant) to left (more significant) or from left to right.

We propose algorithms that implement both stages of the window method
with B = {±1,±3, . . . ,±(2w−1)}. This base was introduced in [14] and then
used in [7] accompanied by a different recording (recoding in the original)
algorithm. Both recording algorithms of [14] and [7] are right-to-left. We use
the left-to-right direction. This direction is not the best (see discussion in [7])
from the perspective of power analysis, a branch of side-channel attacks, but
in this paper, we do not take power analysis into consideration.

Our algorithms of the first stage are based on division polynomials. Their
use for scalar multiplication was proposed by V. Miller in the already men-
tioned paper [12]. It appears that Miller’s proposal was first implemented
in [8] by adapting an algorithm for computing elliptic nets from [15]. The
proposal is not used in practice since the resulting circuits for computing dP
have high complexity. On the other hand, the circuits for computing small
multiples of P have acceptable complexity and, moreover, these circuits are
more efficient than the naive circuit based on repeated additions with 2P
(see below). Note that we use division polynomials in a rather straightfor-
ward manner compared to a more sophisticated approach of [8, 15] where the
double-and-add method based on division polynomials is actually designed.

In our algorithm of the second stage, conditional branches are avoided.
In cryptography, algorithms without branches are called constant-time. Only
constant-time algorithms are considered safe since branches usually induce
fluctuations of the runtime with potential leakage of sensitive data (in our
case, bits of d).

The small multiples of P that are computed at the first stage and used at
the second stage can be either Jacobian or affine points. To compute affine
points, we use a circuit for simultaneous inversion of several field elements
with only one I operation and some extra multiplications. This circuit was
proposed by P. Montgomery in [13] and is often referred to as Montgomery’s
trick. When using affine points, the first stage is slower but the second stage
is faster.

The following table summarizes the complexity of the proposed algo-
rithms applying for Weierstrass curves in the short form with a = −3. In
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the table, k = dl/we. The second column presents the form of the small
multiples: in Jacobian coordinates (J) or in affine (A). The complexity of
the first stage actually covers the computation of only 2w−1 − 1 points nP ,
n = 3, 5, . . . , 2w−1, since the remaining points of the form nP , n ∈ B, can be
computed through field negations, that is, without multiplicative operations.

Stage Small multiples Complexity
I J (19 · 2w−2 − 11)M+ (7 · 2w−2 − 1)S

A I+ (25 · 2w−2 − 13)M+ (5 · 2w−1 − 3)S
II J I+ (3(k − 1)w + 11k − 8)M+ (6(k − 1)w + 5k − 4)S

A I+ (3(k − 1)w + 8k − 5)M+ (6(k − 1)w + k)S

Let us discuss the first line of the table. It means that the computation
of one small multiple takes time ≈ 19

2 M + 7
2S. On the other hand, the usual

algorithm for computing small multiples is to compute the Jacobian point 2P
and then add it with P , 3P , 5P , and so on. Each addition, except the first,
is performed in time ≈ 11M + 5S. As we can see, using division polynomials
to compute small multiples gives improvement.

The rest of the paper is organized as follows. In Section 2 we recall the
notion of division polynomials and outline a way to use them for computing
small multiples. The exact algorithms and their complexity are provided
in Section 3. In Section 4 we present the constant-time window algorithm
for scalar multiplication in variable base settings. Using popular heuristics
about the complexity ratio between I, M, S and additive field operations,
we estimate the optimal window width for l = 256, 384, 512 and different
coordinate systems of small multiples (Jacobian or affine). It turns out that
affine coordinates are better in all considered cases.

2 Division polynomials

Division polynomials ψn(x, y) describe the coordinates of multiples of an
elliptic curve point. More precisely, if P = (x, y) is an affine point, n ≥ 2
and nP 6= O, then

nP =

(
x− ψn−1(P )ψn+1(P )

ψn(P )2
,
ψn+2(P )ψn−1(P )2 − ψn−2(P )ψn+1(P )

2

4yψn(x, y)3

)
.

The polynomials ψn(x, y) are computed recursively. It would be conve-
nient to define the recursion in terms of auxiliary polynomialsWn(x, y

2) such
that

ψn(x, y) =

{
2yWn(x, y

2), n is even,
Wn(x, y

2), n is odd.
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Assuming (x, y) is fixed, denote Wn = Wn(x, y
2). With that,

Wn =





−1, n = −1,
0, n = 0,

1, n = 1,

1, n = 2,

3(x2 + a)2 + 4(3bx− a2), n = 3,

2(x4(x2 + 5a) + bx(20x2 − 4a)− 5a2x2 − 8b2 − a3), n = 4,

Wm

(
Wm+2W

2
m−1 −Wm−2W

2
m+1

)
, n = 2m,(

(2y)4WmWm+2

)
W 2

m − (Wm−1Wm+1)W
2
m+1, n = 4k + 1, m = 2k,

(WmWm+2)W
2
m −

(
(2y)4Wm−1Wm+1

)
W 2

m+1, n = 4k + 3, m = 2k + 1.

For odd n, the affine coordinates of the point nP can be represented as
follows:

nP =

(
Xn

W 2
n

,
Yn
W 3

n

)
,

Xn = xW 2
n − (2y)2Wn−1Wn+1,

Yn = y
(
Wn+2W

2
n−1 −Wn−2W

2
n+1

)
.

Besides, we automatically get the Jacobian form of nP : nP = (Xn, Yn,Wn).
Carrying out the computation for n up to 2w−1, we obtain an arithmetic

circuit with two non-constant inputs, that is, the affine coordinates of P ,
and 3 · (2w−1 − 1) outputs, that is, the Jacobian coordinates of the points
3P, 5P, . . . , (2w − 1)P .

The resulting circuit can be extended with a circuit taking Jacobian co-
ordinates and returning affine ones. In the additional circuit, we use the
following algorithm proposed by P. Montgomery and mentioned in Section 1.
The algorithm inverts k nonzero field elements in time I+ (3k − 3)M.

Algorithm MontInv

Input : (u1, . . . , uk), ui ∈ F, ui 6= 0.
Output : (u−11 , . . . , u−1k ).
Steps :
1. v1 ← u1.
2. For i = 2, . . . , k: vi ← vi−1ui.
3. t← v−1k .
4. For i = k, k − 1, . . . , 2:

(1) u−1i ← vi−1t;
(2) t← tu−1i .

5. u−11 ← t.
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6. Return (u−11 , . . . , u−1k ).

Further, to slightly simplify the transition from Jacobian to affine coor-
dinates, we use the following form of nP :

nP =

(
Xn

W 2
n

,
Y ′n
W 4

n

)
,

Y ′n = y
(
WnWn+2W

2
n−1 −Wn−2WnW

2
n+1

)
.

3 Small scalar multiplication

3.1 Jacobian coordinates

Let us analyze equations for computing the Jacobian points nP , n =
3, 5, . . . , 2w − 1. We make a list of intermediate and final expressions to be
computed, determine which expressions need to be computed before others,
count the arithmetic complexity of the computations. We count not only
multiplicative operations of the field F but also simpler ones: A — addition or
subtraction, m — multiplication by a small (≤ 5) constant, half — division
by 2. Multiplication by the curve coefficient a or b is treated as the operation
M. We suppose that the expressions a2, a3+8b2 are precomputed and can be
used along with a and b at no cost.

The results of the analysis are given in Table 1.

Table 1: Computing small multiples in Jacobian coordinates

Expression(s) n Require(s) Complexity
Wn 1, 2, 3, 4 a, b, a2, a3 + 8b2, x 4M+ 3S+ 7m+ 10A
y2, (2y)2 y 1S+ 1m
W2n 3, 4, . . . , 2w−1 Wn, Wn+2W

2
n−1− (2w−1 − 2)M

Wn−2W
2
n+1

W2n+1 2, 3, . . . , 2w−1 (2y)4WnWn+2, (2w−1 − 1)(2M+ A)− M
W 2

n , W 2
n+1,Wn−1Wn+1

W 2
n 1, 2, . . . , 2w Wn (2w − 2)S

WnWn+2 1, 2, . . . , 2w−1 Wn, Wn+2, (3 · 2w−2 − 3)(S+ 3A+ half)
2, 4, . . . , 2w − 2 W 2

n , W 2
n+2

(2y)2WnWn+2 2, 4, . . . , 2w − 2 (2y)2, WnWn+2 (2w−1 − 1)M
(2y)4WnWn+2 2, 4, . . . , 2w−1 (2y)2, (2y)2WnWn+2 2w−2M
Wn+2W

2
n−1− 3, 4, . . . , 2w−1 Wn−2, Wn+2, (3 · 2w−1 − 7)M+

Wn−2W
2
n+1 3, 5, . . . , 2w − 1 W 2

n−1, W 2
n+1 (3 · 2w−2 − 2)A

Xn 3, 5, . . . , 2w − 1 x, W 2
n , (2y)2Wn−1Wn+1 (2w−1 − 1)(M+ A)

Yn 3, 5, . . . , 2w − 1 y, Wn+2W
2
n−1 −Wn−2W

2
n+1 (2w−1 − 1)M
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Calculating the complexity, we take into account the following simplifi-
cations:

W5 = (2y)4W2W4 −W3W
2
3 ,

W 2
1 = W 2

2 = 1,

WnWn+2 = ((Wn +Wn+2)
2 −W 2

n −W 2
n+2)/2,

W1W3 = W3,

W2W4 = W4,

W5W
2
2 −W1W

2
4 = W5 −W 2

4 ,

W6W
2
3 −W2W

2
5 = W6W

2
3 −W 2

5 .

The total complexity of the circuit for computing small multiples in Ja-
cobian coordinates:

(19 · 2w−2 − 11)M+ (7 · 2w−2 − 1)S+ 8m+ (2w+2 − 3)A+ (3 · 2w−2 − 3)half.

The circuit is presented in detail in the algorithm SmallMultJ. Here we
take into account that certain expressions are used multiple times. Such ex-
pressions are cached implicitly, that is, they are stored locally and then reused
without recalculation. Cached expressions are enclosed in square brackets.
Expressions in the brackets to the left of ← are inserted into the cache, and
expressions to the right are retrieved from it.

Algorithm SmallMultJ

Input : P = (x, y) ∈ G \ {O}, w (3 ≤ w < log2 q).
Output : 3P, 5P, . . . , (2w − 1)P (in Jacobian coordinates).
Steps :
1. [y2]← y2.
2. [(2y)2]← 4 · [y2].
3. Compute W3:

(1) [x2]← x2;
(2) [bx]← b · x;
(3) [W3]← 3 · ([x2] + a)2 − 4 · ([a2]− 3 · [bx]).

4. Compute W4:
(1) [ax]← a · x;
(2) [x3]← [y2]− [ax]− b;
(3) [W4]← 2·([x3]2+4·[bx]·(5·[x2]−a)+5·[ax]·([x3]−[ax])−[a3+8b2]).

5. [W 2
2 ]← 1.

6. [W 2
3 ]← [W3]

2.
7. [W 2

4 ]← [W4]
2.
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8. [W1W3]← [W3].
9. [W2W4]← [W4].

10. [(2y)2W2W4]← [(2y)2] · [W2W4].
11. [(2y)4W2W4]← [(2y)2] · [(2y)2W2W4].
12. [W5]← [(2y)4W2W4]− [W1W3] · [W 2

3 ].
13. [W 2

5 ]← ([W5])
2.

14. [W5W
2
2 −W1W

2
4 ]← [W5]− [W 2

4 ].
15. [W6W

2
3 −W2W

2
5 ]← [W6] · [W 2

3 ]− [W 2
5 ].

16. For n = 3, 4, . . . , 2w−1:
(1) if n ≥ 5:

[Wn+2W
2
n−1 −Wn−2W 2

n+1]← [Wn+2] · [W 2
n−1]− [Wn−2] · [W 2

n+1];
(2) [W2n]← [Wn] · [Wn+2W

2
n−1 −Wn−2W 2

n+1];
(3) [W 2

2n]← ([W2n])
2;

(4) [WnWn+2]← (([Wn] + [Wn+2])
2 − [W 2

n ]− [W 2
n+2])/2;

(5) if n is odd:
a) [W2n+1]← [WnWn+2] · [W 2

n ]− [(2y)4Wn−1Wn+1] · [W 2
n+1];

else:
a) [(2y)2WnWn+2]← [(2y)2] · [WnWn+2];
b) [(2y)4WnWn+2]← [(2y)2] · [(2y)2WnWn+2];
c) [W2n+1]← [(2y)4WnWn+2] · [W 2

n ]− [Wn−1Wn+1] · [W 2
n+1];

(6) if n 6= 2w−1:
[W 2

2n+1]← ([W2n+1])
2.

17. For n = 3, 5, . . . , 2w−1 + 1:
(1) [Xn]← x · [W 2

n ]− [(2y)2Wn−1Wn+1].
18. For n = 2w−1 + 3, 2w−1 + 5, . . . , 2w − 1:

(1) t← (([Wn−1] + [Wn+1])
2 − [W 2

n−1]− [W 2
n+1])/2;

(2) [Xn]← x · [W 2
n ]− [(2y)2] · t.

19. For n = 3, 5, . . . , 2w−1 − 1:
(1) [Yn]← y · [Wn+2W

2
n−1 −Wn−2W 2

n+1].
20. For n = 2w−1 + 1, 2w−1 + 3, . . . , 2w − 1:

(1) [Yn]← y · ([Wn+2] · [W 2
n−1]− [Wn−2] · [W 2

n+1]).
21. Return the Jacobian points nP = ([Xn], [Yn], [Wn]), n = 3, 5, . . . , 2w−1.

The algorithm SmallMultJ is constant-time. Indeed, its branching con-
ditions depend only on the window width w (public parameter), but not on
the base point P .

The algorithm uses 18 · 2w−2 + 1 field registers, that is, memory cells for
storing elements of F. Some registers can be reused but we do not consider
this optimization here.
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3.2 Affine coordinates

To compute small multiples nP , n = 3, 5, . . . , 2w−1 in affine coordinates,
we modify the previous circuit as follows.
1. The expressionsWnWn+2 are computed for n = 1, 2, . . . , 2w−1. For n =

1, 2 the computation again has no cost since W1W3 = W3 and W2W4 =
W4. For 3 ≤ n ≤ 2w − 2 we again use the scheme WnWn+2 = ((Wn +
Wn+2)

2−W 2
n−W 2

n+2)/2. For n = 2w−1 we directly multiplyWn byWn+2

as W 2
2w+1 is not computed. The overall complexity: (2w − 4)(S + 3A +

half) + M.
2. Instead of the expressions Wn+2W

2
n−1 − Wn−2W 2

n+1 we compute
WnWn+2W

2
n−1 and Wn−2WnW

2
n+1. We multiply WnWn+2 by W 2

n−1 and
Wn−2Wn byW 2

n+1. Complexity: (3·2w−1−5)M. Here we take into account
the simplification: W3W5W

2
2 = W3W5.

3. The expressions W2n, n = 3, . . . , 2w−1, are computed by subtracting
Wn−2WnW

2
n+1 from WnWn+2W

2
n−1. Complexity: (2w−1 − 2)A.

4. The expressions W−2
n , n = 3, 5, . . . , 2w − 1, are computed simultane-

ously using MontInv. After that we compute W−4
n by squaring W−2

n .
Complexity: I+ (3 · (2w−1 − 1)− 3)M+ (2w−1 − 1)S.

5. Instead of Yn we compute Y ′n, n = 3, 5, . . . , 2w − 1. The computations
use y, WnWn+2W

2
n−1 and Wn−2WnW

2
n+1. For each n it takes one multi-

plication and for n > 2w−1 it additionally takes one subtraction. Com-
plexity: (2w−1 − 1)M+ 2w−2A.

6. The conversion into affine coordinates consists of multiplying Xn by
W−2

n and Y ′n by W−4
n , n = 3, 5, . . . , 2w − 1. Complexity: (2w − 2)M.

The total complexity of the modified circuit:

I+(25 · 2w−2− 13)M+(5 · 2w−1− 3)S+8m+(19 · 2w−2− 6)A+(2w− 4)half.

The circuit is detailed in the following algorithm.

Algorithm SmallMultA

Input : P = (x, y) ∈ G \ {O}, w (3 ≤ w < log2 q).
Output : 3P, 5P, . . . , (2w − 1)P (in affine coordinates).
Steps :
1. [y2]← y2.
2. [(2y)2]← 4 · [y2].
3. Compute W3:

(1) [x2]← x2;
(2) [bx]← b · x;
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(3) [(x2 + a)2]← ([x2] + a)2;
(4) [W3]← 3 · [(x2 + a)2]− 4 · ([a2]− 3 · [bx]).

4. Compute W4:
(1) [ax]← a · x;
(2) [x3]← [y2]− [ax]− b;
(3) [x6]← ([x3])2;
(4) [W4]← 2·([x6]+4·[bx]·(5·[x2]−a)+5·[ax]·([x3]−[ax])−[a3+8b2]).

5. [W 2
2 ]← 1.

6. [W 2
3 ]← [W3]

2.
7. [W 2

4 ]← [W4]
2.

8. [W1W3]← [W3].
9. [W2W4]← [W4].

10. [(2y)2W2W4]← [(2y)2] · [W2W4].
11. [(2y)4W2W4]← [(2y)2] · [(2y)2W2W4].
12. [W5]← [(2y)4W2W4]− [W1W3] · [W 2

3 ].
13. [W 2

5 ]← ([W5])
2.

14. For n = 3, 4, . . . , 2w−1:
(1) [WnWn+2]← (([Wn] + [Wn+2])

2 − [W 2
n ]− [W 2

n+2])/2;
(2) if n = 3:

[W2n]← [WnWn+2]− [Wn−2Wn] · [W 2
n+1];

else:
[W2n]← [WnWn+2] · [W 2

n−1]− [Wn−2Wn] · [W 2
n+1];

(3) [W 2
2n]← ([W2n])

2.
(4) if n is odd:

a) [W2n+1]← [WnWn+2] · [W 2
n ]− [(2y)4Wn−1Wn+1] · [W 2

n+1];
else:
a) [(2y)2WnWn+2]← [(2y)2] · [WnWn+2];
b) [(2y)4WnWn+2]← [(2y)2] · [(2y)2WnWn+2];
c) [W2n+1]← [(2y)4WnWn+2] · [W 2

n ]− [Wn−1Wn+1] · [W 2
n+1];

(5) if n 6= 2w−1:
[W 2

2n+1]← ([W2n+1])
2.

15. [W−2
3 ], [W−2

5 ], . . . , [W−2
2w−1]← MontInv([W 2

3 ], [W
2
5 ], . . . , [W

2
2w−1]).

16. For n = 3, 5, . . . , 2w−1 + 1:
(1) [X ′n]← x− [(2y)2Wn−1Wn+1] · [W−2

n ].
17. For n = 2w−1 + 3, 2w−1 + 5, . . . , 2w − 1:

(1) t← (([Wn−1] + [Wn+1])
2 − [W 2

n−1]− [W 2
n+1])/2;

(2) [X ′n]← x− [(2y)2] · t · [W−2
n ].

18. For n = 3, 5, . . . , 2w−1 − 1:
(1) [Y ′n]← y · [W2n] · ([W−2

n ])2.
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19. For n = 2w−1 + 1, 2w−1 + 3, . . . , 2w − 3:
(1) [WnWn+2]← (([Wn] + [Wn+2])

2 − [W 2
n ]− [W 2

n+2])/2;
(2) [Y ′n]← y · ([WnWn+2] · [W 2

n−1]− [Wn−2Wn] · [W 2
n+1]) · ([W−2

n ])2.
20. [Y ′2w−1] ← y · ([W2w−1] · [W2w+1] · [W 2

2w−2] − [W2w−3W2w−1] · [W 2
2w ]) ·

([W−2
2w−1])

2.
21. Return the affine points nP = ([X ′n], [Y

′
n]), n = 3, 5, . . . , 2w − 1.

The algorithm SmallMultA is constant-time for the same reasons as for
SmallMultJ. The algorithm uses 17 · 2w−2 + 6 field registers.

4 Scalar multiplication

Let us proceed with scalar multiplication, that is, computing dP from an
affine point P = (x, y) and a scalar d ∈ {1, 2, . . . , q − 1}. Recall that q is a
large (odd) prime and the length of q in bits equals l.

We start by choosing some window width w and computing the small mul-
tiples nP , n = 3, 5, . . . , 2w − 1, using either the SmallMultJ or SmallMultA
algorithm. Next, we compute the negative small multiples −nP , n =
1, 3, . . . , 2w − 1, with a small overhead (2w−1A).

The computation of dP is performed in Jacobian coordinates. We use
point doublings (J ← 2J) and additions with the points ±nP (either
J ← J + J or J ← J + A depending on the form of the small multi-
ples). The resulting Jacobian point is converted into the affine one (A← J).
To determine small multiples added at each step, we record d as follows.

First, we write d in base 2w:

d =
k−1∑

i=0

di2
wi. (?)

Here di ∈ {0, 1, . . . , 2w − 1} are digits of the representation and k = dl/we
is their number.

Second, for odd d, the digits di are adjusted to get into the set B =
{±1,±3, . . . ,±(2w − 1)} such that (?) is still valid. The adjustment is as
follows. For i = k − 1, k − 2, . . . , 1, the parity of the digit di is tested. If
the digit is even, it is increased by 1 and the previous digit is simultaneously
decreased by 2w:

(di, di−1)← (di + 1, di−1 − 2w).

This equation can be written in the constant-time (applicable to di of any
parity) form:

(di, di−1)← (di + even(di), di−1 − even(di)2w).
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Here even(di) = 1− di mod 2.
Third, if the scalar d is even, then it is replaced with the odd scalar q−d.

We compute the point (q − d)P = −dP and negate it afterwards.
Altogether, we get the following algorithm.

Algorithm ScalarMult

Input : P ∈ G \ {O}, d ∈ {1, 2, . . . , q − 1}.
Output : dP (in affine coordinates).
Steps :
1. δ ← d mod 2, d← (1− δ)q + (2δ − 1)d.
2. Choose a window width w (3 ≤ w < log2 q).
3. P [1] ← P , (P [3], P [5], . . . , P [2w − 1]) ← alg(P,w), alg ∈
{SmallMultJ, SmallMultA}.

4. (P [−1], P [−3], . . . , P [−2w + 1])← (−P [1],−P [3], . . . ,−P [2w − 1]).
5. Represent d as

∑k−1
i=0 di2

wi, d0, d1, . . . , dk−1 ∈ {0, 1, . . . , 2w − 1}.
6. (dk−1, dk−2)← (dk−1 + even(dk−1), dk−2 − even(dk−1)2w).
7. Q← P [dk−1].
8. For i = k − 2, k − 3, . . . , 1:

(1) (di, di−1)← (di + even(di), di−1 − even(di)2w);
(2) Q← 2wQ (J ← 2J , w times);
(3) Q← Q+ P [di] (J ← J + J or J ← J + A).

9. Q← 2wQ.
10. Q← Q+ P [d0].
11. Q← (−1)δQ.
12. Convert Q to affine coordinates (A← J).
13. Return Q.

Note that in doublings J ← 2J and additions J ← J + J or J ← J +A,
the exceptional case when some of the operands equals O is not possible.
This is because the condition Q 6= O is an invariant of ScalarMult. Let us
prove this fact.

First, Q is obviously not equal to O after Steps 7, 10, 11. Second, Q
cannot become O after doubling since Q belongs to the group G of odd
order q. Third, Q cannot become O after Step 8.3. Indeed, after this step the
point Q has the form eP , where e =

∑k−1
j=i dj2

w(j−i). The equality Q = O
means that either e = 0 or e = q. The case e = 0 is impossible because e is
odd. The case e = q is impossible since i ≥ 1 and, therefore, e < 2w(k−1) < q.

Conventional algorithms for doubling and adding points on Weierstrass
curves are constant-time provided that exceptional cases are not possible.
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Using these algorithms in ScalarMult, we achieve for it the constant-time
property. We take into account that ScalarMult does not contain conditional
branches and that the nested algorithms SmallMultJ and SmallMultA are
constant-time.

It should be noted that in addition to conditional branches, there is an-
other factor of non-constant running time. Modern microprocessors load data
through the cache memory and the loading time may vary depending on the
cache state. Since ScalarMult does use the array P [i] to store small multi-
ples, additional measures should be taken to prevent running time fluctua-
tions.

One of the natural measures is to avoid storing negative points P [−n] by
switching from the operations J ← J+J , J ← J+A to J ← J±J and J ←
J ± A while preserving the constant-time property. In result, ScalarMult
requires either 3 · 2w−2 or 2 · 2w−2 field registers to store Jacobian or affine
small multiples P [n], n = 1, 3, . . . , 2w−1, respectively.

Let ScalarMult[alg, w] be the algorithm ScalarMult instantiated with
alg ∈ {SmallMultJ, SmallMultA} and a window width w. Let a curve with
a = −3 be used and the operations J ← 2J , J ← J + J and J ← J +A be
implemented with the complexity 3M+6S+4m+6A+half, 11M+5S+4m+9A
and 7M+4S+4m+9A respectively.1 Let the complexity of A← J be I+S+3M.
The choice a = −3 made provides the fastest time for the operation J ← 2J
without affecting the complexity of other operations. Moreover, since a is
small, multiplication by a in alg costs 1m, not 1M.

For the case alg = SmallMultA, let the cascade (J ← 2J, J ← J + A)
at the junction of the steps 8.2, 8.3 and 9, 10 be additionally optimized. The
cascade is treated as a special operation J ← 2J + A which is implemented
in time 11M+ 7S+ 27A according to [11, Appendix A.3].

In these settings, the final algorithms have the following complexity:

Operation in F ScalarMult[SmallMultJ, w] ScalarMult[SmallMultA, w]

I 1 2

M dl/w − 1e(3w + 11) + 19 · 2w−2 − 8 dl/w − 1e(3w + 8) + 25 · 2w−2 − 10

S dl/w − 1e(6w + 5) + 7 · 2w−2 dl/w − 1e(6w + 1) + 5 · 2w−1 − 2

m dl/w − 1e(4w + 4) + 8 dl/w − 1e(4w − 4) + 8

A dl/w − 1e(6w + 9) + 2 · 2w+2 − 3 dl/w − 1e(6w + 21) + 19 · 2w−2 − 6

half dl/w − 1ew + 3 · 2w−2 − 3 dl/w − 1e(w − 1) + 2w − 4

To simplify the expressions above, let us apply the following heuristic
often used in practice:

I = 100M, S = 0.8M, m = A = half = 0M,
1See [1] for detailed circuits. They are named dbl-1998-hnm, add-2007-bl and madd-2007-bl.
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or (100, 0.8, 0) for short. Let us also consider two additional heuristics:
(100, 0.67, 0) and (100, 0.67, 0.05). With a heuristic h, the complexity of an
algorithm is expressed as the number of M operations, M-complexity, denoted
as M(h).

Table 2 presents M-complexity of the algorithms ScalarMult[alg, w∗] for
l = 256, 384, 512 and different heuristics listed above. Here w∗ is the window
width that provides the smallest M-complexity for a given alg and l. The
optimal width w∗ is the same for all three heuristics. The table shows that
the choice alg = SmallMultA is preferable to alg = SmallMultJ providing
both smaller M-complexity and smaller optimal window width. Note that the
smaller the window width, the less memory is required.

Table 2: M-complexity of scalar multiplication algorithms

l Algorithm M-complexity (rounded to the nearest integer)
M(100, 0.8, 0) M(100, 0.67, 0) M(100, 0.67, 0.05)

ScalarMult[SmallMultJ, 5] 3043 2803 2985
256 ScalarMult[SmallMultA, 4] 2840 2631 2824

MontLadder[WeierCurve] 2724 2590 2731
MontLadder[MontCurve] 2200 2067 2182
ScalarMult[SmallMultJ, 6] 4379 4029 4293

384 ScalarMult[SmallMultA, 5] 4085 3769 4048
MontLadder[WeierCurve] 4030 3829 4041
MontLadder[MontCurve] 3250 3050 3223
ScalarMult[SmallMultJ, 6] 5739 5271 5622

512 ScalarMult[SmallMultA, 5] 5328 4907 5278
MontLadder[WeierCurve] 5335 5068 5350
MontLadder[MontCurve] 4299 4033 4264

The table additionally covers the algorithm from [10] that performs scalar
multiplication on Montgomery curves by the left-to-right Montgomery lad-
der according to [13]. This algorithm denoted as MontLadder[MontCurve] is
considered one of the most efficient in the constant-time class, its complexity
is

l(5M+ 4S+ m+ 8A) + I+ M.

Here we treat multiplication by a (presumably small) curve coefficient as
the operation m and multiplication by a coordinate of P as the operation
M (the latter because scalar multiplication is performed in the variable base
settings).

The table also covers the algorithm from [5] which we denote as
MontLadder[WeierCurve]. This algorithm also uses the Montgomery ladder
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but over short Weierstrass curves. This is probably the fastest constant-time
algorithm for these curves, its complexity is

l(7M+ 4S+ 10A+ 1half) + I+ 8M+ 6S+ 3m+ 6A+ 2half.

We suppose here that the simple finalization technique [5, Section 2.4.1] and
the S-M tradeoff [5, Figure 3] are used. We also suppose that the constant 1/3
is precomputed so that division by 3 costs 1M.

The table shows that the algorithm ScalarMult[SmallMultA, w∗] is com-
petitive to MontLadder[WeierCurve] especially for large l. A drawback of
ScalarMult[SmallMultA, w∗] is a rather large memory requirements com-
pared to only 6 field registers

Conclusion

Combining division polynomial-driven algorithms for small scalar multi-
plication on elliptic curves in the short Weierstrass form with several well-
known optimization techniques we obtain constant-time algorithms for scalar
multiplication that are competitive to the recent developments in the subject
based on the Montgomery ladder. The integrated techniques are: the window
method, skipping even small multiples, left-to-right scalar recording avoiding
exceptional cases, Montgomery’s trick for simultaneous inversion of several
field elements, the fast point doubling-addition.
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Abstract

At CTCrypt 2020 a digital signature scheme that allow to produce short digital
signatures was presented. The scheme was made by the modification of one described
in GOST R 34.10-2012 that is the variant of classical ElGamal framework. In the
article the security of the scheme considered from the provable security point of view.
However no practical variants to attack the scheme were presented in the article, the
particular level of bit security was not estimated.

In this article we present three attacks that significantly reduce the security of
the scheme. Characteristics of the attacks are used to estimate the bit security of
the scheme.

Keywords: digital signature scheme, security level evaluation.

1 Introduction

At CTCrypt 2020 the group of authors proposed the description of the
signature scheme (see [1]), that allows to form shorter signatures in compari-
son with the length of signatures, provided by the all variants of the signature
schemes from GOST R 34.10-2012.

As pointed out in [1], the developers were guided by the need to use the
features of the currently available software (hardware) used for the imple-
mentation of signature schemes from GOST R 34.10-2012, such as modern
processors architecture or parameters of the random number generators used
in generating the private key or one-time (ephemeral) keys.

The proposed scheme is based on the scheme from GOST R 34.10-2012,
which implies a hash function with a hash code length of 256 bits. In further
sections notations from[1] and GOST R 34.10-2012 will be used, stated base
scheme further will be addressed as “GOST signature scheme”.

In [1] three transformations are suggested to reduce the signature length:
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– reduction of the length of the signature component r by applying a
compressive mapping;

– reduction of the length of the signature component r due to fixation of
some number of least significant bits. In this case some additional calculations
(enumeration of values k) are supposed to be done in order to choose the value
r that meets specified requirements;

– reduction of the length of the signature component s (or r) by “cutting
off” some least bits. In this case some calculations to restore the initial value
s (or r) from the “cuted” value are to be done.

1.1 Our contribution

It is obvious, that the mentioned transformations lead to decreasing of the
security level of the initial GOST signature scheme. The theoretical security
of the “short” signature scheme is justified in [1]. At the same time the actual
assessment of the scheme security level is not carried out in the work. In
this article some methods of analysis of the “short” signature scheme are
presented. The methods characteristics will be used to estimate the actual
security level of the scheme.

1.2 Paper organisation

The remainder of the paper is organized as follows. In Section 2 basic
definitions and descriptions of the schemes from [1] are introduced. In Section
3 security evaluations of the described schemes are considered. Novel attacks
with the evaluation of their characteristic are presented in the section. The
attack characteristics are used to evaluate security level of the schemes from
[1]. All the conclusions drawn up in Section 4.

2 Design principles

Before proceeding to the description of the design principles used in [1]
to create the «short» signature scheme, let us recall the general principles of
operation of the GOST signature scheme.

The following notions will be used. If the variable x gets the value of the
variable y we denote x ← y. To show that the value is chosen uniformly at
random from the set A and this value is assigned with veriable k we use the
notion k U←− A. For x ∈ Zq the notion x̄ will mean the bit representation of
x. For point C of some elliptic curve, the notion xC denotes x-coordinate of
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point C. Also some hash-function H(·) will require to represent the signature
schemes.

Each user of the signature scheme has private key d and the corresponding
public key Q = dP , where P is an element of a subgroup of prime order q
(where q is n bit length) of points of elliptic curve given over Zp, where p is
some prime number.

The following algorithms should be implied to sign the message Msg ∈ V ∗
and to verify the signature.

Generic sign algorithm
Input: (d, Msg)

Output: signature r̄‖s̄
1: e← H(Msg)

2: k U←− Zq

3: r ← xkP (modq)
4: s← ke+ rd
5: return r̄‖s̄

Generic verification algorithm
Input: (Q, Msg, r̄‖s̄)
Output: {0, 1}

1: e← H(Msg)
2: R← e−1sP − e−1rQ
3: if xR 6= r then
4: return 0 . The signature is false
5: else
6: return 1 . The signature is correct

2.1 One-way function based approach

The basic idea of the first method from [1] is to reduce the bit length of
r̄ by applying some one-way function f : Zp → Z∗q to r. According to [1]
f(r) = φ(H1(r̄) (mod2b)) is one-way function, where H1 : V ∗ → Z2256 and
φ : Z2b → Z∗q. Note that f(r) has only b significant bits for any r.

In this case the following algorithms should be implied to sign the mes-
sage Msg and to verify the signature. This signature scheme further will be
addressed as Scheme 1.

Sign algorithm
Input: (d, Msg)

Output: signature r̄‖s̄
1: e← H(Msg)

2: k U←− Zq.
3: r ← f(xkP (modq))
4: s← ke+ rd
5: return r̄‖s̄

Verification algorithm
Input: (Q, Msg, r̄‖s̄)
Output: {0, 1}

1: e← H(Msg)
2: R← e−1sP − e−1rQ
3: if f(xR) 6= r then
4: return 0 . The signature is false
5: else
6: return 1 . The signature is correct

In [1] it is noted that bit length of the signature will be n+ b+ 1.
Note that the idea of reduction of the signature length by applying a

one-way function to the signature component was proposed by C.P. Schnorr
in 1989 [3]. One of the main features of the signature scheme proposed in [3]
that its security level can’t be reduced considering collision attacks against
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hash-functions in use. It is important to notice that the scheme from [1] has
no such feature.

2.2 Bit-fixation based approach

The basic idea of the second method from [1] is to use the representation
r̄ = r̄∗‖const, where the bit length of the string const is predefined value l. In
this case calculation of the value r̄ require additional computations. During
the computations the enumeration of the values k ∈ Zq are to be made.

The following algorithms should be implied to sign the message Msg and
to verify the signatures.

Sign algorithm
Input: (d, Msg)

Output: signature r̄‖s̄
1: e← H(Msg)

2: k U←− Zq

3: r ← xkP (modq)
4: if LSBl(r̄) 6= const then
5: goto step 1
6: else
7: s← ke+ rd
8: r̄∗ ← MSBn−l(r̄)
9: return r̄∗‖s̄

Verification algorithm
Input: (Q, Msg, r̄‖s̄)
Output: {0, 1}

1: e← H(Msg).
2: r̄ ← r̄∗‖const
3: R← e−1sP − e−1rQ
4: if xR 6= r then
5: return 0 . The signature is false
6: else
7: return 1 . The signature is correct

In [1] it is noted that the bit length of the signature will be 2n− l.

2.3 Bit-cutting based approach

The third approach proposed in [1] is to cut some bits of the parameter s
(or r). In this case, during the verification of the signature it is necessary to
perform additional computations in order to restore and check the truncated
bits.

Let’s assume that the bit length of the parameter s is truncated by t bits.
The following algorithms should be implied to sign the message Msg and to
verify the signature.
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Sign algorithm
Input: (d, Msg)

Output: signature r̄‖s̄
1: e← H(Msg)

2: k U←− Zq

3: r ← xkP
4: s← ke+ rd
5: s̄∗ ← MSBn−t(s̄)
6: return r̄‖s̄

Verification algorithm
Input: (Q, Msg, r̄‖s̄)
Output: {0, 1}

1: e← H(Msg)
2: cnt← 0
3: cnt← cnt+ 1.
4: if cnt ≥ 2t then
5: return 0 . The sign is false
6: else
7: s̄← s̄∗‖cnt
8: R← e−1sP − e−1rQ
9: if xR = r then

10: return 1 . The sign is correct
11: else
12: goto step 3

In [1] it is noted that the bit length of the signature will be 2n− t.

2.4 Combined approach

To achieve the minimal length of the signature in [1] it is suggested to
combine the three approaches. In this case the sign and verification algo-
rithms could be denoted as follows.
Sign algorithm

Input: (d, Msg)

Output: signature r̄‖s̄
1: e← H(Msg).
2: k U←− Zq

3: r ← f(xkP (modq))
4: if LSBl(r̄) 6= const then
5: goto step 1
6: else
7: s← ke+ rd.
8: r̄∗ ← MSBn−l(r̄)
9: s̄∗ ← MSBn−t(s̄)

10: return r̄‖s̄

Verification algorithm
Input: (Q, Msg, r̄‖s̄)
Output: {0, 1}

1: e← H(Msg)
2: r̄ ← r̄∗‖const
3: cnt← 0
4: cnt← cnt+ 1
5: if cnt ≥ 2t then
6: return 0 . The sign is false
7: else
8: s̄← s̄∗‖cnt
9: R← e−1sP − e−1rQ

10: if f(xR) = r then
11: return 1 . The sign is correct
12: else
13: goto step 4

This signature scheme further will be addressed as Scheme 2.
In [1] it is noted that the bit length of the signature will be n+b+1−t−l.

3 Security evaluations

In [1] security of the “short” signature scheme is considered from the
provable security point of view. The main results are based upon the approach
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provided during the justification of security of ECDSA in [2]. In particular, it
is shown that the proposed signature scheme is secure the discrete logarithm
problem is hard for the case in consideration. A common approach based on
forking lemma [4] is considered to achieve the final results. It is also noted
in [1] that when the parameters b = 100, t = 18 and l = 18 are used, the
advantage of the adversary to forge the signature does not exceed 2−35.

3.1 Novel attacks

A common attack approach against any signature schemes based upon
collision attacks against hash-function that are in use for message processing.
The application of this approach to analyse the proposed “short” signature
scheme will not lead to a reduction of the security level in comparison to the
GOST signature scheme.

At the same time, the features of the signature length reduction methods
described above can be used to mount additional attacks.

3.1.1 Attack against Scheme 1

The aim of the attack is to find a preimage for the one-way function for
the fixed value of r. This attack could be used to forge a signature for an
arbitrary message. The adversary needs to have only one message/signature
pair computed by a legitimate user to mount the attack. Let’s assume that
the user computed the signature r̄‖s̄ for the message Msg. So, in order to
forge a signature for an arbitrary message Msg1 without the private key d the
following algorithm could be performed.

Algorithm 1 Attack against Scheme 1
Input: (Msg, Msg1, r̄‖s̄)
Output: forged signature s̄1‖r̄

1: e← H(Msg)
2: e1 ← H(Msg1)
3: T ← e−1sP − e−1rQ. . T = kP , but k is unknown
4: i← 0
5: while f(xA) 6= r do
6: i← i+ 1
7: A = e−11 eT + e−11 eiP

8: s1 ← s+ ie
9: return r̄‖s̄1

Let us show that the forged signature s̄1‖r̄ will be valid signature for
Msg1. To do this, let us demonstrate that the equality f(xR) = r holds. Note
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that

s1 = s+ ie = ke+ rd+ ie = e(k + i) + rd,

then

R = e−1
1 s1P − e−1

1 rQ = e−1
1 (e(k + i) + rd)P − e−1

1 rdP =

= e−1
1 ekP + e−1

1 eiP = A.

Given the equation f(xA) = r, we obtain that f(xR) = r, i.e. the forged
signature is valid.

Note that computation the second preimage in the case of b = 100 would
require no more than 2100 calculations of the multiple points and the hash-
functions.

3.1.2 An attack based on bit fixation

Let’s consider Scheme 2 in which the bit-cutting procedure (see sec. 2.3) is
not implied. The signature is achieved only by the implementation of one-way
function and by fixing of some bits.

In this case the set of all values r suitable for the calculation of the
signature may be reduced. We may find values r that are different from the
one used during the sign stage, but they may be used during verification
procedure and signature will be valid. In particular, lets consider a signature
r̄∗‖s̄, where

r = xkP , r̄ = r̄∗‖ 0 . . . 0︸ ︷︷ ︸
l

,

for some k that was specially chosen (by the user) during the sign procedure.
Then if we choose such k′ that xk′P = r′, r̄′ = r̄∗‖ū, where 0 < u < 2l, then
in view of the procedure of cutting least significant bits of r, the signature
(r̄∗‖s̄) proceeded from r′, and not from r, will also be a valid signature for
the given message. It is should be noted that the described method will
achieve success in case the comparison of cut bits with given constant is not
performed during the verification procedure.

Let’s consider the representation r̄′ = r̄∗‖ū, where 0 < u < 2l. Having
the last inequality we may state that the cardinality of the set of admissible
values r suitable for the analysis increase from 1 to 2l− 1. So the probability
to find i useful for the attack increases.

Let’s describe how to apply the mentioned idea on practice.
Let’s assume that we want to forge a signature for the message Msg1 such

that H(Msg1) = e1. To do so we imply the enumeration method from 3.1.1 to
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find the second preimage for r. Let i be the value such that f(xe−11 e(k+i)P ) =
r′. Then, if we apply the procedure described in section 3.1.1 to modify
the parameter s and obtain the value s1, the signature (r∗‖s1) will be a
valid signature for the message Msg1. That could be proven by the following
equations:

e−1
1 s1P − e−1

1 rQ = e−1
1 (e(k + i) + rd)P − e−1

1 dP = A,

f(xA) = r′.

So if during the verification procedure l least significant bits of r′ are not
compared with the given constant the attack will succeed.

Thus, in the case of fixation the 18 least significant bits with zeros (i.e., l =
18), as proposed in [1], we will require no more than 2100−18 = 282 calculations
of the multiple points and the hash-functions to realise the attack.

3.1.3 An attack based on bit-cutting

Let’s consider Scheme 2 in which the bit fixation procedure (see sec. 2.2)
is not implied. The signature is achieved only by the implementation of one-
way function and bit-cutting.

Since the sign procedure based upon the equation s = ke + rd where
the least significant bits of s̄ being further truncated, it is generally possible
to influence the least significant bits in a way the signature remains valid.
Let j̄ ∈ {0, 1}t, such that LSBt(s) = LSBt(s + j). Let’s assume s2 = s + j.
Considering equations

e−1s2P − e−1rQ = e−1(ke+ rd+ j)P − e−1rdP = kP + e−1jP,

f(x(k+e−1j)P ) = rj,

we will get that for any value j that does not affect bits of s that are part of
the signature, we can compute values rj that are “equivalent” to the “correct”
value r (that is part of the signature). In this case, for some j we may state
that the verification procedure executes

f(xR) = rj.

Then by going through different values of the least significant bits of s for
some j we will obtain the equality f(xR) = rj, indicating that the verified
signature is valid.

The described feature may be used on practice as follows. When searching
for the second preimage using the method described on 3.1.1, success will
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be achieved not only when the tested equality is satisfied for the specified
value r, but also for any value rj. According to [1] there are 2t possible
values of j, and it is suggested to use t = 18. Thus, in order to find the
second preimage for the one-way function, it is necessary to perform about
2100−18 = 282 calculations of the multiple points and the hash-functions to
realise the attack.

3.1.4 Attack against Scheme 2

If the attacks described in 3.1.2 and 3.1.3 will be realised simultaneously,
security level of the «short» signature scheme may be estimated by a value
of 2100−19 = 281. The value is obtained because the cordiality of the set of
favourable events at which one of the two given attacks could be mount is
2l + 2t that with t = l = 18 is 219.

4 Conclusions

Using the parameters recommended in [1], forging a signature would re-
quire about 281 calculations of the multiple points and the hash-functions. In
this case, we can say that for such a parameter size, the proposed signature
scheme, has (by rough estimates) a security level equal to 81 bits. To achieve
this security level in the scheme based on ElGamal framework, it is possi-
ble to use a private key of 162 bits. For example the non-modified signature
scheme from GOST R 34.10-2012 with such size of private key will give a
signature of 324 bits length. In [1] states that for a given set of parameters,
the scheme will be secure (in particular model) if the signature is 320 bits
and the private key is 256 bits, considering additional calculation should be
made during the sign and verification.

Thus, for realisation of a “short” signature scheme require the private
key of 256 bit length the bit security level of the scheme almost the same
as in GOST scheme with truncated parameters, but the realisation of the
scheme require additional computational evaluations. So we can conclude
that the practical significance of the proposed in [1] modifications of sign
and verification procedures defined in GOST R 34.10-2012 aimed to shorten
the signature size needs further considerations.
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